基于电子媒介体固定化构筑电化学生物传感器的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分三部分,第一、第二部分分别利用聚电解质/碳酸钙微球的静电作用和电化学预处理法,实现了铁氰化钾和硫堇两种电子媒介体的有效固定。分别构筑了抗坏血酸传感器和无酶葡萄糖生物传感器;第三部分基于溶胶-凝胶法共价固定辣根过氧化物酶(HRP),制备了一种新型过氧化氢传感器。
     1、通过将聚丙烯基胺盐酸盐(PAH)静电组装到聚对苯乙烯磺酸钠(PSS)掺杂的多孔碳酸钙微球表面上,Fe(CN)63?离子通过静电作用吸附到PAH层表面,成功制备一种新型电活性材料。将得到的电子媒介体材料嵌入到壳聚糖(CS)溶胶-凝胶基质中,构筑了抗坏血酸(AA)电化学传感器。并考察了该传感器在测定AA方面的应用。Fe(CN)63?对AA的催化氧化电位为0.27 V,与AA在裸玻碳电极上直接催化氧化电位(0.4 V)相比明显发生负移。该电化学传感器响应快速,具有良好的重现性和稳定性。测定AA的线性范围是1.0×10-6 ~ 2.143×10-3 M,其检测限是7.0×10-7 M。
     2、利用电化学预处理法共价固定硫堇(Th)分子,通过聚多巴胺(PDA)对得到的Th修饰电极的负载作用,实现了特异性亲和受体伴刀豆球蛋白(Con A)分子的固定化,建立了一种方便、有效的检测葡萄糖的新方法,构筑了新型无酶葡萄糖生物传感器。PDA作为功能性“双面胶”,利用自身的粘附性和Schiff反应,得到功能性界面Th/PDA/Con A。通过Con A与葡萄糖特异性结合导致Th电化学信号的改变,从而实现了葡萄糖的定量检测。该传感器表现出良好的重现性、稳定性和抗干扰能力,对葡萄糖响应的线性范围为1.0×10?6 ~ 1×10?4 M,检测限为7.5×10?7 M。
     3、基于一步多聚糖溶胶-凝胶反应原位共价固定HRP制备了新型H2O2生物传感器。硅氧烷是一种含有环氧基和三甲氧基官能团的无机材料,利用生物高聚物?壳聚糖(CS)的-NH2与γ-环氧丙氧丙基三甲氧基硅烷(GPTMS)的环氧基团之间的反应形成的网络结构将HRP实现固定。固定在这种具有高生物相容性杂化材料中的酶,能够保持高的酶催化活性,对H2O2具有快速的响应。生物传感器对H2O2响应的线性范围是2.0×10-7 ~ 4.6×10-5 M,其检测限是8.1×10-8 M。
There are three parts in this thesis. Two new and simple strategies were established for fabricating of electrochemical biosensor based on immobilization of electron mediators (Fe(CN)63? and Thionine) by electrostatic interaction of polyelectrolyte-calcium carbonate microsphere (the first chapter) and electrochemically pretreatment (the second chapter). A novel H2O2 biosensor was also fabricated based on in-situ covalent immobilization of horseradish peroxidase (HRP) through sol–gel process in the third part.
     1. A novel electro-active material was successfully prepared with the Fe(CN)63? ions loaded by electrostatic interaction onto the layer of poly(allylamine) hydrochloride (PAH), which was firstly assembled on the prepared poly(Sodium 4-styrenesulfonate) (PSS)-doped porous calcium carbonate microspheres (CaCO3). Further, an electrochemical sensor toward ascorbic acid (AA) detection was constructed with the use of above electro-active materials embedded into a chitosan (CS) sol-gel matrix as electron mediators. The electrocatalytic oxidation of AA by ferricyanide was observed at the potential of 0.27 V, which was evidently negative-shifted compared with that by direct electrochemical oxidation of AA on the glassy carbon electrode at the potential of 0.4 V. The experimental parameters including pH value of testing solution and applied potential for detection of AA were optimized. The current electrochemical sensor not only exhibited a good reproducibility and storage stability but also showed a fast amperometric response to AA in a linear range (1.0×10?6 to 2.143×10?3 M), a low detection limit (7.0×10?7 M).
     2. A convenient and effective strategy based on biospecific binding affinity of Concanavalin A (Con A) through polydopamine (PDA) mussel-inspired coatings on Thionine (Th) modified glassy carbon electrode was used to develop a non-enzyme-based glucose biosensor for the detection of glucose. In the proposed electrodeposition strategy, PDA was applied as functional“Double-sided adhesive-type”for inspired incorporating of Th and Con A due to its adhesive mechanisms and Schiff base reaction. With the peak current response of the Th moiety changed by biospecific binding Con A-glucose complex, quantitative measurement of glucose could be achieved. The current electrochemical sensor not only exhibited a excellent reproducibility, storage stability and high anti-interferent ability, but also showed broader linear response from 1.0×10?6 to 1×10?4 M with a low detection limit of 7.5×10?7 M to glucose. As a result, the proposed economical, efficient methodology was potentially attractive for evaluating clinical health risk.
