聚苯乙烯外墙外保温系统在竖直条件下的辐射引燃过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑节能是国家“节能减排”政策的关键措施之一,主要通过建筑保温节能技术来实现。聚苯乙烯(PS)外墙外保温系统(ETICS)具有保温隔热性能好、施工方便、价格便宜等优点,是外墙外保温系统中应用最广泛的系统。然而,建筑外立面完全处于开敞环境中,外墙外保温系统中的有机保温材料极易燃烧,并缺乏对外墙外保温系统火灾进行有效控制和扑救的手段,导致一旦发生火灾,容易形成竖向立体火蔓延,火灾发展速度快且难以扑救,存在较高的危险性。在外墙外保温系统的火灾发展过程中,可燃物的辐射引燃过程是其中的一个关键阶段,对于研究系统的火灾危险性具有重要意义。因此,本文选取挤塑聚苯乙烯(XPS)-ETICS展开相关研究,针对其在竖直条件下的辐射引燃过程进行实验研究及理论分析。
     当前,国内外学者对XPS材料的研究大多是关于XPS材料的制备、热解、燃烧行为的研究,尚缺乏对XPS保温板在竖直条件下辐射引燃过程及XPS-ETICS的火灾特性的研究。因而本文利用自主设计搭建的垂直辐射源作用下热塑性材料熔融滴落引燃平台,实验研究了XPS保温板的辐射引燃过程,并进一步研究了XPS-ETICS的辐射引燃过程,分析了保护层结构对外墙外保温系统火灾特性的影响。
     论文首先分析了XPS保温板的辐射引燃过程,研究了不同燃烧等级的XPS保温板在不同辐射热流强度及有无外加点火源等因素影响下的辐射引燃过程,分析了材料的引燃时间、质量变化及温度分布等参数的变化规律。研究结果显示,在竖直方向下XPS保温板的辐射引燃过程分为初始、收缩、熔融滴落、热解及引燃5个阶段;引燃方式不同导致引燃时间的差值随辐射强度的增加而减小,并且该差值在较高热流强度下近似可以忽略,对于B1级材料为50kW/m2,B2级材料为35kW/m2;试样的滴落速率、热解失重速率均随辐射强度的增加而增加,但其增加的幅度不断减小;分析了不同燃烧等级材料在不同辐射强度下的材料引燃前最高温度变化的情况,结果显示随热流强度的增加自然辐射引燃过程中的温度变化较为明显。
     其次,基于XPS保温材料在竖直条件下辐射引燃过程研究,建立了热塑性发泡材料在竖直条件下的引燃时间预测模型。预测模型根据实验中质量是否发生变化将XPS材料的辐射引燃过程分为升温熔融、热解点燃两个阶段。通过对不同燃烧等级、不同辐射热流强度下的实验数据进行验证,结果表明提出的模型能够较好的预测热塑性泡沫材料的引燃时间。
     论文最后进一步研究了XPS外墙外保温系统的引燃行为和火灾特性,着重讨论了外墙外保温系统中保护层的作用,对比分析了有无保护层条件,保护层脱落和不脱落条件下的引燃过程。实验结果表明:在有保护层条件下,系统的引燃时间比纯XPS板辐射引燃过程的时间长,但保护层脱落后的引燃时间比纯XPS板辐射引燃过程的时间短;系统的引燃时间在不同燃烧等级材料之间的差距较小,且在较高热流条件下可近似忽略。试样的滴落速率随辐射强度的增加而增加,保护层的存在导致其在保护层脱落前失重速率较小,脱落后材料的失重速率大约增加2倍,引燃后材料的失重速率大约增加2倍。分析温度变化可以看出,脱落前最高温度同引燃前最高温度之间存在较大差距,且随着辐射强度的增加而减小,在60kW/m2的条件下可以忽略这种差距;保护层未脱落条件下的系统引燃需要较高的热流强度;进一步分析了墙角火条件下外墙外保温系统的内部温度在垂直试样表面及沿试样竖向方向的变化规律。
Building energy efficiency is a key measure of national policy of "energy conservation and emission reduction", mainly realized through the external thermal insulation composite systems (ETICS) technology. The ETICS, especially based on polystyrene (PS) foam, has been widely used in china, which has some advantages of good thermal protection performance, light weight, convenient operation and low prices etc. However the ETICS, once on fire, can easily form a stereoscopic fire spread on the building facade, difficulty to extinguish and no effective measure to control its fire in open environment. Thus, its fire characteristics need to be studied urgently, in order to assess the fire risk of ETICS. Due to the ignition being an important stage during the fire process, a series of experiments and theoretical analysis are carried out under the radiation ignition process of the ETICS on polystyrene, in the purpose of researching its fire risk.
