沥青混凝土本构模型及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着沥青混凝土基础理论和路面工程技术的迅速发展,沥青混凝土已成为最重要的高速公路路面结构材料,同时还被广泛应用于机场跑道。因此,从军事需出发,研究沥青混凝土材料在高速冲击与侵彻条件下的力学性能具有重要意义。
     本论文以军事需求为牵引,以沥青混凝土本构方程和本构参数为研究目标,对沥青混凝土的本构模型进行了理论分析,对三种沥青混凝土材料在不同应变率和温度条件下的应力—应变关系进行了试验研究。
     1.对商业软件LS-DYNA970中的MAT-147本构模型进行了学习,分析了将该模型应用于沥青混凝土材料的可行性。
     2.按国家规范,研制了AC-16、AM-10、AM-20三种级配的沥青混凝土试件,并按试验规程测定了其常态密度,依次为:2.48 g/cm~3、2.30 g/cm~3、2.41 g/cm~3。
     3.对AC-16、AM-10、AM-20三种型号的沥青混凝土分别进行了两个温度、三种应变率下的SHPB套筒围压实验。实验中,采用了方便有效的加温、降温的方式和在入射杆的被打击面粘多层胶布的整形技术。
     4.通过对比实验表明:沥青混凝土的力学特性对温度比较敏感,温度越高,强度将显著变小;它的力学特性还与加载速率有关,应变率越大,材料所表现出来的强度会明显增大;在沥青混凝土强度构成上,粘结力是重要组成部分,在一定条件下起决定作用。
     综上所述,本文对沥青混凝土材料的动态力学性能进行了大量的理论和试验探索研究,得到了一些规律性的认识,从而为进一步研究沥青混凝土的毁伤效应提供了较丰富的素材。
In this dissertation, asphalt concrete is taken as research object and its constitutive theoretical model and the stress-strain relations under high strain rate is studied, besides the influence of confining pressure, temperature, grading factor on the intensity is studiedas well.
     1. The MAT-147 constitutive model in LS-DYNA970 software is analyzed by theoretical,and the feasibility of using the model on asphalt concrete is studied.
     2. Some important parameters, which are used to simulating the model, are proposed by Triaxial experiment and SHPB sleeve confining pressure experiment. In addition,The theoretical method of computing and fitting the parameters is provided.
     3. The SHPB sleeve confining pressure experiment on the AC-16, AM-10 AM-20 asphalt concrete is done under two temperature and three strain rate. A convenient and effective heating, cooling method and the technology of multi-layer plastic sheets against the surface of the incident was applied.
     4. The comparing experiment shows that: the mechanical properties of asphalt concrete is sensitive to temperature, the higher the temperature, the smaller the intensity; it also has something to do with loading rate, the greater the strain rate, the more significantly increased of the intensity demonstrated by the material; the strength of AC model is obvious higher than AM model.
     The theoretical research asphalt Concrete constitutive model and the influencing factor of mechanical properties under high strain rate provide a theoretical basis and a experimental basis for the further study on the constitutive relationship.
引文
[1]孙德栋,彭波.沥青路面设计与施工技术.郑州:黄河水利出版社,2003,P229
    [2]史建方,刘中林,谭发茂,田文.高等级公路沥青混凝土路面新技术.北京:人民交通出版社,2000;22-23
    [3]冯俊领,张起森,高和生,陈一飞.大粒径沥青混合料力学性能实验研究.公路,2006.2:157-160.
    [4]张起森,冯俊领,查旭东.大粒径沥青混合料路用性能研究.长沙理工大学学报(自然科学版),2004.6;
    [5]仲玉侠,余芳.长短纤维沥青砼力学性能试验对比研究.重庆交通学院学报,2006(25),4:65-69
    [6]王晓,陈刚,王建伟,刘延辉,罗乙.聚酯纤维加强沥青混合料试验研究.交通世界,2002.
    [7]胡玉祥,张肖宁,王绍怀,迟凤霞.高模量沥青混和料添加剂性能的试验研究.石油沥青,2006,6.
    [8]王学信,沙爱民,胡力群,袁文豪.水泥乳化沥青混凝土力学性能研究.公路交通科技,2005,11.
    [9]吕松涛,田小革,郑健龙.沥青混合料粘弹性参数的测定及其在本构模型中的应用.长沙交通学院学报,2005,21(1):37-42.
    [10]钱国平,郭忠印,郑健龙.环境条件下沥青路面热粘弹性温度应力计算.同济大学学报,2003,31(2):150-155.