     3. A simple and reliable one-pot approach was established for the development of a novel hydrogen peroxide (H2O2) biosensor based on in-situ covalent immobilization of horseradish peroxidase (HRP) into biocompatible material through polysaccharide incorporated sol–gel process. Siloxane with epoxide ring and trimethoxy anchor groups was applied as the bifunctional cross-linker and the inorganic resource for organic-inorganic hybridization. The reactivity between amine groups and epoxy groups allowed the covalent incorporation of HRP and the functional biopolymer, chitosan (CS) into the inorganic polysiloxane network. Some experimental variables, such as mass ratio of siloxane to CS, pH of measuring solution and applied potential for detection were optimized. HRP covalently immobilized in the hybrid matrix possessed high electrocatalytic activity to H2O2 and provided a fast amperometric response. The linear response of the as-prepared biosensor for the determination of H2O2 ranged from 2.0×10-7 to 4.6×10-5 M with a detection limit of 8.1×10-8 M. The apparent Michaelis-Menten constant was determined to be 45.18μM. Performance of the biosensor was also evaluated with respect to possible interferences. The fabricated biosensor exhibited high reproducibility and storage stability. The ease of the one-pot covalent immobilization and the biocompatible hybrid matrix serve as a versatile platform for enzyme immobilization and biosensor fabricating.
引文
[1]司士辉,生物传感器[M],北京:化学工业出版社,2003,1–2
    [2]鞠愰先,电化学与生物传感技术[M],北京:科学出版社,2006,377–409
    [3] Shridhara A., Swati S. G., Ratna S., Glucose oxidase immobilized electrode for potentiometric estimation of glucose[J], Biosens. Bioelectron., 1991, 6(8): 663–668
    [4] Clark L. C., Lyons C., Electrode systems for continuous monitoring in cardiovascular surgery[J], Ann. NY Acad. Sci., 1962, 102(3): 29–45
    [5] Updike S. J., Hicks G. P., Sensitivity of electrochemical enzyme sensor for glucose determination[J], Nature, 1967, 214(5092): 986–988
    [6] Guibault G. G., Montalvo, Urea-specific enzyme electrode[J], J. Am. Chem. Soc., 1969, 91(9): 2164–2165
    [7] Cooney C. L., Weaver J. C., Enzyme Engineering[M], New York: Plenum, 1974, 411
    [8] Mosbach K., Danielsson B., An enzyme thermistor Biochimica, et Biophysica Acta (BBA)– Enzymology[J], Biochim. biophys. Acta., 1974, 364 (1): 140–145
    [9] Divies C., Remarks on ethanol oxidation by an "Acetobacter xylinum" microbial electrode (author's transl)[J], Annals of Microbiology, 1975, 126: 175–186
    [10] Liedberg B., Nylander C., plasmon resonance for gas detection and biosensing Surface[J], Sens. Actuators B: Chem., 1983, 4: 299–304
    [11] Rechnitz G. A., Biochemical electrodes uses tissues slice[J]. Chem. Eng. News, 1978, 56(3): 16–18
    [12] Caras S., Janata I., Field effect transistor sensitive to penicillin[J]. Anal. Chem., 1980, 52 (12): 1935–1937
    [13] Lowe C. R., Goldfinch M. J., Novel electrochemical sensors for clinical analysis[J], Biochem. Soc., 1983, 11(4): 448–449
    [14] Cass A. E. G., Francis D. G., Hill H. A. O., et.al., Ferrocene-mediated enzyme electrode for amperometric determination of glucose[J], Anal.Chem., 1984, 56 (4): 667–671
    [15] Zhou D. M., Ju H. Y., Chen H. Y., Aminiaturized glucose biosensor based on thecoimmobilization of glucose oxidase and ferrocene perchorate in nafion at a microdisk platinum electrode[J], Sens. Actuators B: Chem., 1997, 40: 89–94
    [16] Mukhopadhyayk K., Phadtares S., Vinod V. P., Gold nanoparticles assembled on amine- functionalized Na-Y zeolite: A biocompatile surface for enzyme immobilization[J], Langmurir, 2003, 19: 3858–3863
    [17]李群芳,袁若,刘颜等,天青I为电子媒介体金纳米颗粒修饰葡萄糖生物传感器[J],分析化学,2005,33:631–634