     Nowadays, researchers mainly pursue research on the material characteristics, manufacturing process, pyrolysis and burning behavior of polystyrene. There are few studies on the ignition process of XPS-ETICS in the vertical condition. Therefore a melting and dripping ignition of thermoplastics platform is designed to study the ignition process of the xps and xps-etics, and then is used to analysis the system structure effect on the fire features.
     In the first stage, the radiation ignition process of XPS insulation panel is taken for consideration. The burning behavior class, the radiation flux level and the way to ignite is mentioned during the experiments, and several important parameters including the time to ignition (piloted ignition and auto ignition), the mass of pyrolysis and the temperature distribution in the sample is measured. The burning process, including origin, shrinking, melting and dripping, pyrolysis and ignition phases, has been described in the experimental results. The difference of tig between the auto ignition and the piloted ignition decreases as incident heat flux increasing, and it is quite insignificant once the incident heat flux exceeds50kW/m2for B1and35kW/m2for B2. Comparing with the auto ignition process, the difference of tig between B1and B2is much smaller in piloted ignition condition. The dripping and the pyrolysis rate of the sample rise while the incident heat flux increase although the increasing rate is dropping. The highest temperature before ignitions changes more obviously during the process of auto ignition.
     Secondly, based on the analysis of the ignition process of XPS and theoretical derivation of heat transfer, the prediction model of tig is put forward to thermoplastic foaming material in vertical condition. On the basis of the mass change, the ignition process is divided as heating-melt and pyrolysis phase in the model. Comparing with the data of the ignition experiment, the model can better match and predict the tig for the thermoplastic foaming material in vertical condition.
     In the end, the fire behaviors of the ETICS are discussed and focused on the role of the rendering layer during the experiments, along with the comparison analysis of the ignition process with and without the rendering layer and with the dropped behavior of the rendering layer or not. The difference of tig between different combustion grade materials is smaller than the pure xps. The dripping rate rises while the radiation flux increases. The pyrolysis rate is quite small before the rendering layer dropped, once the rendering layer dropped that increases about two times, and the pyrolysis rate also increase two times as soon as the material be ignited. There are larger gap of the maximum temperature of rendering layer dropped comparing with that of ignition, which is decreased as the radiation flux increase, but it can be ignored when the radiation flux exceed to60kW/m2. Even higher radiation flux is needed in the ignition process under the condition of rendering layer remained. Furthermore, the fire behaviors of ETICS under comer fire are studied, and the temperature vertical along with the sample surface are investigated.
引文
[1].钱伯章,朱建芳.2009.建筑节能保温材料技术进展[J].建筑节能,37(2):56-60.
    [2].孙志坚等.2001.国内绝热保温材料现状及发展趋势[J].能源工程,4:26-28.
    [3].杜骋,杨军.2001.聚苯乙烯泡沫(EPS)的特性及应用分析[J].东南大学学报:自然科学版,31(3):138-142.
    [4].白冰,陆士强.1993.聚苯乙烯泡沫塑料的测试及其在土工中的应用[J].岩土工程学报,15(2):104-108.
    [5].杨宗煜,耿承达,杨玉楠.2008.浅论当前我国外墙外保温防火安全体系的研究方向[J].建筑节能,36(12):1-5.
