变截面劲性水泥土旋喷搅拌桩关键技术与承载机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提出的变截面劲性水泥土旋喷搅拌桩(SRC桩)兼有旋喷和搅拌工艺的技术与成本优势,可根据需要改变桩身截面和插入劲性芯材,使桩身强度及承载力得到大幅度提高,这种复合桩在抗压和抗拔工程中具有广阔的应用前景。为了实现这种桩型并探讨其承载机理,研发了成桩施工设备和施工工艺等关键技术,利用现场试验、室内模型试验与数值模拟等手段研究其抗压和抗拔承载机理,提出了考虑位移协调的桩承载力计算方法。最后,介绍了采用SRCP工法完成的两个典型的工程实例。
     研发了SRC桩成桩施工设备与施工工艺并实施了工艺试验。施工设备采用模块化设计思想,可以实现一机多用。旋喷技术使变截面更容易,施工机具和施工工艺相对简单;通过旋喷和搅拌的结合,水泥土桩和刚性桩的结合,可以发挥两种工艺和两种材料的优势,克服各自的缺点;能够以相对经济的方式获得更大的桩径,能够大大提高钻进能力;钻杆喷射结合叶片喷射旋喷搅拌钻头施工工艺,其返浆量相对较小,具有更广泛的地层适应性,属于节能环保型工艺。
     提出了模型试验砂土地基饱和方法,可在试验结束后剖开模型地基观察破坏形态。模型试验结果表明,等截面桩与变截面桩地基的破坏形式均为局部剪切破坏;具有一个扩大盘的变截面桩或扩大盘间距较大的变截面桩,位于扩大盘的下部土体发生压缩和局部剪切破坏现象,扩大盘上部的土体则发生梨形滑落现象,这部分的桩侧摩阻力不应计入承载力;扩大盘间距较小时,上下两个扩大盘之间的土体与两个扩大盘成为一体,在计算承载力时可以将这部分看成桩径与扩大盘直径相同的等截面桩;等截面桩与变截面桩的荷载沉降曲线相似;对于桩顶荷载,变截面桩的桩侧荷载分担值(包括桩侧摩阻力和扩大盘端阻力)均远大于桩端荷载分担值;扩大盘的位置对承载力的发挥有一定的影响;具有三个扩大盘的变截面桩承载力大于两个扩大盘的变截面桩的承载力,但结果相差不大;变截面桩的承载力得到显著提高,其承载力不小于与扩大盘直径相等的等截面桩,说明变截面桩具有显著的经济效益;随着桩顶荷载的增大,扩大盘承担的荷载增加显著,扩大盘以下桩身的轴力因扩大盘承担大部分而骤减,但是,降低幅度与扩大盘的个数、位置及间距有关。
     数值模拟阐述了加载过程中SRC桩的承载特性。等截面桩的塑性破坏区主要集中在桩端周围,设置扩大盘后,桩的位移场和塑性区分布发生了明显变化,表现出多支点摩擦-端承桩的承载特性;扩大盘取代了桩端的核心地位,承担了大部分荷载,成为应力集中区,桩端承载力的发挥出现明显滞后,塑性破坏区集中在扩大盘周围出现并随着荷载的增加而不断扩大;当两个扩大盘间距较近时,随着荷载的增加,上下扩大盘的应力场出现叠加现象;随着两个扩大盘间距的加大,两个扩大盘各自形成应力集中区并随着荷载的增加各自形成塑性破坏区,但上盘塑性破坏区要大于下盘塑性破坏区,而桩端也形成一个较小的塑性区,这时,可以看做两个单个扩大盘独立发挥作用;扩大盘越向上设置,其作用越早开始发挥,相应的桩端发挥作用越迟。
     SRCP工法亦可用于小型抗拔桩(抗浮锚杆)的施工。SRCP工法有效改善了锚土界面特性。采用SRC工法施工的抗浮锚杆现场抗拔承载力试验及数值模拟表明,锚土界面特性的改善对极限承载力的影响显著;采用变截面工艺大大提高了侧阻力,与传统泥浆护壁工艺和单纯改善锚土界面特性工艺相比,不仅有效提高了极限承载力,而且相同荷载对应的位移显著减小;在荷载水平较低时,单纯改善界面特性对弹性位移和塑性位移的影响不显著,但是,即使在荷载水平较低时,变截面的采用也可以同时减小弹性位移和塑性位移;与传统泥浆护壁工艺相比,改善锚土界面特性后锚杆粘结强度标准值提高至3.0倍以上,采用变截面工艺后提高至3.5倍以上,而实际单位造价仅分别增加约20%和30%,预计总造价降低50%以上;SRCP工法施工效率可提高至传统泥浆护壁工艺的10-20倍;锚土界面强度越高、扩大盘直径越大,抗拔承载力越高,相应的位移越小。
     为了考虑位移协调问题,提出了导入桩侧破坏摩阻力和桩端破坏阻力不同发挥系数计算承载力特征值的方法,并给出了等截面桩和变截面桩的承载力特征值计算式。在分析变截面桩破坏形式的基础上,分别给出了抗压和抗拔SRC桩的设计思路。
     介绍了SRCP工法在抗浮工程中应用的两个典型实例。工程实践表明,在复杂地质条件下采用该工法解决抗浮问题可以取得良好的社会和经济效益。
Section-variable reinforced jet-grouting&mixing cement-soil pile, abbreviatedas SRC pile or SRCP, boasts both technical and economical advantages of jet-groutingand mixing technique. Its strength and bearing capacity can be greatly enhanced byvarying its section and inserting some stiff core-materials, and hence the pile has abroad application perspective in compressive and anti-uplift engineering projects. Keytechniques of SRC pile including construction devices and construction processeswere developed, compressive and anti-uplift bearing mechanisms of the pile werestudied by means of in-situ tests, in-lab modeling tests and numerical simulations, etc.,and furthermore, a calculation method of bearing capacity was put forth by taking intoconsideration the coordination of displacements. Finally, two typical engineeringcases were introduced, which were constructed and calculated with the constructiontechniques and design methods of the paper.