    [18] Yuan R., Liu Y., Li Q. F., et al., Electrochemical characteristics of a platinum electrode modified with a matrix of polyvinyl butyral and colloidal Ag containing immobilized horseradish peroxidase[J], Anal. Bioanal. Chem., 2005, 381: 762–768
    [19]孙妮,袁若,柴雅琴等,基于壳聚糖-纳米TiO2复合膜/CdSe固定血红蛋白的过氧化氢生物传感器的研究[J],化学传感器,2009,29(3):24–28
    [20]张彦,南彩凤,冯丽等,壳聚糖固定化葡萄糖氧化酶生物传感器测定葡萄糖的含量[J],分析化学,2009,37(7):1049–1052
    [21]李娜,甘贤雪,王丽,基于纳米金/甲苯胺蓝/多壁碳纳米管复合物膜修饰的高灵敏的电流型癌胚抗原免疫传感器的研究[J],重庆电子工程职业学院学报,2009,18(3):80–82
    [22] Wang S., Lei Y., Shi K., Electrochemically Induced Free Radical Polymerization of Methacrylic Acid and Fabrication of Amperometric Glucose Biosensor[J], Electrochemistry, 2009, 15(3): 255–259
    [23]王海涛,于会勇,李克昌等,葡萄糖氧化酶修饰电极响应电流的研究[J],东北电力大学学报(自然科学版),2009,29(1):71–74
    [24]蒋定锋,闫梁,贲海静等,鸭乙型肝炎病毒核心抗原DNA疫苗的构建及其诱导的体液免疫应答[J],微生物与感染,2009,4(3):140–145
    [25]缪煜清,官建国,用于亲和检测的压电生物传感器[J],武汉理工大学学报,2004,26(5):5–8
    [26] Wong E. L. S., Gooding J. J., Charge Transfer through DNA: A Selective Electrochemical DNA Biosensor [J], Anal. Chem., 2006, 78(7): 2138–2144
    [27] Pinar K., Burcu M., Aysin Z., et al., Electrochemical DNA biosensor for the detection and discrimination of herpes simplex Type I and Type II viruses from PCR amplified real samples[J], Anal. Chim. Acta, 2004, 518: 69–76
    [28] Goktug T., Sezginturk M., Dinckaya E., Glucose oxidase-β-galactosidase hybrid biosensor based on glassy carbon electrode modified with mercury for lactose determination[J], Anal. Clim. Acta, 2005, 551: 51–56
    [29]李敏健,谭学才,梁汝萍等,基于溶胶-凝胶固定技术的生物组织传感器[J],分析化学,2004,32(10):1291–1294
    [30]符婷,王桦,沈国励等,一种新的人绒毛膜促性腺素压电免疫传感器化学传感器[J], 2006,26(2):14–17
    [31]罗细亮,徐静娟,陈洪渊,场效应晶体管生物传感器[J],分析化学研究报告,2004,32(10):1395–1400
    [32]翟俊辉,黄惠杰,杨瑞馥等,光纤生物传感器用于核酸的特异性检测[J],分析化学研究报告,2003,31(1):34–37
    [33] Domínguez R. O., Alonso L. M. A., Arcos M. M. J., Recent developments in the field of screen-printed electrodes and their related applications[J], Talanta, 2007, 73(2): 202–219
    [34]卢小泉,张焱,康敬万等,分析化学中的化学修饰碳糊电极[J],分析测试学报,2001,20 (4):88–93
    [35]王志贤,王赪胤,胡效亚,化学修饰电极的制备及其药物分析应用的研究进展[J],化学传感器,2007,27(4):8–15
    [36]郝仕油,黎胜,CeO2形态对CeO2/Au电极催化氧化乙醇的影响[J],中国稀土学报,2009,27(4):496–500
    [37]李利军,蓝苏梅,程昊等,L-半胱氨酸修饰金电极电化学发光法测定罗红霉素[J],分析化学,2009,37(9):1367–1370
    [38]黎雪莲,袁若,柴雅琴等,基于溶胶-凝胶化的普鲁士蓝/纳米金修饰铂电极的辣根过氧化物酶传感器[J],西南师范大学学报,2005,30(2):862–867
    [39]刘百祥,李青山,张兆奎,铂化微酶电极低极化电位下催化H2O2的能力[J],华东理工大学学报,1999,25(2):194–197
    [40]余建国,王永乐,韩李梅等,抗坏血酸在聚对羟基苯甲酸修饰玻碳电极上的催化电氧化行为[J],应用化学,2009,26(9):1117–1119
    [41]陶菡,张义明,张学俊,基于碳纳米管和离子液体复合物修饰玻碳电极电催化测定己烯雌酚[J],理化检验,2009,45(2):1111–1114
    [42] Delecoulservat K., Basseguy R., Bergel A., Membrane Electrochemical Reactor: Application to NADH Regeneration for ADH-Catalysed synthesis[J], Chem. Eng. Sci., 2002, 57(21): 4633–4642
    [43]贾能勤,江丽萍,黄绘宏等,亚甲蓝的电化学聚合及其聚合膜特性[J],化学世界,2003,l5(2):234–237
    [44]屠一锋,孙如,金电极的逐层自组装修饰[J],苏州大学学报(自然科学),1998,14(2):74–77
    [45] Centonze D., Losito I., Malitesta C., et al., Electrochemical Immobilization of Enzymes on Conducting Organic Salt Elect rodes: Characterisation of an Oxygen Indepent and Interference-Free Glucose Biosensor[J], J. Electroanal. Chem., 1997, 435(1): 103–111
    [46]黄耀曾,钱延龙,金属有机化学进展[M],北京化学工业出版社
    [47]柴向东,姜月顺,杨文胜,推拉电子取代基对二茂铁衍生物性质及电子结构的影响[J],高等学校化学学报,1996,17(12):1899–1902
    [48] Pandey P. C., Upadhyay S., Bioelectrochemistry of glucose oxidase immobilized on ferrocene encapsulated ormosil modified electrode[J], Sens. Actuators B: Chem., 2001, 76(1-3): 193–197
    [49] Yabuki S., Mizutani F., Hirata Y., Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrane for the detection of hydrogen peroxide[J], J. Electroanal. Chem., 1999, 468: 117–120
    [50]Yamamoto K., Ohgaru T., Torimura M., et al., Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry[J], Anal. Chim. Acta., 2000, 406(2): 201–207