    [6].季广其.2008.浅谈我国外保温防火的技术途径[J].建设科技,18:004.
    [7].吴振坤,颜东升,尤飞.2007.-聚苯乙烯泡沫芯材的燃烧特性及其在火灾事故原因调查中的应用[J].火灾科学,16(3):180-184.
    [8].周全会,刘仕杰.2008.聚苯乙烯泡沫夹芯板的火灾危险性评析[J].消防科学与技术,27(9):644-647.
    [9].朱新生,李引擎.2001.聚苯乙烯热降解动力学参数与降解反应机理关系[J].火灾科学,10(1):24-28.
    [10].庞志宇.2009.浅谈建筑外墙外保温材料选用[J].广西城镇建设,9:042.
    [11].孙垂海,张盼,and康镪.2011.我国外墙外保温防火技术现状分析[J].辽宁建材,3:012.
    [12].章银祥.2011.外保温系统防火问题的探讨[J].墙材革新与建筑节能,(4):42-45.
    [13].王庆国,张军.2002.几种热塑性塑料的燃烧行为研究[J].中国塑料,16(12):55-59.
    [14].Hawley-Fedder, R., M. Parsons, and F. Karasek.1984. Products obtained during combustion of polymers under simulated incinerator conditions:Ⅱ. Polystyrene[J]. Journal of Chromatography A,315:201-210.
    [15].Klusmeier, W., K.-H. Ohrbach, and A. Kettrup.1986. Combustion experiments of polystyrene by use of a modified Bayer-Ici-Shell apparatus[J]. Thermochimica acta,103(2):231-237.
    [16].Durlak, S.K., et al.1998. Characterization of polycyclic aromatic hydrocarbon particulate and gaseous emissions from polystyrene combustion[J]. Environmental science & technology, 32(15):2301-2307.
    [17].卓萍等.2011.我国建筑外保温系统发展动态及趋势[J].消防科学与技术,30(001):8-11.
    [18].王勇.2010.中国挤塑聚苯乙烯(XPS)泡沫塑料行业现状与发展趋势[J].中国塑料,(4):12-16.
    [19].GB/T 10801.2-2002绝热用挤塑聚苯乙烯泡沫塑料.
    [20].张卫兵.2004.聚苯乙烯泡沫塑料在工程中的应用[J].工程塑料应用,32(7):39-42.
    [21].赵美珍.1994.聚苯乙烯[J].化工技术经济,3.
    [22].方禹声,朱吕民.1994.聚氨酯泡沫塑料[M].化学工业出版社.
    [23].吕民.2002.聚氨酯合成材料[M].江苏科学技术出版社.
    [24].何禹.2009.建筑外墙外保温与内保温优势比较[J].中国住宅设施,8:50-52.
    [25].JGJ144,2004.外墙外保温工程技术规程[S].
    [26].陈字新,王茂君,朱元华.2009.XPS挤塑泡沫板外墙外保温系统的应用[J].
    [27].王佳伟.2009.挤塑聚苯乙烯泡沫塑料板外墙保温施工技术[J].能源技术与管理,5:060.
    [28].钟达飞等.2007.聚氨酯在建筑外墙保温材料的应用[J].化学建材,23(4):19-20.
    [29].王建华.2007.EPS材料配置及在外墙外保温中的应用[J].工业建筑,37(2):65-69.
    [30]. Lee, L.J., et al.2005. Polymer nanocomposite foams[J]. Composites Science and Technology, 65(15-16):2344-2363.
    [31].Levchik, S.V. and E.D. Weil.2004. A review on thermal decomposition and combustion of thermoplastic polyesters[J]. Polymers for Advanced Technologies,15(12):691-700.
    [32].Levchik, S.V. and E.D. Weil.2004. Thermal decomposition, combustion and fire-retardancy of polyurethanes-a review of the recent literature[J]. Polymer International,53(11):1585-1610.
    [33].Xie, Q., H. Zhang, and R. Ye.2009. Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough[J]. J Hazard Mater, 166(2-3):1321-5.