     Firstly, a set of devices and processes were developed for the construction ofSRC piles. In designing the construction devices, the idea of modular design wasapplied, so that they could be used both for SRC pile construction and for otherconstruction purposes, and hence “one instrument, multiple purposes”. Thejet-grouting technique facilitates the realization of variable section with relativelysimple construction devices and processes. The combination of jet-grouting techniqueand mixing technique can bring into full play all the technical and material advantagesof cement-soil pile and reinforced pile. With the combined technique, a larger pilediameter can be obtained in a relatively economical way and the drilling capabilitycan be greatly enhanced. Moreover, the jet-grouting construction technique combingrod spraying and blade spraying with a relatively small quantity of returning cementpaste has a wider adaptability in various strata, and hence a construction technique ofenergy saving and environmental protection.
     Secondly, modeling tests were carried out in laboratory, and results showed that for a variable-section pile with one enlarging plate or two enlarging plates which werewide apart, the soil mass under the plates was compressed, while the soil mass uponthe plates tended to collapse in a pear shape. When the plates were close to each other,the soil mass between them integrated with them. The settlement curve ofuniform-section pile was similar with that of the variable-section pile; however, theside friction (including the pile side friction and the plate bottom resistance) of thelatter was much higher than pile end resistance, regardless of the quantity of plates orinterval between them. The position of the enlarging plate has a certain influence onthe bearing capacity of the variable-section pile; but the interval between the platesinfluenced the bearing capacity in an insignificant way. For the variable-section pilewith three enlarging plates, its bearing capacity was a bit higher than that with twoplates. All in all, the bearing capacity of variable-section pile has been greatlyenhanced to the degree of being not less than the uniform-section pile of the samediameter as the enlarging plate. Distribution of axial stress along variable-section pileis different from that of uniform-section pile. With the increasing of load level, theaxial stress under the plates decreases sharply due to the bearing capacity of theplates.
     The bearing characteristics of the SRCP were studied with the numericalsimulation method. For the uniform-section pile, the plastic damage zone was focuson the pile end; but for the pile with the enlarging plate, the displacement field and theplastic damage zone changed significantly, its load-bearing characteristics weresimilar with the multi-pivot end bearing-friction pile. The enlarging plate beared mostof the load, became a stress concentration area instead of the pile end. The pile-endbearing capacity played a noticeable lag, and the plastic damage zone changed tofocus on the enlarging plate and expanded with the increasing of the load. When twoplates were close to each other, the stress field around the upper and lower platesappeared to superposition; but when the interval between the plates increased to acertain degree, around two plates formed stress concentration area and plastic damagezone respectively. But the plastic damage zone around the upper plate was larger thanthat around the lower plate; a small plastic damage zone would also form around the pile end. The enlarging plate was set much more upper, the sooner it started to play itsrole, the later the pile end started to play its role accordingly.
