Rh/C催化剂的制备、表征及加氢催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现阶段,我国对氯苯胺生产方法及技术落后,生产规模小。多数是采用传统的铁粉、硫化碱等还原法,对环境污染严重。而贵金属催化加氢法由于对环境友好,产品纯度高而备受关注。以活性炭负载贵金属制得催化剂的研究已有报道,但关于活性炭负载铑的制备及其催化对氯硝基苯加氢的研究很少,存在较大的研究空间。
     本论文以对氯硝基苯加氢合成对氯苯胺为研究背景,以开发制备高性能的Rh/C加氢催化剂为主要目标,系统的研究了活性炭负载铑制得的催化剂在对氯硝基苯加氢反应中应用的可行性。论文通过对活性炭进行不同方法的预处理后再负载铑制得催化剂,分析了影响Rh/C催化剂催化性能的主要因素;考察了第二金属的添加对催化剂催化性能的影响;探讨了Rh/C催化剂催化对氯硝基苯加氢反应寿命和失活机理;并与国外Alfa公司制备的Rh/C催化剂进行比较,为Rh/C催化剂的深入研究奠定了基础。
     1.采用浸渍法制备了Rh/C催化剂,研究了活性炭的预处理、Rh的负载量、还原剂、还原方法、pH值等对Rh/C催化剂催化对氯硝基苯加氢反应性能的影响。结果表明:降低活性炭表面酸性基团总含量后负载Rh制得的催化剂活性升高。在处理活性炭的过程中,氢氧化钠的加入量对其表面基团有一定的影响。加入少量的氢氧化钠,不能完全中和表面酸性基团;加入过多会中和所有酸性基团,同时碱性位增多,对氯苯胺的收率下降。在制备Rh/C催化剂的过程中,Rh的负载量对催化剂催化对氯硝基苯加氢反应影响很大,最佳的负载量应该控制的0.7%-1%之间。在液相还原时,水合肼还原效果没甲醛好,其制备的催化剂活性降低,甲醛是比较理想的还原剂。通过加氢还原制得的催化剂金属的分散度比液相甲醛还原制得的高,加氢高温还原更有利于金属的分散。通氢还原制备的催化剂在活性上高于甲醛还原制得的催化剂并且其寿命比甲醛还原制得的催化剂寿命长。
     2.考察了双金属催化齐(?)Rh-M/C(M:Cs.Fe.Co.Ni.Cu)催化对氯硝基苯加氢的反应性能,探讨了浸渍顺序和第二金属的负载量对Rh-M/C催化剂性能的影响。此外,还研究了Rh-M/C双金属催化剂催化对氯硝基苯加氢反应的最佳反应温度,时间和催化剂用量。结果表明:第二金属的添加相比单金属催化剂其活性提高,在三小时的反应时间里就能使对氯苯胺的收率达到99%以上。第二金属的类型及浸渍方法对催化剂的影响很大,不同的金属、不同的浸渍方法对催化剂的影响不同。共浸渍法制备的RhCs/C双金属催化剂效果最好。
     3.考察了磷酸对Rh/C催化剂寿命的影响并对催化剂的失活机理进行了研究,比较了Rh/C和Rh-M/C的催化寿命。结果表明:Rh/C催化剂经反应一次后,继续反应活性明显下降。在制备过程中加入一定量的磷酸,催化剂的寿命明显增强。磷酸的加入能增强贵金属和载体之间的相互作用,增加催化剂的寿命,但磷酸的加入也造成Rh在载体上分散度降低,同时磷酸加入过多会直接影响催化剂的活性。催化剂反应三次后其比表面积,孔容都下降,载体表面发生坍塌堵塞覆盖Rh。双金属催化剂不仅能改善催化剂的活性,减少反应时间,控制脱氯率,在寿命上也比单金属催化剂长。
     4.对自制5%Rh/C催化剂和国外Alfa公司制得的5%Rh/C催化剂进行比较。通过对氯硝基苯加氢反应和α-蒎烯加氢制蒎烷反应的活性评价及各种表征手段进行对比。结果表明:自制Rh/C-B催化剂的产物收率最高,经反应后其收率有所下降;自制Rh/C-C催化剂的催化活性比较高,但其对应产物收率不高;进口催化剂的活性和Rh/C-C催化剂接近,其对应收率比Rh/C-C催化剂的好。
At present, the production method and technicals for chlorinated aniline of our country fall behind and the production scale is small. Most is using reduction method of traditional iron powder, Sodium SulpHide etc,therefore causing serious environmental pollution. However hydrogenation by precious metals catalysis is been concerned due to friendly to environment, high purity. The catalyst prepared by loading precious metal on activated carbon has been reported, but the preparation about loading rhodium on activated carbon and the research about catalytic hydrogenation of nitrobenzene chlorinated are rarely, existing biggish research space.
