密蒙花方防治糖尿病视网膜病变VEGF信号转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     从体内动物实验和体外细胞培养两个方面,系统观察中药复方密蒙花方对缺氧状态下人血管内皮细胞增殖的作用以及对糖尿病(diabetes mellitus,DM)大鼠视网膜病变的作用,并从信号转导机制方面深入研究其具体作用机制,为密蒙花方用于临床防治糖尿病视网膜病变(diabetic retinopathy,DR)提供实验依据。
     方法
     一、体内动物实验研究:
     选用链脲佐菌素(streptozocin,STZ)诱导的糖尿病大鼠作为动物模型,以羟苯磺酸钙胶囊(昊畅)作为阳性对照药。密蒙花方煎剂分为低、中、高三种不同浓度。糖尿病大鼠成模后分别以前述不同药物灌胃4个月。进行以下几方面的研究:
     1.STZ性DM大鼠一般状况观察:饮食、尿量、体重变化等。
     2.STZ性DM大鼠血液指标检测:血糖、糖化血红蛋白(glycosylated hemoglobin,GHb)、全血黏度、血浆黏度、甘油三酯(Triglyceride,TG)、胆固醇(Cholestrerol,CHO)等。
     3.HE染色观察STZ性DM大鼠胰腺病理形态学变化。
     4.眼前节照相系统观察STZ性DM大鼠晶状体混浊情况。
     5.HE染色观察STZ性DM大鼠视网膜病理形态学变化。
     6.免疫组织化学法检测STZ性DM大鼠视网膜ICAM-1、E-selectin蛋白表达情况。
     7.视网膜血管消化铺片PAS染色观察STZ性DM大鼠视网膜毛细血管病理变化。
     8.RT-PCR法检测STZ性DM大鼠视网膜VEGF mRNA、Flt-1 mRNA、Flk-1/KDR mRNA的变化情况。
     9.Western blot法检测STZ性DM大鼠视网膜VEGF、Flt-1、Flk-1/KDR蛋白磷酸化情况。
     二、体外细胞培养研究:
     采用人脐静脉血管内皮细胞(Human Umbilical Vascular Endothelial Cell,HUVEC)进行体外培养,利用100μmol/L二氯化钴(Cocl_2)模拟缺氧状态,同时分别将10、20、40mg/ml密蒙花方水提液作用于缺氧状态下的HUVEC 24h,进行以下几方面的研究:
     1.采用WST-8法检测密蒙花方对缺氧状态下HUVEC增殖的影响。
     2.采用流式细胞术(flow cytometry,FCM)检测密蒙花方对缺氧状态下HUVEC细胞周期,以及细胞内增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)蛋白表达的影响。
     3.采用逆转录聚合酶链反应(Reverse Transcription Polymerase Chain Reaction,RT-PCR)检测密蒙花方对缺氧状态下HUVEC细胞内VEGFmRNA、fms样酪氨酸激酶受体1(fms-like tyrosine kinase-1,Flt-1)mRNA、胎肝激酶-1/激酶插入区受体(fetal liverkinase-1/kinase-insert domain-containing receptor,Flk-1/KDR)mRNA的影响。
     4.采用免疫印迹法(Western blot)检测密蒙花方对缺氧状态下HUVEC细胞内VEGF、Flt-1、Flk-1/KDR蛋白磷酸化水平的影响。
     5.采用免疫组织化学方法检测密蒙花方对缺氧状态下HUVEC细胞内ICAM-1、E-selectin、vWF蛋白表达的影响。
     结果
     一、体内动物实验研究:
     用药4月后:
     1.一般状况:STZ诱导的DM大鼠高血糖状态持久稳定,表现为明显的“三多一少”典型症状。密蒙花方中剂量组体重高于DM模型组,具有统计学意义(p<0.05)。
     2.血糖:DM模型组空腹血糖显著高于正常对照组(p<0.01)。密蒙花方中、高剂量组空腹血糖较DM模型组降低,具有统计学意义(p<0.01)。