    [34]. Shih, H.Y. and J.S. TIen.2003. A three-dimensional model of steady flame spread over a thin solid in low-speed concurrent flows[J]. Combustion Theory and Modelling,7(4):677-704.
    [35]. Chen, P., J.H. Sun, and X.C. He.2007. Behavior of flame spread downward over thick wood sheets and heat transfer analysis[J]. Journal of Fire Sciences,25(1):5-21.
    [36].Lee, L., et al.2005. Polymer nanocomposite foams[J]. Composites Science and Technology, 65(15-16):2344-2363.
    [37]. Chen, L.M., et al.2013. Polymer nanocomposite foams[J]. Journal of Materials Chemistry A, 1(12):3837-3850.
    [38].Ballman, R.1965. Extensional flow of polystyrene melt[J]. Rheologica Acta,4(2):137-140.
    [39]. Vinogradov.G., V. Fikhman, and B. Radushkevich.1970. Viscoelastic and relaxation properties of a polystyrene melt in axial extension[J]. Journal of Polymer Science Part A-2:Polymer Physics,8(5):657-678.
    [40]. Williams, M.L.2004. Free volume approach to polystyrene melt viscosity[J]. Journal of Applied Physics,29(10):1395-1398.
    [41].Kagarise, C., et al.2010. Transient shear rheology of carbon nanofiber/polystyrene melt composites[J]. Journal of Non-Newtonian Fluid Mechanics,165(3):98-109.
    [42]. Lu, H. and C.A. Wilkie.2011. Fire performance of flame retardant polypropylene and polystyrene composites screened with microscale combustion calorimetry[J]. Polymers for Advanced Technologies,22(1):14-21.
    [43].Mehta, S., S. Biederman, and S. Shivkumar.1995. Thermal degradation of foamed polystyrene[J]. Journal of Materials Science,30(11):2944-2949.
    [44].T.Farrvelli, et al.2001. Thermal degradation of polystyrene[J]. journal of Analytical and Applied Pyrolysis,60:103-121.
    [45].Kannan, P., J.J. Biernacki, and D.P. Visco.2007. A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process[J]. Journal of Analytical and Applied Pyrolysis,78(1):162-171.
    [46]. Overholt, K.J., et al.2011. Warehouse commodity classification from fundamental principles. Part Ⅱ:Flame heights and flame spread[J]. Fire Safety Journal,46(6):317-329.
    [47]. Gurman, J.L., L. Baier, and B.C. Levin.1987. Polystyrenes-a Review of the Literature on the Products of Thermal-Decomposition and Toxicity[J]. Fire and Materials,11(3):109-130.
    [48]. Chen, K., et al.2012. Determination of toxic products released in combustion of pesticides[J]. Progress in Energy and Combustion Science,38(3):400-418.
    [49]. Blanco, I., et al.2012. Thermal degradation of hepta cyclopentyl, mono phenyl-polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites[J]. Polymer Degradation and Stability,97(6):849-855.
    [50].Braun, U. and B. Schartel.2004. Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene[J]. Macromolecular Chemistry and Physics, 205(16):2185-2196.
    [51].Xu, Q., et al.2012. Correlation analysis of cone calorimetry test data assessment of the procedure with tests of different polymers[J]. Journal of Thermal Analysis and Calorimetry, 110(1):65-70.
    [52]. Huang, X., et al.2011. Flame spread over the surface of thermal insulation materials in different environments[J]. Chinese Science Bulletin,56(15):1617-1622.
    [53].季广其等.2008.外墙外保温系统锥型量热计防火试验研究[J].建筑科学,(02).
    [54].季广其等.2008.外墙外保温系统防火试验研究——模型火BS8414-1试验二[J].建筑科学,(02).
    [55].季广其等.2008.外墙外保温系统防火试验研究——模型火BS8414-1试验一[J].建筑科学,(02).
    [56].季广其等.2008.外墙外保温系统防火试验研究——模型火UL1040试验三[J].建筑科学,(02).