    [51]张成如,杨孔章等,具有两亲性质的异环酰基-3-二茂铁基-2-丁烯酸酯衍生物的合成[J],高等学校化学学报,1994,15 (1):53–56
    [52]孙元喜,冶保献,周性尧,聚中性红膜修饰电极的电化学特性及其电催化性能[J],分析化学研究简报,1998,26(2):166–169
    [53]焦奎,罗细亮,孙伟等,电化学聚合法制备聚中性红膜修饰电极及其应用[J],分析试验室,2002,21(2):88–90
    [54] Arkadya K., Yulian I., Elenae K., Equilibrium (NAD+/NADH) potential on poly(Neutral Red) modified electrode[J], Electrochem. Commun., 2003, 5: 677–680
    [55]杨怀成,曾金祥,魏万之,电催化测定烟酰胺腺嘌呤二核苷酸-以聚亚甲基蓝-碳纳米管修饰电极作为工作电极[J],理化检验-化学分册,2009,5(45):533–536
    [56]杨怀成,魏万之,曾金祥等,烟酰胺腺嘌呤二核苷酸的聚亚甲基蓝/单壁碳纳米管修饰电极差分脉冲伏安法检测[J],分析测试学报,2008,27(2):135–138
    [57]吴芸,陈昌云,赵波等,基于聚硫堇/多壁碳纳米管共修饰沙丁胺醇电化学传感器构建[J],食品科学,2009,19(30):40–43
    [58]蔡称心,鞠熀先,陈洪渊,聚硫堇修饰微带金电极的性质及对NADH的催化氧化[J],高等学校化学学报,1995,16(3):369–371
    [59] Igor V., Jan T., Ernest S., et al., Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe[J], Bioelectrochemistry, 2002, 56: 113–115
    [60]焦奎,罗细亮,孙伟等,聚天青A膜修饰电极的电化学特性及其对亚硝酸根的电催化性能[J],分析测试学报,2002,21(3):4–6
    [61]汪振辉,张永花,周漱萍,聚吖啶橙修饰电极伏安法测定黄嘌呤[J],分析实验室,2001,20(6):1–4
    [62]孙康,项永福,Nafion膜固定的麦尔多拉蓝为介体的过氧化氢、葡萄糖和乳糖生物传感器[J],分析测试学报,2003,22(2):43–47
    [63]莫昌莉,赵勤,柴雅琴等,酚绿B为介体的葡萄糖生物传感器[J],化学传感器,2003,23(1):6–30
    [64] Wang B. Q., Li B., Deng Q., et al., Amperometric Glucose Biosensor Based on Sol-GelOrganic-Inorganic Hybrid Material[J], Anal. Chem., 1998, 70: 3170–3174
    [65] Júnior L. R., Neto G. O., Fernandes J. R., et al., Determination of salicylate in blood serum using an amperometric biosensor based on salicylate hydroxylase immobilized in a polypyrrole-glutaraldehyde matrix[J], Talanta, 2000, 51(3): 547–557
    [66] Zhang D., Wang K., Sun D. C., et al., Ultrathin Layers of Densely Packed Prussian Blue Nanoclusters Prepared from a Ferricyanide Solution[J], Chem. Mater., 2003, 15: 4163–4165
    [67] Shanmugam S. K., James J., Kanala L. P., Novel Method for Deposition of Gold-Prussian Blue Nanocomposite Films Induced by Electrochemically Formed Gold Nanoparticles: Characterization and Application to Electrocatalysis[J], Chem. Mater., 2007, 19: 4722–4730
    [68]刘海燕,王艳玲,张国荣,壳聚糖修饰电极上的铁氰根离子对抗坏血酸的电催化氧化作用[J],分析试验室,2003,22(1):5–8
    [69]唐芳琼,继锋,金芳等,超细Ag颗粒对葡萄糖氧化酶生物传感器相应灵敏度的增强效应[J],1999,20(4):634–636
    [70] Sugawara K., Takano T., Fukushi H., et al., Glucose sensing by a carbon-paste electrode containing chitin modified with glucose oxidase[J], J. Electroanal. Chem., 2000, 482: 81–86
    [71]贾能勤,江丽萍,朱燕等,基于平面薄膜型电极的介体型半乳糖传感器的制备[J],化学研究与应用,2003,15(3):341–343
    [72]马全红,邓家棋,苯醒介体修饰的葡萄糖生物传感器[J],复旦大学学报,2000,39(4):400–404
    [73]刘慧宏,陈显堂,李俊等,辣根过氧化酶在表面活性剂膜的直接电化学[J],分析化学,2001,29(5):511–515
    [74] Elena E., Ferapontova, Vitaly G., et al., Direct electron transfer in the system gold eleetrode-recombinant horseradish Peroxidase[J], J. Eleetroanal. Chem., 2001, 509(l): 19–26
    [75] Launnavieius V., Kurtinaitiene B., Liauksmins V., et al., Reagentless biosensor based on PQQ-depended glucose dehydrogenase and partially hydrolyzed polyarbutin[J], Talant, 2000, 52(3): 485–493
    [76] Reiss M., Hxibges A., Metzger J., Determination of BOD-values of starch-containing waste water by a BOD-biosensor[J], Biosens. Bioelectron., 1998, 13(10): 1083–1090
    [77] Kazuharu S., Tonohiro T., Glucose sensing by a carbon-paste electrode containing chitin modified with glucose oxidase[J], J. Electroanal. Chem., 2000, 482(1): 81–86
    [78] Miao Y. Q., Swee N. T., Amperometric Hydrogen Peroxide Biosensor Based on Immobilization of Peroxidase in Chitosan Cross-linked with Glutaraldehyde[J], Analyst, 2000, 125: 1591–1594
    [79] Akio S., Tetsuyuki T., Tadao O., Fluorometric determination of microamounts of hydrogenperoxide with an immobilized enzyme prepared by coupling horseradish peroxidase to chitosan beads[J], Anal. Chim. Acta., 1998, 374(2-3): 191–200