     The research background of this work is synthesis chloro aniline using chlorine nitrobenzene hydrogenation, with development high-performance Rh/C hydrogenation catalyst for the main goal, researching the feasibility of activated carbon loading precious metal rhodium catalysts in the application of chlorinated nitrobenzene hydrogenation reaction systematically. The catalysts were prepared by loading precious metals rhodium on the active carbon which was treating with different methods. Further we analyzed the primary factors which influence the catalytic performance of precious metal rhodium loading activated carbon catalysts, studying the effect of adding second kind of metal on the catalytic performance, discussing the deactivation mechanism of Rh/C catalytic hydrogenation of chlorinated nitrobenzene, and compared with the Rh/C catalyst which was prepared by Alfa company, and laying a foundation for the in-depth study of Rh/C noble metal catalysts.
     1. Rh/C catalysts were prepared by impregnation method, and researching the active carbon pretreatments, loading contents of Rh, reductants, reduction methods, pH values on the properties of hydrogenation reaction of chlorine nitrobenzene using Rh/C as catalysts. Results show that the acid treatment was not good for loading precious metal rhodium, the Rh/C prepared by loading precious metals rhodium after reducing total content of surface acidity groups on the carbon, the catalytic activity was increased. In the process of treating activated carbon, the addition amount of sodium hydroxide influences its surface groups. Too little addition of Sodium hydroxide, processing surface acidity groups was not thorough enough, Excessive, all the acidic group was neutralizing, and alkaline bits increased, the yield of chloro aniline declined. In the process of preparation of Rh/C catalyst, the loading contents of precious metals strongly influence the hydrogenation reaction of chlorine nitrobenzene, the best contents should be controlled 0.7%~1%. In liquid pHase reduction, hydrazine hydrate was against the reduction of Rh, and catalytic activity is very low, formaldehyde is an ideal reductant. The metal dispersion of catalysts through hydrogenation was better than liquid formaldehyde reduction, high temperature hydrogenation reduction is better for the dispersion of metal. The catalysts prepared by hydrogenation reduction were more active and had longer life than the catalysts prepared by formaldehyde reduction.
     2. Studying the dual metal catalysts Rh-M/C (M:Cs, Fe, Co, Ni, Cu) for the catalytic performance of hydrogenation reaction of chlorine nitrobenzene, discussing the effect of sequence of impregnation and the second kind of metal on the catalytic properties of Rh-M/C. In addition, the optimum reaction temperature, time and the dosage of catalyst of hydrogenation of chlorine nitrobenzene were also studied. Results show that:compared with single metal catalyst, the addition of second metal improved activity, the yield of chloro aniline can reach 99% in three hours of reaction time. The type of second metal and the impregnation method strongly influence the catalysts, the effects of catalysts were different with different metals and different impregnation methods. The Rh-Cs/C prepared by co-impregnation method was best.
     3. The effect of pHospHoric acid on the life of Rh/C catalyst and the deactivation mechanism has been studied, comparing the catalytic life of Rh/C and Rh-M/C. Results show that:After Rh/C reacting one time, the reaction activity significantly declined if continue using. After adding a certain volume of pHospHoric acid in the process of preparation, the catalytic life time was obviously increased. The addition of pHospHoric acid can enhance the interaction between precious metals and carrier, increase the catalyst life, but also causes the decline of the dispersion of rhodium. Excessive pHospHoric acid addition amount will directly influence the activity of catalysts. After three times reaction, the specific surface area, pore volume were decreased, the surface of carrier collapsed, or covering the precious metal. Dual metal catalysts can not only improve activity of catalysts, decline reaction time, control the ratio of taking of chlorine, but also increase catalyst life.