    [57].季广其等.2008.外墙外保温系统防火试验研究——模型火UL1040试验二[J].建筑科学,(02).
    [58].季广其等.2008.外墙外保温系统防火试验研究——模型火UL1040试验一[J].建筑科学,(02).
    [59]. Griffin, G.J.2006. Effect of Construction Method on the Fire Behavior of Sandwich Panels with Expanded Polystyrene Cores in Room Fire Tests[J]. Journal of Fire Sciences,24(4):275-294.
    [60]. Baker, G.B., Performance of Expanded polystyrene insulated panel exposed to radiant heat. 2002, Department of Civil Engineering University of Canterbury Christehurch, New Zealand: New Zealand.
    [61]. Collier, P.C.R. and G.B. Baker, improving-the-fire-performance-of-potystyrene, BRANZ, Editor.2004, New Zealand Fire Service Commission:New Zealand
    [62]. Collier, P.C.R. and G.B. Baker.2011. The Influence of Construction Detailing on the Fire Performance of Polystyrene Insulated Panels[J]. Fire Technology,49(2):195-211.
    [1]. Xie, Q. Y., H.P. Zhang, and R.B. Ye.2009. Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough[J]. Journal of Hazardous Materials,166(2-3):1321-1325.
    [2]. Levchik, S.V. and E.D. Weil.2004. A review on thermal decomposition and combustion of thermoplastic polyesters[J]. Polymers for Advanced Technologies,15(12):691-700.
    [3]. H. E. Thomson and D.D.Drysdale.1984. Flammability of plastics I Ignition temperatures [J]. fire and Materials,11:163-172.
    [4]. Chen, H.X., N.A. Liu, and W.K. Chow.2009. Wind effects on smoke motion and temperature of ventilation-control led fire in a two-vent compartment[J]. Building and Environment,44(12): 2521-2526.
    [5]. Shih, H.Y. and J.S. T'len.2003. A three-dimensional model of steady flame spread over a thin solid in low-speed concurrent flows[J]. Combustion Theory and Modelling,7(4):677-704.
    [6]. Chen, P., J.H. Sun, and X.C. He.2007. Behavior of flame spread downward over thick wood sheets and heat transfer analysis[J]. Journal of Fire Sciences,25(1):5-21.
    [7]. Kanury, A.M., Flaming Ignition of Solid Fuels, in SFPE Handbook of fire protection Engineering 3rd, Editor.1999.
    [8]. Quintiere, J.G., Ignition of Solids, in Fundamentals of Fire Phenomena.2006.
    [9].杨昀等.2003.典型建筑装饰材料热释放速率全尺寸火灾实验研究[J].火灾科学,12(4).
    [10].霍然,周允基.1998.大空间火灾实验厅的建造与初步试验[J].火灾科学,7(1):8-13.
    [11]. Yoshioka, H., et al.2012. Large-scale facade fire tests conducted based on ISO 13785-2 with noncombustible facade specimens [J]. Fire science and technology (Japan),31(1):1-22.
    [12]. Ostman, B.A.-L. and E. Mikkola.2006. European classes for the reaction to fire performance of wood products[J]. Holz als Roh-und Werkstoff,64(4):327-337.
    [13].Alpert, R.L. and R.J. Davis.2002. Evaluation of exterior insulation and finish system fire hazard for commercial applications [J]. Journal of Fire Protection Engineering,12(4):245-258.
    [14].Oleszkiewicz, I.1990. Fire exposure to exterior walls and flame spread on combustible cladding[J]. Fire Technology,26(4):357-375.
    [15].Brookes, A., Cladding of buildings.1998:Taylor & Francis.
    [16].崔嵛.2012.竖直壁面条件下常用有机外墙保温材料的火灾行为研究[D].
    [17].LIN, N., S. LI, and Z.-j. SHU.2011. Thermal radiation ignition characteristics for indoor common decorative fabrics [J][J]. Fire Science and Technology,1:008.