    [80] Deeher G., Hong J. D., Build up of ultrathin multilayer films by a self-assembly process: III Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces[J], Thin Solid Films, 1992, 210/211: 831–835
    [81] Lvov Y., Ariga K., Lchinose L., et al., Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption[J], J. Am. Chem. Soc., 1995, 117(22): 6117–6123
    [82] Sun C. Q, Li W. J., Fabrication of multilayer films containing horseradish peroxidase based on electrostatic interaction and their application as a hydrogen peroxide sensor[J], Electrochim. Acta, 1999, 44(19): 3401–3407
    [83] Wang J., Chen Q., Renschler C. L., et al., Ultrathin Porous Carbon Films as Amperometric Transducers for Biocatalytic Sensors[J], Anal. Chem., 1994, 66(13): 1988–1992
    [84] Lu S., Li C., Zhang Y., et al., Electron transfer on an electrode of glucose oxidase immobilized in polyaniline[J], J. Electroanal. Chem., 1994, 364(1-2): 31–36
    [85] CooPer J. M., Foreman P. L., Glutamate oxidase enzyme electrodes: microsensors for neurotransmitter determination using electrochemically polymerized permselective films[J], J. Electroanal. Chem., 1995, 388(1-2): 143–149
    [86]吴辉煌,吴宝璋,环糊精聚合物的分子包合作用及在酶电极中的应用[J],电化学,1998,4(2):210–216
    [87] Lei C. H., Deng J. Q., Hydrogen Peroxide Sensor Based on Coimmobilized Methylene Green and Horseradish Peroxidase in the Same Montmorillonite-Modified Bovine Serum Albumin-Glutaraldehyde Matrix on a Glassy Carbon Electrode Surface[J], Anal. Chem., 1996, 68(19): 3344–3349
    [88] Sun J., Fang H., Immobilization of horseradish peroxidase on a self-assembled monolayer modified gold electrode for the detection of hydrogen peroxide[J], Analyst, 1998, 123: 1365–1366
    [89] Schach K., Alenu H., Amperometric Determination of Hydrogen Peroxide With a Manganese Dioxide-modified Carbon Paste Electrode Using Flow Injection Analysis[J], Analyst, 1997, 122: 985–989
    [90] Saby C., Mizutani F., Glucose sensor based on carbon paste electrode incorporating poly(ethylene glycol)-modified glucose oxidase and various mediators[J], Anal. Chim. Acta, 1995, 304(1): 33–39
    [1] Arrigoni O., Tullio M. C. D., Ascorbic acid: much more than just an antioxidant[J], Biochim. Biophys. Acta-Gen., 2002, 1569: 1–9
    [2] Tian L., Chen L., Liu L., et al., Electrochemical determination of ascorbic acid in fruits on a vanadium oxide polypropylene carbonate modified electrode[J], Sens. Actuators B: Chem., 2006, 113(1): 150–155
    [3] Casello I. G., Guascito M. R., Electrocatalysis of ascorbic acid on the glassy carbon electrode chemically modified with polyaniline films[J], Electroanalysis, 1997, 9(18): 1381–1386
    [4] Gao Z., Siow K. S., Ng A., et al., Determination of dimethylarsinic acid by hydride generation gas phase molecular absorption spectrometry[J], Anal. Chim. Acta, 1997, 343(1-2): 49–57
    [5] Jin G. Y., Zhang Y. Z., Cheng W. X., Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid[J], Sens. Actuators B: Chem., 2005, 107(2): 528–534
    [6] Castro S. S. L., Balbo V. R., Barbeira P. J. S., et al., Flow injection amperometric detection of ascorbic acid using a Prussian Blue film-modified electrode[J], Talanta, 2001, 55(2): 249–254
    [7] Raoof J. B., Ojani R., Nadimi S. R., Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films[J], Electrochim. Acta, 2005, 50(24): 4694–4698
    [8] Zare H. R., Golabi S. M., Caffeic acid modified galssy carbon electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotied (NADH)[J], J. Solid State Electrochem., 2000, 4: 87–94
    [9] Yang G. C., Shen Y., Wang M. K., et al., Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution[J], Talanta, 2006, 68(3): 741–747
    [10] Vasantha V. S., Chen S. M., Electrochemical preparation and electrocatalytic properties of PEDOT/ferricyanide film-modified electrodes[J], Electrochim. Acta, 2005, 51(2): 347–355