     4. Compared with the homemade Rh/C catalyst and Rh/C catalyst prepared by Alfa company. Through the evaluing the reaction activity of hydrogenation of chlorine nitrobenzene reaction, and hydrogenation of alpHa pinene and comparing various characterization methods.Results show that:the self-made Rh/C-B catalysts, had highest yield and after reacting its yield decreased; the activity Rh/C-C was higher, but its corresponding product yield was not high; the activity of imported catalyst and Rh/C-C catalyst were close, but its corresponding yield was better than self-made Rh/C-C catalyst.
引文
[1]Puente G, Mencndez J A. On the distribution of oxygen-containing surface group sin carbon and their influence on the preparation of carbon support edmolybdenum catalysts[J]. Solid. State.,1998,112(1-2):103-111.
    [2]E. Auer, A. Freund, J. Pietsch. Carbons as supports for industrial precious metal catalysts[J]. Applied Catalysis A:General,1998, (173):259-271.
    [3]Tang Qinghu, Huang Xiaona. Characterization and catalytic application of highly dispersed manganese oxides supported on activated carbon[J]. Journal of Molecular Catalysis A,Chemical,2009,301(1-2):24-30.
    [4]熊晓东,王胜国.铑在均相催化工业中的应用[J].稀有金属,2005,29(4):403-407.
    [5]Osborn J A,Jardine F H,Young F H, et al.Synthesis of some rhodium-complexes [J] J.Chem Soc.A,1966:1711-1720.
    [6]王锦惠,王蕴林,刘光宏.羰基合成[M].北京:化学工业出版社,1987.1-32;97-100; 135-140;145-148.
    [7]黄雪原.铑-膦配合物催化烯烃氢甲酰化反应研究[D].四川大学博士论文,2003.
    [8]刘春,梅建庭,金子林.铑催化高碳烯烃氢甲酰化合成高碳醇进展[J].化工进展,2000,19(1):28-31.
    [9]王胜国,于国清,王世文.不对称催化在精细化工中的应用[J].工业催化,2000,8:9-12.
    [10]BhasinM, Bartley W J. The Hydrogenation of CO and CO2 over Polycrystalline Rhodium:Correlation of Surface Composition, Kinetics and product Distributions[J]. J Catal,1978,54:120-130.
    [11]Kip B J, Smeet P, Grondelle J V. Hydrogenation of Carbon Monoxide over Vanadium Oxide Promoted Rhodium Catalysts [J]. Appl Catal,1987,33: 181-192.
    [12]Kip B J, Hermans E, Prins R. Promoter and MorpHology Effects in Synthesis Gas Conversion over Silica-supported Rhodium Catalysts[C].In:Proc. Congr Catal, Calagary,1988,821-832.
    [13]张伟,罗洪原,周焕文等.CO加氢合成C2含氧化合Rh-Sm-V-Li/SiO2催化剂的研究[J].催化学报,1999,20(3):285-289.
    [14]马洪涛,王毅,包信和.合成气制备乙醇Rh-Mn/SiO2催化剂中活性金属表面结构的表征研究[J].北京大学学报(自然科学版),2001,37(2):210-214.
    [15]周树田,潘秀莲,包信和.微乳法制备的负载型铑催化剂粒子大小对CO加氢反应性能的影响[J].催化学报,2006,27(6):474-478.
    [16]孙科强,徐柏庆,朱起明.负载Rh催化剂上CO加H2制C2含氧化合物及助剂(载体)作用[J].分子催化,2001,15(4):310-318.
    [17]汪海有,万惠霖,区泽棠.天然气化工[M],1997,22(2):21-25.
    [18]吴廷华,汪海有,翁维正等.甲烷部分氧化制合成气[J].催化学报,1998,19(6):498-510.
    [19]吴廷华,严前古,李少斌等Rh/SiO2催化剂上甲烷部分氧化制合成气反应[J].2003,24(6):407-413.