    [18].Han, R.-s., G.-q. Zhu, and G.-w. Zhang.2013. Experiment Study on the Ignition Point of XPS Foam Plastics[J]. Procedia Engineering,52:131-136.
    [1].易爱华等.2010.三种不同有机保温材料燃烧性能的研究[J].消防科学与技术,29(5):373-376.
    [2].朱春玲.2011.有机保温材料的燃烧性能试验研究[J].建筑科学,27(6):39-44.
    [3].王隆田,袁耀明.2011.浅析建筑保温材料[J].建筑节能,(5):43-44.
    [4].崔嵛.2012.竖直壁面条件下常用有机外墙保温材料的火灾行为研究[D].
    [5]. Dickens, L.I., Polystyrene foam structure.1980, Google Patents.
    [6]. Xu, L., et al.2014. Experimental Study on Fire Characteristics of Building External Thermal Insulation Composite Systems Based on Polystyrene Foam[J]. Advanced Materials Research, 893:221-227.
    [7]. Glenzer, S., et al.2011. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical review letters,106(8):085004.
    [8].GB8624-2012,建筑材料及制品燃烧性能分级2012.
    [9].GB/T8626-2007,建筑材料可燃性试验方法.2008.
    [10].GB/T2406.2009.塑料燃烧性能测定-氧指数法第二部分,室温试验[J].
    [11].Zhang, H., et al.2012. Co-Release of Hexabromocyclododecane (HBCD) and Nano-and Microparticles from Thermal Cutting of Polystyrene Foams [J]. Environmental science & technology,46(20):10990-10996.
    [12]. Rani, M., et al.2014. Hexabromocyclododecane in polystyrene based consumer products:An evidence of unregulated use[J]. Chemosphere.
    [13]. Beach, M.W., et al.2013. New Class Of Brominated Polymeric Flame Retardants for use in Polystyrene Foams[J]. Cellular Polymers,32(4).
    [14].Hogue, C.2013. Global ban for flame retardant[J]. Chem. Eng. News,91(19):6.
    [15].Wang, N., et al.2013. Melting behavior of typical thermoplastic materials-An experimental and chemical kinetics study[J]. Journal of hazardous materials,262:9-15.
    [16].Xie, Q., et al.2014. Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics[J]. Journal of hazardous materials,267:48-54.
    [17].Ballman, R.1965. Extensional flow of polystyrene melt[J]. Rheologica Acta,4(2):137-140.
    [18]. Guerra, G., et al.1990. Polymorphism in melt crystallized syndiotactic polystyrene samples[J]. Macromolecules,23(5):1539-1544.
    [1]. H. E. Thomson and D.D.Drysdale.1984. Flammability of plastics I Ignition temperatures[J]. fire and Materials,11:163-172.
    [2]. Vytenis Babrauskas, W.J.P.1987. Ignitability measurements with the cone calorimeter [J]. Fire and Materials,11(1):31-43.
    [3]. Harada, T.2001. Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test[J]. Fire and Materials,25(4):161-167.
    [4]. Bilbao, R., et al.2002. A model for the prediction of the thermal degradation and ignition of wood under constant and variable heat flux[J]. Journal of Analytical and Applied Pyrolysis, 62(1):63-82.
    [5]. Qin, H.L., et al.2004. Thermal stability and flammability of polypropylene/montmorillonite composites [J]. Polymer Degradation and Stability,85(2):807-813.
    [6]. Quintiere, J.G., Ignition of Solids, in Fundamentals of Fire Phenomena.2006.
    [7]. blasi, c.d.1994. Processes of flames spreading over the surface of charring fuels Effects of the solid thickness[J]. combustion and Flame,97:225-239.
    [8]. Yang, L.Z., et al.2003. The pyrolysis and ignition of charring materials under an external heat flux[J]. Combustion and Flame,133(4):407-413.
    [9]. Tsai, T.H., et al.2001. Experimental and numerical study of autoignition and pilot ignition of PMMA plates in a cone calorimeter[J]. Combustion and Flame,124(3):466-480.