    [11]Duncan,J.M.,Chang,C.Y.,Nonlinear analysis of stress and swain in soil[J].J.Soil Mesh.Found.Div.,ASCE,1970,96(5):1629-1652
    [12]J.M.邓肯,C.Y.张.土的应力与应变非线性分析.南京水利科学研究所,水利水运科技情报,1973.
    [13]郭葭窗.沥青混凝土三轴试验及应力—应变特性.水利技术,1981:(9):58-64.
    [14]缑元有,李永乐,肖自龙,刘翠然.沥青混凝土应力—应变关系试验研究.人民黄河,2005.5.
    [15]凤加骥,葛毅雄,孙兆雄.沥青混凝土应力—应变关系试验研究.水利学报,1987,11:56-62.
    [16]王为标,孙振天,吴利言.沥青混凝土应力—应变特性研究.水利学报,1996,5.
    [17]李志强,张鸿儒,侯永峰,田先忠.土石坝沥青混凝土心墙三轴力学性能研究.岩石 力学与工程学报.2006,5.
    [18]Erkens S M J G,Liu X,Scapas A.3D finite element model for asphalt concrete response simulation.2~(nd) International Symposium on 3D Finite Elements in Pavement Engineering,Charleston,West-Virginia,USA,2000b,October 11-13.
    [19]Desai C S,Somasundaram S,Frantziskonis G.A hierarchical approach for constitutive modeling of geologic materials.International Journal of Numerical and Analytical Methods in Geomechanics,1986,10(3):225-257.
    [20]Tan S,Low B,Fwa T.Behavior of asphalt concrete mixtures in triaxial compression.Journal of Testing and Evaluation,1994,JTEVA22(3):195-203.
    [21]Cela J.Material identification procedure for elastoplastic Drucker-Prager model.Journal of Engineering Mechanics,2002,ASCE128(5):586-591.
    [22]Bousshine L,Chaaba A,De Saxce G.Softening in stress-strain curve for Drucker-Prager non-associated plasticity.International Journal of Plasticity,2001,17:21-46.
    [23]Chiarelli A S,Shao J F,Hoteit N.Modeling of elastoplastic damage behavior of claystone.International Journal of Plasticity,2003,19:23-45.
    [24]Laith Tashman,Eyad Masad,Dallas Little,Hussein Zbib.A microstructure-based viscoplastic model for asphalt concrete.International Journal of Plasticity,2005,21:1659-1685.
    [25]Vassilis P Panoskaltsis,Dinesh Panneerselvam.An anisotropic hyperelastic-viscoplastic damage model for asphalt concrete materials and its numerical implementation.5~(th)GRACM International Congress on Computational Mechanics Limassol,2005,June 29-July 1.
    [26]Krishnan J M,Rao C L.Mechanics of air voids reduction of asphalt concrete using mixture theory.International Journal of Engineering Science,2000,38:1331-1354.
    [27]Krishnan J M,Rao C L.Mechanics of air voids reduction of asphalt concrete using mixture theory.International Journal of Engineering Science,2000,38:1331-1354.
    [28]Brett A.Lewis,Ph.D.Manual for LS-DYNA Soil Material Model 147,FHWA-HRT-04-095,2004.11
    [29]J.D.Reid,B.A.Coon,Brett A.Lewis,S.H.Sutherland.,Y.D.Murray.Evaluation of LS-DYNA Soil Material Model 147,FHWA-HRT-04-095,2004.11
    [30]Abbo A.J.and S.W.Sloan.A Smooth Hyperbolic Approximation to the Mohr-Coulomb Yield Criterion.Computers and Structures,Vol.54,NO.1,1995
    [31]张若棋.沥青混凝土的动态本构模型研究.国防科技大学工程力学系,2007.5
    [32]H.Kolsky.An Investigation of Mechanical Properties of Materials at Very High Rates of Loading.Proc.Phys.Soc.,1949,62:676
    [33]Thomas G.Harmon.Confined Concrete Subjected to U niaxialMono tonic loading.J.of Eng.Mech.,1998,23(4):67-71.
    [34]施绍裘,王礼立.材料在准一维应变下被动围压的SHPB试验方法.实验力学,2000.12
    [35]胡金生,唐德高,陈向欣,周早生.提高大直径SHPB装置试验精度的方法.解放军理工大学学报自然科学版,2003(1):70-74
    [36]王婷,张景德,应发生.从微细观角度探讨混凝土破坏的内在机理.南昌水专学报,2001.6