    [11] Zen J. M., Tsai D. M., Kumar A. S, et al., Amperometric determination of ascorbic acid at a ferricyanide-doped Tosflex-modified electrode[J], Electrochem. Commun., 2000, 2(11): 782–785
    [12] Wu Y. C., Thangamuthu R., Chen S. M., Fe(CN)-Doped-Glutaraldehyde-Cross-Linked Poly-L-Lysine Film Electrode. Part 1: Electrochemical Characterization and Its Electrocatalytic Activity Towards Oxidation of Ascorbic Acid[J], Electroanalysis, 2009, 21(8): 953–958
    [13] Takita R., Yoshida K., Anzai J. I., Redox properties of ferricyanide ion on layer-by-layer deposited poly(glutamic acid) film-coated electrodes and its use for electrocatalytic sensing of ascorbic acid[J], Sens. Actuators B: Chem., 2007, 121(1): 54–60
    [14] Sukhorukov G. B., Volodkin D. V., Günther A. M., et al., Porous calcium carbonate microparticlesas templates for encapsulation of bioactive compounds[J], J. Mater. Chem., 2004, 14(14): 2073–2081
    [15] Liu H. Y., Hu N., Comparative Bioelectrochemical Study of Core?Shell Nanocluster Films with Ordinary Layer-by-Layer Films Containing Heme Proteins and CaCO3 N anoparticles[J], J. Phys. Chem. B, 2005, 109: 10464–10473
    [16] Wang F., Feng J., Tong W. J., et al., A facile pathway to fabricate microcapsules by in situ polyelectrolyte coacervation on poly(styrene sulfonate)-doped CaCO3 particles[J], J. Mater. Chem., 2007, 17(7): 670–676
    [17] Kumar S. A., Lo P. H., Chen S. M., Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71[J], Biosens. Bioelectron., 2008, 24(4): 518–523
    [18] Cai W. Y., Xu Q., Zhao X. N., et al., Porous Gold-Nanoparticle?CaCO Hybrid Material: Preparation, Characterization, and Application for Horseradish Peroxidase Assembly and Direct Electrochemistry3[J], Chem. Mater., 2006, 18(2): 279
    [19] Wang B. Z., Noguchi T., Anzai J. I., Layer-by-layer thin film-coated electrodes for electrocatalytic determination of ascorbic acid[J], Talanta, 2007, 72(2): 415–418
    [20] Hodak J., Etchenique R., Calvo E. J., et al., Layer-by-Layer Self-Assembly of Glucose Oxidase with a Poly(allylamine)ferrocene Redox Mediator[J], Langmuir, 1997, 13(10): 2708–2716
    [21] Kumar S. S., Narayanan S. S., Amperometric sensor for the determination of ascorbic acid based on cobalt hexacyanoferrate modified electrode fabricated through a new route[J], Chem. Pharm. Bull., 2006, 54: 963–967
    [22] Sivanesan A., Kannan P., Abraham S. J., Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode[J], Electrochim. Acta, 2007, 52(28): 8118–8124
    [23] Alireza M., Mohammad A. T., Electrochemical behavior of Naphthol green B doped in polypyrrole film and its application for electrocatalytic oxidation of ascorbic acid[J], Sens. Actuators B: Chem., 2007, 123(2): 733–739
    [24] Liu A. L., Zhang S. B., Chen W., et al., Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode[J], Biosens. Bioelectron., 2008, 23(10): 1488–1495
    [25] Thiago, Paix?o R. L. C., Bertotti M., FIA determination of ascorbic acid at low potential using a ruthenium oxide hexacyanoferrate modified carbon electrode[J], Pharm. Biomed. Anal., 2008, 46 (2): 528–533
    [1] Pickup J. C., Hussain F., Evans N. D., et al., In vivo glucose monitoring: the clinical reality and the promise[J], Biosens. Bioelectron., 2005, 20(10): 1897–1902
    [2] Wang L., Mao W., Ni D., et al., Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor[J], Electrochem. Commun., 2008, 10(4): 673–676
    [3] Deng C., Chen J., Chen X., et al., Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode[J], Biosens. Bioelectron., 2008, 23(8): 1272–1277
    [4] Wilson R., Turner A. P. F., Glucose oxidase: an ideal enzyme[J], Biosens. Bioelectron., 1992, 7(3): 165–185