    [10]. Chow, W.K.2004. Fire hazard assessment on polyurethane sandwich panels for temporary accommodation units[J]. Polymer Testing,23(8):973-977.
    [11]. Yang, L.Z., et al.2005. Experimental Study on Spontaneous Ignition of Wood Exposed to Variable Heat Flux[J]. Journal of Fire Sciences,23(5):405-416.
    [12].lizhong, y., et al.2002. a modified model of pyrolysis for charring materials in fire[J]. international journal of engineering science,40:1011-1021.
    [13].张阳.2012.聚合物材料燃烧性和阻燃性的研究[J].硕士论文.华南理工大学,2012.
    [14].王勇等.2011.聚苯乙烯泡沫塑料阻燃技术研究进展[J].中国塑料,25(9):6-10.
    [15].缪长礼等.2012.聚酰胺改性酚醛树脂及泡沫性能[J].宇航材料工艺,42(2):61-63.
    [16].马志领等.2013.丙烯酸树脂增容膨胀型阻燃聚丙烯的阻燃作用[J].中国塑料,(12):45-50.
    [17].Mielke, A.2011. On thermodynamically consistent models and gradient structures for thermoplasticity[J]. GAMM-Mitteilungen,34(1):51-58.
    [18].Bertram, A. and A. Krawietz.2012. On the introduction of thermoplasticity[J]. Acta Mechanica,223(10):2257-2268.
    [19].Inoue, T.2014. Foundation of Thermoplasticity[J]. Encyclopedia of Thermal Stresses:1722-1736.
    [1].JG149-2003.2003.膨胀聚苯板薄抹灰外墙外保温系统[J].
    [2].JGJ144-2008外墙外保温工程技术规程.2008.
    [3].挤塑聚苯板(XPS)薄抹灰外墙外保温系统(征求意见稿).2010.
    [4].JC 561.2-2006聚合物基外墙外保温用玻璃纤维网布.第2部分:聚合物基外墙外保温用玻璃纤维网布.2006.
    [5].JC/T 992-2006墙体保温用膨胀聚苯乙烯板胶粘剂.2006.
    [6].JC/T 993-2006外墙外保温用膨胀聚苯乙烯板抹面胶浆.2006.
    [7].JG/T229-2007外墙外保温柔性耐水腻子.2007.
    [8]. Morgan, A.B. and M. Bundy.2007. Cone calorimeter analysis of UL-94 V-rated plastics[J]. Fire and Materials,31(4):257-283.
    [9].刘革平,张明伟.2006.EPS板薄抹灰外墙外保温技术[J].建筑技术,37(10):746-748.
    [10].陈字新,王茂君,朱元华.2009.XPS挤塑泡沫板外墙外保温系统的应用[J].
    [1l].王建华.2007.EPS材料配置及在外墙外保温中的应用[J].工业建筑,37(2):65-69.
    [12].Xu, L., et al.2014. Experimental Study on Fire Characteristics of Building External Thermal Insulation Composite Systems Based on Polystyrene Foam[J]. Advanced Materials Research, 893:221-227.
    [13]. Chow, W.K.2004. Fire hazard assessment on polyurethane sandwich panels for temporary accommodation units[J]. Polymer Testing,23(8):973-977.
    [14]. Griffin, G.J., et al.2006. Effect of Construction Method on the Fire Behavior of Sandwich Panels with Expanded Polystyrene Cores in Room Fire Tests[J]. Journal of Fire Sciences,24(4): 275-294.
    [15]. Jakab, E., et al.2003. Thermal decomposition of flame-retarded high-impact polystyrene[J]. Journal of analytical and applied pyrolysis,68:83-99.
    [16].赵修文等.2010.聚脲多元醇对聚氨酯泡沫阻燃性的影响[J].化学推进剂与高分子材料,8(1):43.
    [17].培林,淑琴.聚氨酯材料手册.2002:化学工业出版社.