    [20]Ivan Tavazzi, Alessandra Beretta, Gianpiero Groppi. Development of a molecular kinetic scheme for methane partial oxidation over a Rh/α-Al2O3 catalyst [J]. Journal of Catalysis,2006,241:1-13.
    [21]周建略,陈耀强,龚茂初Rh/Al2O3上CO的歧化和加氢[J].天然气化工,1994,19(5):1-6.
    [22]周建略,陈耀强,曹昭等Rh-Co/Al2O3双金属催化剂上CO加氢反应[J].天然气化工,1994,19(3):8-13.
    [23]陈耀强,龚茂初,曹昭.Rh-Co双金属催化剂的研究[J].催化学报,1998,19(1):9-13.
    [24]王芳,吕功煊Na-Rh/γ-Al2O3催化剂的表征及其对CO选择氧化的催化性能[J].催化学报,2007,28(1):27-33.
    [25]陈光文,李淑莲,袁权等.钾助剂对Rh/Al2O3催化富氢条件下CO选择氧化反应性能的影响[J].催化学报,2005,26(9):809-814.
    [26]熊伟,刘德蓉.负载型铑催化剂催化苯乙酮的多相不对称氢化反应的研究[J].西昌师范高等专科学校学报,2004,16(4):35-42.
    [27]熊伟,马红霞,陈华等.高等学校化学学报[J].2002,23(9):1758-1766.
    [28]邵国刚,申群兵.负载型Rh催化剂上对氨基苯甲酸加氢反应研究[J].河北工业大学学报,2008,37(4):7-16.
    [29]Min Kang, Youn-Sang Bae, Chang-Ha Lee. Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst[J]. Carbon,2005, 43(7):1512-1516.
    [30]E. Auer, A. Freund, J. Pietsch. Carbons as supports for industrial precious metal catalysts[J]. Applied Catalysis A:General,1998,173:259-271.
    [31]NovotnyM. Hydrogenation of halogen-containing carboxylic anhydrorides:U S,4255594[P].1981-03-10.
    [32]Georges C, Francheville F. Process for the preparation of trifluoroethanol: US,4533711[P].1985-08-06.
    [33]Freidlin L K, Litvin E F, Oparina G K, et al. Hydrogenation of ammonium p-aminobenzoate on ruthenium and rhodium catalysts [J]. Zh Org Khim,1973,9 (5):959-963.
    [34]Rodr Iguez. The role of carbon materials in heterogeneous catalysis[J]. Carbon,1998,36 (3):159-175.
    [35]魏音,周焕文,徐杰等.乙烯氢甲酰化催化合成丙醛的研究进展[J].现代化工,2001,21(3):27-30.
    [36]Yoneda Y. Progress in C1 Chemistry in Japan[M]. Amsterdam:Elsevier,1989
    [37]袁友珠,张宇,杨意泉等.负载型水相瞵铑配合物催化剂上丙烯氢甲酰化制丁醛[J].厦门大学学报(自然科学版),1996,35(2):220-225.
    [38]马占华,杜三旺.活性炭负载铑基催化剂的制备条件研究[J].化学工程,2009,37(2):31-34.
    [39]王茜,刘汉范.碳负载胶体金属铑催化气相甲醇羰基化反应[J].催化学报,1997,18(2):171-177.
    [40]M.E. Halttunen, M.K. Niemela. Rh/C catalysts for methanol hydrocarbonylation Ⅰ. Catalyst characterisation.[J]. Applied Catalysis A:General,2001,205:37-49.
    [41]M.E. Halttunen, M.K. Niemela. Rh/C catalysts for methanol hydrocarbonyl ation. Ⅱ.Activity in the presence of MeI[J].Applied Catalysis A:General,19 99,182:115-123.
    [42]M.J. Howard, M.D. Jones, M.S. Roberts. C1 to acetyls:catalysis and process[J]. Catalysis Today,1993,18 (4) 325-354.
    [43]李小宝,王恩来,蒋大智等.碳复合载体负载铑催化剂的制备及其对气相甲 醇羰基合成乙酸的催化反应性能[J].催化学报,1997,18(1):49-56.