     Thirdly, in-situ pull-out tests and numerical simulations were carried out andresults showed that the improvement in the interface between pile and soilsignificantly influenced the ultimate anti-uplift bearing capacity. With the function ofthe pile taken into consideration, hereinafter the pile is addressed as anti-floatinganchor in small-scaled anti-uplift engineering projects, or anchor in short. With thevariable-section technique, the side friction was greatly enhanced and thedisplacement under loads was significantly decreased, compared with conventionalmud protection technique or anchor-soil interface improvement technique. When theload level was low, the anchor-soil interface improvement technique insignificantlyconfined the elastic displacement as well as plastic displacement; however, even inthis case, the application of variable section could decrease both the elasticdisplacement and the plastic displacement. Compared with the conventional mudprotection technique, the eigenvalue (characteristic value) of cohesion strengthbetween pile (anchor) and soil was enhanced by3.0times when the anchor-soilinterface improvement technique was applied and by3.5times when the variablesection technique was applied, while the unit cost increased only by about20%and30%respectively, and the total cost was estimated to decrease over50%. Moreover,with SRCP technique, the construction efficiency could be enhanced to10~20timesthat with the conventional mud protection technique. The higher the strength ofanchor-soil interface is and the larger the diameter of the enlarging plates are, thehigher the up-lift resistance will be and the smaller the displacement will becorrespondingly.
     Fourthly, a method of calculating the eigenvalue of bearing capacity was putforth by introducing different efficiency coefficients of failure side friction and failureend resistance of pile, and calculation formulae were established for calculating theeigenvalues of bearing capacity of the uniform-section pile as well as thevariable-section pile. On basis of analyzing the failure mode of variable-section pile,procedures were proposed for designing compressive SRC pile and anti-uplift SRC pile respectively.
     Finally, two typical engineering cases in anti-floating projects were introduced.Engineering practices showed that the application of SRCP method could achievegreat social and economical results in solving anti-floating problems undercomplicated geological conditions.
引文
[1]国家质量技术监督局,中华人民共和国建设部. GBT50279-98.岩土工程基本术语标准.北京:中国计划出版社,1999.
    [2]段继伟,龚晓南,曾国熙.水泥土搅拌桩的荷载传递规律.岩土工程学报,1994,16(4):1~7.
    [3]董平.砼芯水泥土搅拌桩荷载传递机理研究:[博士学位论文].广州:中国科学院广州地球化学研究所,2004.
    [4]孙涛.深层搅拌桩加筋施工设备.中国专利, ZL00215786.1.2000.
    [5]孙涛,阎韶兵,等.加筋水泥土桩在基坑支护中的应用实例.城市勘测,2002,40~42.
    [6]史佩栋,高大钊,桂业琨,等.高层建筑基础工程手册.北京:中国建筑工业出版社,2000.759~768.
    [7]凌光容,安海玉,等.劲性搅拌桩的试验研究.建筑结构学报,2001,92~96.
    [8]付宝亮.劲性搅拌桩竖向承载力的试验研究与数值分析:[硕士学位论文].天津:天津大学,2005.
    [9]李进军.劲性搅拌桩荷载传递规律的试验研究:[硕士学位论文].天津:天津大学,2006.
    [10]柳博鹏.劲性搅拌桩分别在竖向和水平荷载作用下承载性能的试验研究:[硕士学位论文].天津:天津大学,2006.
    [11]成立芹.刚芯水泥土搅拌桩的对比试验研究.西北农林科技大学学报(自然科学版),2003,149~152.
    [12]孙涛.加筋水泥土变截面复合桩.中国专利,ZL02268698.3,2003.
    [13]成立芹,等.夹芯桩在地基加固中的应用实例.建筑技术开发,2003,65~66.
    [14]刘杰,王忠海,等.组合桩承载力的试验研究.天津大学学报(自然科学与工程技术版),2003,115~119.
    [15]河北省建设厅. DB13(J)50-2005.混凝土芯水泥土组合桩复合地基技术规程.河北:中国建材工业出版社,2005.