     3.糖化血红蛋白:DM模型组糖化血红蛋白显著高于正常对照组,密蒙花方中、高剂量组糖化血红蛋白较DM模型组降低,具有统计学意义(p<0.01)。
     4.血液流变学:DM模型组全血黏度、血浆黏度较正常对照组明显增高(p<0.01),昊畅组及密蒙花方中、高剂量组全血黏度、血浆黏度均较DM模型组降低(p<0.01)。密蒙花方中、高剂量组与昊畅组比较无统计学意义(p>0.05)。密蒙花方低剂量组全血黏度较DM模型组降低(p<0.01),但高于昊畅组(p<0.05)。密蒙花方低剂量组血浆黏度与DM模型组比较无统计学意义(p>0.05)。
     5.血脂:DM模型组血清TG、CHO均显著高于正常对照组(p<0.01);昊畅组与DM模型组比较,血清TG含量无统计学意义(p>0.05),血清CHO含量昊畅组较DM模型组降低(p<0.01);密蒙花方各剂量组与DM模型组比较,血清TG、CHO均明显降低(p<0.01);密蒙花方中、高剂量组间比较无统计学意义(p>0.05),均较昊畅组及密蒙花方低剂量组进一步降低(p<0.05)。
     6.胰腺形态学变化:DM模型组大鼠见典型的DM病理改变。密蒙花方中、高剂量组胰腺病理改变较DM模型组减轻。
     7.白内障:造模4月后,与正常对照组比较,其它5组均发生不同程度的白内障(p<0.05)。密蒙花方中剂量组大鼠白内障程度较DM模型组明显减轻,差异具有统计学意义(p<0.05)。
     8.视网膜形态学变化:DM模型组视网膜各层出现典型的DM病理学改变,密蒙花方中剂量组视网膜病理学改变较DM模型组减轻。
     9.免疫组化检测结果显示:DM模型组大鼠视网膜ICAM-1、E-selectin表达较正常组明显增多(p<0.01);昊畅组及各密蒙花方组ICAM-1、E-selectin表达均较模型组有不同程度的减少,差异具有统计学意义(p<0.01)。与昊畅组比较,密蒙花方中剂量组ICAM-1、E-selectin表达降低,差异具有统计学意义。
     10.视网膜血管消化铺片PAS染色形态学观察:DM模型组视网膜毛细血管出现典型的病理学改变,密蒙花方中剂量组视网膜毛细血管病理学改变较DM模型组减轻。
     11.RT-PCR检测结果显示:①DM模型组VEGFmRNA、Flk-1/KDRmRNA表达较正常对照组升高(p<0.01),Flt-1mRNA表达与正常对照组比较无统计学差异;②昊畅组VEGF mRNA、Flk-1/KDR mRNA表达较DM模型组降低,差异具有统计学意义(p<0.05),Flt-1 mRNA表达与DM模型组比较无统计学意义。③各密蒙花方组VEGFmRNA、Flk-1/KDR mRNA表达较DM模型组降低(p<0.01),中、高剂量密蒙花方组Flt-1mRNA表达较DM模型组升高(p<0.01),中、高剂量组间比较,差异无统计学意义。
     12.Western blot检测结果显示:①DM模型组VEGF、Flk-1/KDR磷酸化水平较正常对照组升高,Flt-1磷酸化水平较正常对照组降低。②与DM模型组相比,昊畅组及各密蒙花方组VEGF、Flk-1/KDR磷酸化水平降低,Flt-1磷酸化水平升高。③密蒙花方组间比较,随着密蒙花方浓度的增高,VEGF、Flk-1/KDR蛋白磷酸化水平逐渐降低,Flt-1蛋白磷酸化水平逐渐增高。
     二、体外细胞培养研究:
     HUVEC贴壁生长,呈铺路石状镶嵌排列。缺氧组细胞增殖旺盛,排列紧密。密蒙花方组细胞生长迟缓,细胞间隙增大,可见漂浮死细胞。
     1.WST-8法检测显示:①缺氧组较正常组吸光度值增高,具有统计学意义(p<0.01);②各密蒙花方组吸光度值较缺氧组降低(p<0.01),并且呈浓度依赖关系(p<0.01),以密蒙花方高浓度组吸光度值最低。
     2.FCM检测细胞周期结果显示:①缺氧组较正常组G_0/G_1期细胞比例减少,S期细胞比例增高,差异具有统计学意义(p<0.01);②各密蒙花方组均较缺氧组G_0/G_1期细胞比例增高,S期细胞比例减少(p<0.01),组间具有浓度依赖关系(p<0.01);③密蒙花方组在G_0/G_1期前还出现了指示细胞凋亡的亚G_1期凋亡峰,表明密蒙花方对缺氧状态下的HUVEC具有促凋亡作用。