    [5] Park S., Boo H., Chung T. D., Electrochemical non-enzymatic glucose sensors[J], Anal. Chim. Acta, 2006, 556(1): 46–57
    [6] Hanson S. R., Hsu T. L., Weerapana E., et al., Tailored Glycoproteomics and Glycan Site Mapping Using Saccharide-Selective Bioorthogonal Probes[J], J. Am. Chem. Soc., 2007, 129(23): 7266–7267
    [7] Wang J., Thomas D. F., Chen A., Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks[J], Anal. Chem. 2008, 80(4): 997–1004
    [8] Labib M., Hedstrōm M., Amin M., et al., A novel competitive capacitive glucose biosensor based on concanavalin A-labeled nanogold colloids assembled on a polytyramine-modified gold electrode[J], Anal. Chim. Acta, 2010, 659(1-2): 194–200
    [9] Yu C., Yam V. W. W., Glucose sensing via polyanion formation and induced pyrene excimer emission[J], Chem. Commun., 2009, 11: 1347–1349
    [10] Winson M. J., Ma M. P., Morais P., et al., Dye displacement assay for saccharide detection with boronate hydrogels[J], Chem. Commun, 2009, 5: 532–534
    [11] Gallego R. G., Haseley S. R., Miegem V. F. L., et al., Identification of carbohydrates binding to lectins by using surface plasmon resonance in combination with HPLC profiling[J], Glycobiology, 2004, 14(5): 373–386
    [12] Bertozzi C. R., Kiessling L. L., Chemical Glycobiology[J], Science, 2001, 291(23): 2357–2364
    [13] Tokalov S. V., Gutzeit H. O., Lectin-binding pattern as tool to identify and enrich specific primary testis cells of the tilapia (Oreochromis niloticus) and medaka (Oryzias latipes)[J], J. Exp. Zool. Part B, 2007, 308B, 127–138
    [14] Ballerstadt R., Polak A., Beuhler A., et al., In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring[J], Biosens. Bioelectron.,2004, 19(8): 905–914
    [15] Lima V. L. M., Correia M. T. S., Cechinel Y. M. N., et al., Immobilized Cratylia mollis lectin as a potential matrix to isolate plasma glycoproteins, including lecithin-cholesterol acyltransferase[J], Carbohydr. Polym., 1997, 33(6): 27–32
    [16] Lee H., Dellatore S. M., Miller W. M., et al., Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J], Science, 2007, 318: 426–430
    [17] Todd A., Alexander W., et al., Selective Binding of RNase B Glycoforms by Polydopamine-Immobilized Concanavalin A[J], Anal. Chem., 2009, 81(13): 5413–5420
    [18] Chen X. H., Hu J. Q., Chen Z. W., et al., Nanoplated bismuth titanate sub-microspheres for protein immobilization and their corresponding direct electrochemistry and electrocatalysis[J], Biosens. Bioelectron., 2009, 24(12): 3448–3454
    [19] Yin X. B., Liu D. Y., Polydopamine-based permanent coating capillary electrochromatography for auxin determination[J], J. Chromatogr. A., 2008, 1212(1-2): 130–136
    [20] Ou C. F., Yuan R., Chai Y. Q., et al., A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles-multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface[J], Anal. Chim. Acta, 2007, 603(2): 205–213
    [21] Sugawara K., Shirotori T., Hirabayashi G., et al., Voltammetric evaluation of lectin–sugar binding at a mannose/thionine-modified Au electrode[J], J. Electroanal. Chem., 2004, 568: 7–12
    [22] Manesh K. M., Kim H. T., Santhosh P., et al., A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane[J], Biosens. Bioelectron., 2008, 23(6): 771–779
    [23] Deng L., Wang Y. Z., Shang L., et al., A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer[J], Biosens. Bioelectron., 2008, 24(4): 951–957
    [24] Yuan J., Wang K., Xia X., Highly Ordered Platinum-Nanotubule Arrays for Amperometric Glucose Sensing[J], Adv. Funct. Mater., 2005, 15(5): 803–809
    [1] Sanz V., Marcos S., Galban J., Hydrogen peroxide and peracetic acid determination in waste water using a reversible reagentless biosensor[J], Anal. Chim. Acta, 2007, 583(2): 332–339