    [16]尹鹏.小刚度劲性水泥土挡墙基坑支护数值分析:[硕士学位论文].南京:南京林业大学,2006.
    [17]靳杰.新型水泥土复合桩成桩机的桩架设计研究:[硕士学位论文].山东:山东大学,2007.
    [18]张忠苗等.桩基工程.北京:中国建筑工业出版社,2007.10~14.
    [19]郑刚,李志伟,刘畅,等.型钢水泥土组合梁抗弯性能试验研究.岩土工程学报.2011,33(3):332~340.
    [20]钱德玲.变截面桩与土的相互作用机理.合肥:合肥工业大学出版社,2003.
    [21]孙涛.可作高喷灌浆桩机使用的深层搅拌桩机.中国专利, ZL01236131.3.2001.
    [22]孙涛.加筋水泥土变截面复合桩施工设备.中国专利, ZL02268919.2.2002.
    [23]刘红军,陈友媛,孙涛,郑建国.深层搅拌桩加筋施工技术及其工程应用探讨.岩土工程学报,2006,28(supp):1730~1733.
    [24]中华人民共和国建设部.建质[2005]145号.工程建设工法管理办法.北京,2005-8-31
    [25]叶观宝.地基加固新技术(第二版).北京:机械工业出版社,2002.
    [26]朱志铎,刘松玉,席培胜,等.钉形水泥土双向搅拌桩加固软土地基的效果分析.岩土力学,2009,(7):2063~2067.
    [27]刘松玉,杨泳,孙竹萍.一种新型双向搅拌桩机.中国专利,CN201209250,2009.
    [28]中铁科工集团有限公司.动力上下另置式双杆双向搅拌桩机.中国专利,CN201343729,2009.
    [29]中铁科工集团有限公司.动力下置式双杆双向搅拌桩机.中国专利,CN201314043,2009.
    [30]日本エポコラム協会:エポコラム工法エポコラム-Loto工法設計施工マニュアル,2008年3月
    [31]李相然,贺可强.高压喷射注浆技术与应用.北京:中国建材工业出版社,2007.
    [32]徐志钧,全科政.高压喷射注浆法处理地基.北京:机械工业出版社,2004.
    [33]程晓,张凤祥.土建注浆施工与效果检测.上海:同济大学出版社,1998.
    [34]张帆.二种先进的高压喷射注浆工艺.岩土工程学报,2010,(supp.2):406~409.
    [35]王光明.旋喷复合桩工法专利.中国专利,CN1109128,1994.
    [36]吴迈,窦远明,王恩远.水泥土组合桩荷载传递试验研究.岩土工程学报,2004,26(3):432~434.
    [37]吴迈,赵欣,窦远明,王恩远.水泥土组合桩室内试验研究.工业建筑,2004,34(11):45~48.
    [38]桂业琨,宣嘉伦.混凝土劲芯水泥土复合桩.二十一世纪高层建筑基础工程学术讨论会论文集.北京:中国建筑工业出版社,2000.424~429.
    [39]刘澄华,等.砼芯水泥土搅拌桩在东方明珠小区地基处理中的应用.江苏建筑,2001(3)):36~37.
    [40]邹宗煊,林峰.钢筋混凝土劲芯水泥土复合桩的设计与施工原理—软土地基中使用的新桩型.第六届全国地基处理学术讨论会暨第二届全国基坑工程讨论会论文集.西安:西安出版社,2000.43~46.
    [41]陈颖辉,饶英伟.昆明谷堆村加芯搅拌桩试验研究.昆明冶金高等专科学校学报,2003,19(1):1~6.
    [42]天津市建设管理委员会. DB/T29-160-2006.高喷插芯组合桩技术规程.天津:天津市建设管理委员会办公室.2006.
    [43]刘永超,郑刚.软土地区扩孔灌浆预制管桩承载力研究.岩土力学.2011,32(7):1984~1990.
    [44] Y. Kikuchi, H. Yamashita, K. Nishiumi, Y. Ishihama, R. Tanaka, Y. Suzuki, H. Yokoyama,and K. Takahashi. Development of Vibro Hammer Method to Drive Steel Pipe Pile UsingWater and Cement Milk Jetting, Technical Note of the Port and Airport Research Institute,2009.1196.