     3.FCM检测细胞内PCNA结果显示:①缺氧组细胞核内PCNA蛋白表达率比正常组显著增高(p<0.01);②各密蒙花方组细胞核内PCNA蛋白表达率比缺氧组显著降低(p<0.01);③HUVEC核内PCNA蛋白表达率随密蒙花方浓度增加而降低,呈明显的浓度依赖关系(p<0.01)。
     4.RT-PCR检测结果显示:①缺氧组VEGFmRNA、Flk-1/KDRmRNA表达较正常组升高(p<0.01),Flt-1mRNA表达较正常组降低(p<0.01);②密蒙花方组VEGFmRNA、Flk-1/KDR mRNA表达均较缺氧组降低,Flt-1mRNA表达较缺氧组增高,差异具有统计学意义(p<0.01)。③各密蒙花方组间比较,随着密蒙花方浓度的增高,VEGFmRNA、Flk-1/KDRmRNA表达逐渐降低,Flt-1mRNA表达逐渐增高。
     5.Western blot检测结果显示:①缺氧组VEGF、Flk-1/KDR蛋白磷酸化水平较正常组升高,Flt-1蛋白磷酸化水平较正常组降低。②与缺氧组比较,各密蒙花方组VEGF、Flk-1/KDR磷酸化水平降低,Flt-1磷酸化水平升高。
     6.免疫组化检测结果显示:①缺氧组细胞间质ICAM-1、E-selectin、vWF表达较正常组增高(p<0.01):②各密蒙花方组ICAM-1、E-selectin、vWF表达较缺氧组降低(p<0.01)。③密蒙花方组间比较,密蒙花方高浓度组较低浓度组ICAM-1、E-selectin蛋白表达降低,具有统计学意义(p<0.01),密蒙花方各组间vWF差异无统计学意义(p>0.05)。
     结论
     一、体内动物实验研究:
     1.STZ诱导的DM大鼠是一种相对简单易行、可靠的模型制备方法。
     2.密蒙花方能够改善STZ性DM大鼠的一般状况,在一定程度上降低血糖、血脂、血液流变学水平,延缓白内障的发生。
     3.密蒙花方中剂量能在一定程度上减轻STZ性DM大鼠视网膜及视网膜毛细血管的病理改变。
     4.密蒙花方改善大鼠视网膜及视网膜毛细血管病理改变的作用与减少视网膜ICAM-1、E-selectin表达有关。
     5.密蒙花方改善大鼠视网膜及视网膜毛细血管病理改变的作用与下调视网膜内VEGF、Flk-1/KDRmRNA及蛋白磷酸化水平,上调视网膜内Flt-1 mRNA及蛋白磷酸化水平,干预VEGF-VEGFR信号转导通路有关。
     二、体外细胞培养研究:
     1.密蒙花方可有效抑制缺氧状态下HUVEC增殖。
     2.密蒙花方抑制HUVEC增殖的作用与阻滞细胞由G_1期进入S期,促进细胞凋亡有关。
     3.密蒙花方抑制HUVEC增殖与降低细胞核内PCNA蛋白表达,使DNA合成受阻有关。
     4.下调细胞内VEGF、Flk-1/KDR mRNA及蛋白磷酸化水平,上调细胞内Flt-1 mRNA及蛋白磷酸化水平,干预细胞内VEGF-VEGFR信号转导通路,是密蒙花方抑制缺氧状态下HUVEC增殖的作用机制之一。
     5.密蒙花方可通过减少HUVEC细胞间质ICAM-1、E-selectin、vWF表达以减少细胞损伤,改善细胞功能。
Objective:
     To investigate the inhibition effect of Mimeng Flower decoction on the proliferation of Human Umbilical Vascular Endothelial Cell(HUVEC) induced by chronic hypoxia and to study the effect of Mimeng Flower decoction to diabetic retinopathy of rat,and further to study their mechanism of signal transduction,in order to provide experimental basis for Mimeng Flower decoction used in clinic to preventing and curing diabetic retinophty(DR).