    [44]Lijima sumio. Helical microtubules of grapHitic carbon [J]. Nature,1991,35:456-458.
    [45]张宇,张鸿斌,林国栋等.碳纳米管负载铑催化剂上丙烯氢甲酰化[J].物理化学学报,1997,13(12):1057-1062.
    [46]许国斌.粒状活性炭的制造与运用[J].新型碳材料,1999(2):13-21.
    [47]立本英机,安部育夫.高尚愚(译).活性炭的应用技术其维持管理及存在问题[M].南京东南大学出版社,2007:3-19,135-160,509-519.
    [48]高尚愚,陈维(译).活性炭基础与运用[M].北京,中国林业出版社,1984.
    [49]尾崎萃,田丸谦二,田部浩三等.催化剂手册[M].化学工业出版社,1982.
    [50]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000(23):26-29.
    [51]赵波,韩文峰,霍超等.活性炭及其改性对钌基氨合成催化剂性能的影响[J].工业催化,2004(12):42-49.
    [52]罗启云,郑国炉.活性碳的应用[M].华东理工大学出版社,2002,8-11.
    [53]孙镜宜,林西平.环保催化材料与运用[M].化学工业出版社,2002,79-125.
    [54]张天永,由兰英,张友兰.对氯苯胺制备方法研究进展[J].染料与染色,2004,41(6):365-366.
    [55]包德才,赵岷.催化还原对氯硝基苯制备对氯苯胺的研究进展[J].内蒙古民族大学学报(自然科学版),2001,16(1):96-100.
    [56]Kratky V, Kralik M, Mecarova M, et al. Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes[J]. Applied Catalysis A:General, 2002,235(1-2):225-231.
    [57]黄培,王朋朋,黄丽萍.硝基化合物还原制备芳香胺工艺研究进展[J].南京工业大学学报,2007,29(4):101-106.
    [58]吴琼,李翔,张曼征.Pd-Fe吸附树脂催化剂的结构及其对卤代芳香硝基化合物的催化加氢性能[J].催化学报,1997,18(4):338-340.
    [59]任敬阳,黄治清,石桂林等.对氯苯胺的新制法[J].辽宁化工,1993,(4):55-56.
    [60]蒋志斌,侯琳娜等.利用醇镁还原体系一步法制取对氯苯胺的研究[J].精细石油化工进展,2002,3(11):50-51.
    [61]Narayan C P, Man M S. Reactions of nitrochlorobenzenes with sodium sulfide: change in selectivity with pHase-transfer catalysts[J]. Industrial & Engineering Chemistry Research,1992,31(7); 1606-1609.
    [62]尹静梅,张瑞,贾颖萍等.芳香硝基化合物还原制备芳胺的研究进展[J].化学研究,2010,21(1):96-101.
    [63]张竹霞,吕荣文,张珂珂,等.水合肼还原芳硝基物的研究[J].精细化工,2001,18(4):239-242.
    [64]Ayyangar N R, Lugade A G, et al. Catalytic reduction of nitroarenes with hydrazine hydrate in suitables solvents[J]. Synthesis,1981, (8):640-643.
    [65]MAX L, Paul R, Jorg W. Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide hydroxide catalyst. Ⅰ. The reduction of monosubstituted nitrobenzenes with hydrazine hydrate in the presence of ferrihydrite[J]. Applied Catalysis A:General,1998,172:141-148.
    [66]陈墨雨.Pt/C催化剂的制备和对氯苯胺的合成[D].南京工业大学硕士论文,2006.
    [67]Vilella I M J, Miguel S R, Scelza O A. Study of the performance of Pt catalyst s supported on activated carbon felt and granular carbon for nitrobenzene hydrogenation[J]. Chem Eng J,2005,114:33-38.
    [68]Li C H, Yu Z X, Yao K F, et al. Nitrobenzene hydrogenation with carbon nanotube-supported platinum catalyst under mild conditions[J]. J Molec Catal A:Chem,2005,226:101-105.