    [45] Y. Kikuchi, H. Yamashita, K. Nishiumi, Y. Ishihama, R. Tanaka, Y. Suzuki, H. Yokoyama,and Kenji. Takahashi. Experimental Study on Bearing Capacity of Steel Pipe Pile with FootProtection Constructed by the Improved Jet-Vebro Pile Driving Method, Recentdevelopments of geotechnical engineering, Proceedings of the Fourth Japan-ChinaGeotechnical Symposium, Editors: Kazuhito Komiya and Yang-Ping Yao,2010.393-400.
    [46]何世鸣,等.劲芯水泥土组合桩及输送装置.中国专利, CN2777044Y,2006.
    [47]段克亚.一种水泥土复合桩、其制造方法及专用设备.中国专利,CN1167860A,1997.
    [48]王光明,郭成波,等.桩基础多功能施工设备.中国专利, ZL200520122934.9,2005.
    [49]韩玉铭.新型水泥土复合桩成型机的研制与开发:[硕士学位论文].山东:山东大学,2005.
    [50]刘金砺.干作业复合灌注桩.中国专利, CN98117432.9[P],1998-8-21.
    [51]何世鸣.一种新型水泥土桩及施工方法.中国专利,200510082950.4,2005.
    [52] T. Sun, J-J. Yang, S-H. Lv, and S-M. Liu. Development and Realization of a NewConstruction Method of Reinforced Cement-soil Piles, Recent developments ofgeotechnical engineering, Proceedings of the Fourth Japan-China Geotechnical Symposium,Editors: Kazuhito Komiya and Yang-Ping Yao,2010.411-416.
    [53]彭桂皎.螺杆桩、螺纹桩成桩设备及成桩工法.中国专利, CN200610019756.6[P],2006-07-31.
    [54]范静海,肖静静,潘尧锋.螺杆桩技术及其应用.浙江建筑.2011,28(3):32~34.
    [55]徐至钧,张国栋,等.新型桩挤扩支盘灌注桩设计与工程应用.北京:机械工业出版社,2003.1~21.
    [56]史鸿林,胡林忠,等.新型挤压分支桩的计算与试验研究.建筑结构学报,1997.
    [57]崔江余.支盘挤扩混凝土灌注桩受力机理及承载力性状的试验研究:[硕士学位论文].北京:北方交通大学,1996.
    [58]黄生根.多级挤扩钻孔灌注桩的荷载传递特性分析.工程勘察,1998,(5):19~21.
    [59]黄生根.多级挤扩钻孔灌注桩的应用探讨.探矿工程(增刊),1998,5~8.
    [60]杨志龙.挤扩支盘桩单桩竖向承载力研究:[硕士学位论文].天津:天津大学,2000.
    [61]吴兴龙,等. DX单桩承载力设计分析.岩土工程学报,2000,22(5):584~585.
    [62]国家电力公司电力规划设计院总院. DLGJ153-2000.火力发电厂支盘灌注桩暂行技术规定.北京,2000.
    [63]钱德玲,对挤扩支盘桩破坏性状的探讨,合肥工业大学学报(自然科学版),2001,955~958.
    [64]钱德玲,挤扩支盘桩的荷载传递规律及FEM模拟研究.岩土工程学报,2002,24(3):371~375.
    [65]钱德玲.新型挤扩支盘桩的数值模拟及其在优化设计中的应用研究.岩石力学与工程学报,2002,21(7):1104.
    [66]钱德玲.挤扩支盘桩受力性状的研究.岩石力学与工程学报,2003,22(3):494~499.
    [67]钱德玲,崇劲松.用球形孔扩张理论估算支盘桩扩孔挤压效应.合肥工业大学学报(自然科学版),2003,53~56.
    [68]王东坡,钱德玲.挤扩支盘桩的荷载传递规律及研究现状.岩石力学与工程学报,2004,4645~4648.
    [69]卢成原,等.非饱和粉质粘土模型支盘桩试验研究.岩土工程学报,2004,7(4):522~525.
    [70]卢成原,孟凡丽,吴坚.不同土层对支盘桩荷载传递影响的模型试验研究.岩石力学与工程学报,2004,23(20):3547~3551.
    [71]卢成原,孟凡丽,王龙.模型支盘桩的试验研究.岩土力学,2004,1809~1813.
    [72]卢成原,王珊珊,孟凡丽.非饱和粉土中模型支盘桩在重复荷载作用下的试验研究.岩土工程学报,2007,29(4):603~607.