     Methods:
     Animal model study:Used diabetic rats induced by streptozocin(STZ) as animal model. Used calcium dobesilate as positive control medicine.Mimeng Flower decoction had three different concentration which were low dosage,median dosage and high dosage.The following studies were made when the animals were administered for 4 months.
     1.To observe the general status of diabetic rats induced by STZ,such as food,urinary produc-tion,weight,et al.
     2.To test the blood item of diabetic rats induced by STZ,such as blood glucose, glycosylated hemoglobin(GHb),the whole blood viscosity,plasma viscosity, Triglyceride(TG),Cholestrerol(CHO)and so on.
     3.Pathological changes of pancreases of diabetic rats were observed with hematoxylin and eosin(HE) stained method.
     4.Opacity degree of lens of diabetic rats were observed with slip lamp and photo analyzed system.
     5.Pathological changes of retinals in diabetic rats were observed with hematoxylin and eosin(HE) stained method.
     6.Through immunohistochemistry method to detect the protein expression of ICAM-1、E-selectin in retinal of diabetic rats induced by STZ.
     7.The pathological changes of retinal capillary vessels were observed in stretched preparation of retinal vessels digested stained with periodic acid-Schiff(PAS).
     8.Through RT-PCR method to detect the expression of VEGFmRNA、Flt-1mRNA、Flk-1/KDRmRNA in retinal of diabetic rats induced by STZ.
     9.Through Western blot method to detect the phosphorylation level of VEGF、Flt-1、Flk-1/KDR in retinal of diabetic rats induced by STZ.
     Cell culture in vitro study:HUVEC were cultured in vitro.Used 100μmol/L Cocl_2 to set up the cell chemistry hypoxia model,in the same time,10、20、40mg/ml Mimeng Flower decoction extract were added to the HUVEC separately,the following studies were made after 24h incubation.
     1.Through WST-8 method to check up the inhibition effect of Mimeng Flower decoction on the proliferation of HUVEC induced by chronic hypoxia.
     2.The changes of cell cycle and proliferating cell nuclear antigen(PCNA) expression of HUVEC regulated by Mimeng Flower decoction were measured with flow cytometry (FCM).
     3.Through RT-PCR method to detect the expression of VEGFmRNA、Flt-1mRNA、Flk-1/KDRmRNA in HUVEC regulated by Mimeng Flower decoction.
     4.Through Western blot method to detect the phosphorylation level of VEGF、Flt-1、Flk-1/KDR in HUVEC regulated by Mimeng Flower decoction.
     5.Through immunohistochemistry method to detect the protein expression of ICAM-1、E-selectin、vWF regulated by Mimeng Flower decoction.
     Results
     Animal model study(after 4 months):
     1.General status:STZ induced diabetic rats had lasting and stable hyperglycaemia, displayingwith the obvious signs of "polydipsia,polyphagia,hyperdiuresis and loss of weight".Median dosage of Mimeng Flower decoction can increase the body weight of rats compared with DM model group(p<0.05).
     2.Blood glucose:Compared with normal group,the blood glucose of the rats increased mark-edly in DM model group(p<0.01).Compared with model group,the blood glucose of the rats reduced in median and high dosage group after taking 4 month's medicine.
     3.GHb:Compared with normal group,GHb of the rats increased markedly in DM model group(p<0.01).Compared with model group,GHb of the rats reduced in median and high dosage group(p<0.01).
     4.Blood rheology:Compared with normal group,the whole blood viscosity and plasma viscosity of the rats increased markedly in DM model group(p<0.01).Compared with model group,the whole blood viscosity and plasma viscosity of the rats reduced in median and high dosage group and Haochang group(p<0.01).There was no remarkable difference between median,high dosage and Haochang group(p>0.05).The whole blood viscosity reduced in low dosage group compared with model group(p<0.01) while increased compared with Haochang group(p<0.05).There was no remarkable difference in plasma viscosity between low dosage group and Haochang group(p>0.05).