    [69]Takasaki M, Motoyama Y, Higashi K, et al. Chemoselective hydrogenation of nit roarenes with carbon nano fiber-supported platinum and palladium nanoparticles[J]. Org Lett,2008,10 (8):1601-1604.
    [70]王闯.碳纳米管负载金属催化剂的制备及其催化氯代硝基苯加氢反应性能[D].大连理工大学博士论文,2009.
    [71]Zheng K Y, Liao S J, Xu Y,et al. A remarkable synergic effect of polymer-anchored bimetallic palladium-ruthenium catalysts in the selective hydrogenation of p-chloronitrobenzene[J]. Journal of the Chemical Society. Chemical Communication,1995:1155-1156.
    [72]Kratky V, Kralik M, Mecarova M, et al. Effect of catalyst and substituents on the hydrogenationof chloronitrobenzenes[J]. Appl.Catal. A,2002,235:225-231.
    [73]李翔,张曼征,刘伍平.Pd-Sn吸附树脂催化剂上对硝基氯苯选择加氢的研究.离子交换与吸附[J].1997,13(4):385-389.
    [74]Liu Manhong, Yu Weiyong, Liu Hanfan. Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts[J]. J. Mol. Catal. A:Chem.,1999,138:295-303.
    [75]吕连海,郭方,杜文强.一种氯代芳香硝基化合物高选择性催化加氢制备氯代芳胺的方法:中国,200610047703.5[P].2006.
    [76]吕连海,郭方,辛俊娜,等.一种高活性加氢催化剂纳米Ru/C的制备方法:中国,200610047701.6[P].2006.
    [77]Iqbal, Abul F M. Process for the production of aromatic primary amines[P]. US:3944615,1976-03-16.
    [78]陈晨,林性贻,于政锡,等.硝酸处理活性炭对醋酸乙烯催化活性的影响[J].石油化工,2004,33(11):1024-1027.
    [79]刘广臻,郑晓玲,许交兴,等.活性炭载体预处理对Ru/C氨合成催化剂活性的影响[J].工业催化,2004,12(6):44-47.
    [80]郑晓玲,傅武俊,俞裕斌等.活性炭载体的微波处理对氨合成催化剂Ru/C催化性能的影响[J].催化学报,2002,23(6):562-566.
    [81]贾荣利,王成扬,于素梅.炭载体前处理对Pt/C催化剂Pt分散性的影响[J].电源技术,2005,29(12):801-804.
    [82]Boehm H P. Chemical identieation of surface groups[J]. Adv. Catal.,1966,16: 179-274.
    [83]Coq B,Tijani A,Figueras F. Influence of alloying platinum for the hydrogenation of p-chloronitribenzene over Pt-M/Al2O3 catalysts with M= Sn,Pb,Ge,A1,Zn[J]. J.Mol.Catal.,1992,71 (3):317-333.
    [84]梅华,王欢,陈墨雨,等.Pt/C催化剂的制备及其在对氯苯胺合成中的应用[J].工业催化,2007,15(4):37-41.
    [85]严新焕,许丹倩,楼芝英等.对氯硝基苯催化加氢合成对氯苯胺.中国医药工业杂志.2001,32(10):471-471.
    [86]Hegedus L, Mccabe R W. Catalyst Deactivation[M]. Holand:Elsevier Scientific Publishing Comp,1980.
    [87]李承烈.催化剂失活[M].北京:化学工业出版社,1989.
    [88]曾宪春,王昱.工业生产中Pd/C催化剂失活原因研究[J].工业催化,2001,9(5):17-22
    [89]姜恒,徐筠,廖世健.双重负载钯催化剂用于硝基化合物的催化加氢[J].催化学报,1997,18(1):33-37
    [90]甑开吉,李荣生,王国甲等.催化作用基础(第三版)[M].北京:科学出版社,2005,25-26..
    [91]王向宇.有机助剂对葡萄糖加氢反应中Ru/C催化剂的影响[J].郑州大学学报,2005,37(4):80-83.
    [92]徐三魁.葡萄糖加氢制山梨醇Ru/C催化剂活性及TPR研究[J].河南工业大学学报,2006,27(2):67-69.