    [73]卢成原,贾颖栋,周玲.重复荷载下模型支盘桩工程性状的试验研究.岩土力学,2008,431~436.
    [74]林小伟,吴杰,卢成原.不同成桩工艺对支盘桩承载性能影响的模型试验研究.南通大学学报,2006,5(4):32~35.
    [75]章雪峰,杨俊杰,盛宝亭,等.挤扩支盘桩与土层共同作用的模型试验研究.浙江工业大学学报,2005,23(4):455~459.
    [76]李天宝,卢成原,王科元.支盘桩工作性状的模型试验研究.浙江工业大学学报,2008,290~294+304.
    [77]王科元,朱兴海,卢成原.挤密效应对支盘桩承载性能影响的模型试验研究.浙江工业大学学报,2009,53~57.
    [78]张宝钿,卢成原.支盘桩的抗拔机理及工程应用.建筑技术,2009,843~846.
    [79]卢锡雷,卢成原,卢鸿凯.支盘桩水平承载性状试验研究.建筑技术,2009,.
    [80]巨玉文,穆希军,赵明伟.挤扩支盘桩荷载传递的数值模拟方法.山西建筑,2003,29(2):30-3l.50~52.
    [81]巨玉文,梁仁旺,白晓红,等.挤扩支盘桩承载变形特性的试验研究及承载力计算.工程力学,2003,20(6):34~38.
    [82]巨玉文,梁仁旺,赵明伟.挤扩支盘桩承载变形特性的试验研究.建筑技术,2003,178~180.
    [83]巨玉文,梁仁旺,赵明伟,白晓红.竖向荷载作用下挤扩支盘桩的试验研究及设计分析.岩土力学,2004,25(2):308~311+315.
    [84]巨玉文,梁仁旺,赵明伟.挤扩支盘桩的荷载传递法及数值模拟.建筑技术,2004,204~205.
    [85]陈轮,常冬冬,李广信. DX桩单桩承载力的有限元分析.工程力学,2002,19(6):67~72.
    [86]陈轮,海燕,沈保汉,等. DX桩承载力及荷载传递特点的现场试验研究.工业建筑,2004,34(3):5~7.
    [87]沈保汉,贺德新,陈轮,等. DX多节挤扩灌注桩.基础工程,2002,30~35.
    [88]沈保汉,陈轮,王海燕. DX桩侧阻力和端阻力的现场试验研究.工业建筑,2004.
    [89]蒋力,陈轮. DX桩抗拔位移的弹性理论解析解.工业建筑,2006,36(5):65~70.
    [90]周玲玲,李巨龙,李斌.竖向荷载下挤扩支盘桩试验研究.岩土工程技术,2005,19(5):258~261.
    [91]胡骏,陈海生,张航.支盘桩承载力的提高机理及计算公式研究.安徽建筑,2005,12(3):58~107.
    [92]赵明华,李微哲,单远铭. DX桩抗拔承载机理及设计计算方法研究.岩土力学,2006,27(2):199~203.
    [93]邓友生,龚维明,戴国亮.同场地支盘桩与直孔桩抗拔特性的对比试验.建筑科学,2006,22(1):31~34.
    [94]杨锦东,崔江余,唐业清.挤扩支盘混凝土灌注桩现场试验研究.工业建筑,1999,49~51.
    [95]崔江余,吕勤.挤扩支盘桩受力机理试验研究.铁道学报,2002,62~66.
    [96]周青春,于南燕. DX桩的试验研究.岩土力学,2001,298~302.
    [97]张玉敏,王忠海.新型挤扩支盘桩的非线性有限元分析.山东工业大学学报,2002,76~80.
    [98]钱永梅,尹新生,钟春玲,王若竹,庞平.挤扩多盘桩土体破坏机理的试验研究.检测与分析,2003,78~80.
    [99]郑淑平.挤扩多分支承力盘混凝土灌注桩的工程应用:[硕士学位论文].天津:天津大学,2005.
    [100]周敏,宋刚福,王忠福.支盘桩的非线性有限元分析.华北水利水电学院院报,2006,85~88.
    [101]余建民,万林海,郭鹏,吴伟功.挤扩支盘桩承载特性的FLAC~(3D)模拟.华北水利水电学院学报,2006,78~81.
    [102]柴浩.基于二维颗粒流理论的挤扩支盘桩承载力研究:[硕士学位论文].天津:天津大学,2007.