    [2] Wang G. H., Zhang L. M., Using Novel Polysaccharide?Silica Hybrid Material to Construct An Amperometric Biosensor for Hydrogen Peroxide[J], J. Phys. Chem. B, 2006, 110(49): 24864–24868
    [3] Wong F. C. M., Ahmad M., Heng L. Y., et al., An optical biosensor for dichlovos using stacked sol–gel films containing acetylcholinesterase and a lipophilic chromoionophore[J], Talanta, 2006, 69(4): 888–893
    [4] Du D., Chen S. Z., Cai J., et al., Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol–gel interface[J], Talanta, 2008, 74(4): 766–772
    [5] Massari A. M., Finkelstein I. J., Fayer M. D., Dynamics of Proteins Encapsulated in Silica Sol?Gel Glasses Studied with IR Vibrational Echo Spectroscopy[J], J. Am. Chem. Soc., 2006, 128(12): 3990–3997
    [6] Li F., Jiang H. Q., Zhang S. S., An ion-imprinted silica-supported organic–inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol–gel process for selective separation of cadmium(II) from aqueous solution[J], Talanta, 2007, 71(4): 1487–1493
    [7] Tian X. C., Li M. J., Cai P. X., et al., An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film[J], Anal. Biochem., 2005, 337(1): 111–120
    [8] Lu X. B., Wen Z. H., Li J. H., Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors[J], Biomaterials, 2006, 27(33): 5740–5747
    [9] Liu Y. L., Su Y. H., Lai J. Y., In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with usingγ-glycidoxypropyltrimethoxysilane as a crosslinking agent[J], Polymer, 2004, 45(20): 6831–6837
    [10] Liu Y. L., Su Y. H., Lee K. R., et al., Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability[J], J. Membr. Sci., 2005, 251(1-2): 233–238
    [11] Shirosaki Y., Tsuru K., Hayakawa S., et al., In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes[J], Biomaterials, 2005, 26(5): 485–493
    [12] Li F., Li X. M., Zhang S. S., One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating techniquecombined with polysaccharide incorporated sol–gel process[J], J. Chromatogr. A, 2006, 1129(2): 223–230
    [13] Li F., Du P., Chen W., et al., Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic–inorganic hybridization combined with sucrose and polyethylene glycol imprinting[J], Anal. Chim. Acta, 2007, 585(2): 211–218
    [14] Meegan J. E., Aggeli A., Boden N., et al., Designed Self-Assembledβ-Sheet Peptide Fibrils as Templates for Silica Nanotubes[J], Adv. Funct. Mater., 2004, 14(1): 31–37
    [15] Shchipunov Y. A., Karpenko T. Y., Hybrid Polysaccharide?Silica Nanocomposites Prepared by the Sol?Gel Technique[J], Langmuir, 2004, 20(10): 3882–3887
    [16] Kumar A., Pandey R. R., Brantley B., Tetraethylorthosilicate film modified with protein to fabricate cholesterol biosensor[J], Talanta, 2006, 69(3): 700–705
    [17] Luo X. L., Xu J. J., Zhang Q., et al., Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly[J], Biosens. Bioelectron., 2005, 21(1): 190–196
    [18] Miao Y. Q., Tan S. N., Amperometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix crosslinked with glutaraldehyde[J], Analyst, 2000, 125(9): 1591–1594
    [19] Lei C. X., Hu S. Q., Gao N., et al., An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol–gel derived carbon ceramic electrode[J], Bioelectrochemistry, 2004, 65(1): 33–39
    [20] Kamin R. A., Wilson G. S., Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer[J], Anal. Chem. 1980, 52(8): 1198–1205
    [21] Li J., Tan S. N., Ge H. L., Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide[J], Anal. Chim. Acta, 1996, 335(1-2): 137–145
    [22] Lin J. H., Qu W., Zhang S. S., Disposable biosensor based on enzyme immobilized on Au–chitosan-modified indium tin oxide electrode with flow injection amperometric analysis[J], Anal. Biochem., 2007, 360(2): 288–293