    [103] Mohan D. Bearing capacity of multi-under reamed piles [A]. Proc3th Asian Conf S M&FE[C]. Kaifa,1967.98~101.
    [104] Mohan D, Murthy V N S,Jain G S. Design and construction of ulti-under reamed piles[A]. Proc7th Int Conf S M&FE[c].Mexico,1969.183~186.
    [105] OGURA H.Study On bearing capacity of nodular cylinder pile by scaled model test[J].J Struct Eng,1987,374:87~97
    [106] OGURA H.Study on bearing capacity of nodular cylinder pile by full—scale test ofjacked piles [J].J Struct Eng,1988,386:66~77.
    [107] ONeillMW.side resistanceinpiles and drilled shafts [j].Journal ofGeotechnical andGeoenvironment Engineering,Div,ASCE,2001,127(1):1~15.
    [108]土屋勉,大杉富美一,三浦清一,等.多翼钢管杭の支持力机构.土と基础,2000.
    [109]土屋勉,大杉富美一,吉田膀之,等.翼付き钢管杭の轴力测定法.土と基础,2000.
    [110]刘祖德.显微镜位移跟踪法在土工模型实验中的应用.岩土工程学报,1989.
    [111]张彬,李广信,王钊,王磊.基于显微镜示踪技术的基坑土体变形规律试验研究.兰州理工大学学报,2006,125~127.
    [112]李元海.数字照相变形量测技术及其在岩土模型实验中的应用研究.岩石力学与工程学报,2005,1273.
    [113]孙涛,杨俊杰,赵宏,孙太亮. SRC桩抗压承载特性室内模型试验研究,中国海洋大学学报(录用).
    [114]岡村未対,竹村次朗,木村孟.砂地盤における円形及び帯基礎の支持力に関する研究.日本土木学会論文集,1993.463/III-22:85-94.
    [115]豊澤康男,杨俊杰,三浦清一等.遠心力載荷装置を用いた補強基礎地盤の支持力実験.日本土木学会論文集,2004.757/III-66:247-257.
    [116]孙涛,杨俊杰,安庆军,吴刚.土层抗浮锚杆承载力现场试验研究,中国海洋大学学报(待刊),2011.
    [117]贾金青,宋二祥.滨海大型地下工程抗浮锚杆的设计与试验研究.岩土工程学报,2002,24(6):769~771.
    [118]马占锋.拉力型抗浮锚杆的现场测试与数值分析:[硕士学位论文].北京:中国地质大学,2008.
    [119]曾国机.土层抗浮锚杆受力机理研究分析:[硕士学位论文].重庆:重庆大学,2004.
    [120]刘金砺,祝经成.泥浆护壁灌注桩后注浆技术及其应用.建筑科学.1996(2):3~18.
    [121]周水,郑俊杰.桩侧后压浆技术成功处理软土的工程实践.岩土力学.2002:99~102.
    [122]刘松玉,朱志铎,席培胜,等.钉形搅拌桩与常规搅拌桩加固软土地基的对比研究.岩土工程学报.2009(7):1059~1068.
    [123]张忠苗,辛公锋,夏唐代,等.软土地基灌注桩、挤扩支盘桩和注浆桩应用效果分析.岩土工程学报.2004(5):709~711.
    [124]郑浩,刘汉龙,雷玉华,等.高喷插芯组合桩水平承载特性大尺寸模型试验研究.岩土力学.2011(1):217~223.
    [125]中国建设工程标准化协会. CECS22:2005.岩土锚杆(索)技术规程.北京:中国计划出版社,2005-4-25.
    [126]中华人民共和国住房和城乡建设部. JGJ94-2008.建筑桩基技术规范.北京:中国建筑工业出版社,2008-4-22.
    [127]中华人民共和国建设部. JGJ106-2003.建筑基桩检测技术规范.北京:中国建筑工业出版社,2003-3-21.
    [128]中华人民共和国建设部. GB50007-2002.建筑地基基础设计规范.北京:中国建筑工业出版社,2002-2-20.
    [129]中华人民共和国建设部. JGJ79-2002.建筑地基处理技术规范.北京:中国建筑工业出版社,2002-9-27.
    [130]岸田英明.長尺摩擦杭,土と基礎,日本地盤工学会,1992.2:1-4.