     5.Serum lipoids:Compared with normal group,TG and CHO of the rats increased markedly in DM model group(p<0.01).Compared with model group,CHO reduced in Haochang group(p<0.01) while there was no difference between model and Haochang group(p>0.05).Compared with model group,TG and CHO reduced in Mimeng Flower groups (p<0.01).There was no difference between median and high dosage group(p>0.05). TG and CHO reduced in median and high dosage group compared with low dosage and Haochang group(p<0.05).
     6.Pancreas:Remarkable pathological changes of pancreases of diabetic rats were found in DM model group.In median and high dosage group,the pathological changes of pancreases of diabetic rats reduced.
     7.Cataract:4 months after making model,compared with normalgroup,remarkable opacity of lens were observed in another five groups(p<0.05),compared with model group,the degree of cataract relieved remarkablely in median dosage group(p<0.05).
     8.Retinal:Remarkable pathological changes of retinal of diabetic rats were found in DM model group.In median dosage group,the pathological changes of retinal of diabetic rats reduced.
     9.The result of immunohistochemistry test show that the expression of ICAM-1、E-selectin in retinal increased in DM model group compared with blank group(p<0.01).Mimeng Flower decoction groups and Haochang group could down regulate the expression of ICAM-1、E-selectin compared with model group(p<0.01).In median dosage group the expression of ICAM-1、E-selectin reduced compared with Haochang group.
     10.The result of PAS stained show that remarkable pathological changes of retinal capillary vessels of diabetic rats were found in DM model group.In median dosage group,the pathological changes of retinal capillary vessels of diabetic rats reduced.
     11.The result of RT-PCR test show that the expression of VEGFmRNA、Flk-1/KDRmRNA increased in DM model group compared with normal group(p<0.01).Mimeng Flower decoction groups could down regulate the expression of VEGFmRNA、Flk-1/KDRmRNA and up regulate the expression of Flt-1 mRNA compared with model group.
     12.The result of Western-blot test show that the phosphorylation level of VEGF、Flk-1/KDR increased while Flt-1 reduced in DM model group compared with normal group.Mimeng Flower decoction groups and Haochang group could down regulate the phosphorylation level of VEGF、Flk-1/KDR and up regulate the phosphorylation level of Flt-1 compared with DM model group and these effects were dose dependent.
     Cell culture in vitro study:Cells grew more rapidly in hypoxia group than in Mimeng Flower decoction groups.
     1.The results of WST-8 test show that the hypoxia group can increase the optical density (OD) values compared with blank group(p<0.01);Mimeng Flower decoction groups can reduce the OD values obviously compared with hypoxia group(p<0.01) and these effects were dose dependent;The high dose of Mimeng Flower decoction group's OD values were the lowest.
     2.The results of FCM test show that cells in G_0/G_1 phase reduced while cells in S phase increased in hypoxia group compared with blank group(p<0.01).In Mimeng Flower decoction groups,cells in G_0/G_1 phase increased while cells in S phase reduced compared with hypoxia group(p<0.01) and these effects were dose dependent.Further more, Mimeng Flower decoction can induce HUVEC apoptosis.
     3.The results of FCM test show that the expession of PCNA increased in hypoxia group compared with blank group(p<0.01).Mimeng Flower decoction could down regulate the expression of PCNA significantly compared with hypoxia group and expression of PCNA showed dose-dependent in Mimeng Flower decoction groups(p<0.01).
     4.The results of RT-PCR test show that the expression of VEGFmRNA、Flk-1/KDRmRNA increased while Flt-1mRNA reduced in hypoxia group compared with blank group(p<0.01).Mimeng Flower decoction could down regulate the expression of VEGFmRNA、Flk-1/KDRmRNA and up regulate the expression of Flt-1mRNA compared with hypoxia group(p<0.01) and these effects were dose dependent.
     5.The results of Western-blot test show that the phosphorylation level of VEGF、Flk-1/KDR increased while Flt-1 reduced in hypoxia group compared with blank group.Mimeng Flower decoction could down regulate the phosphorylation level of VEGF、Flk-1/KDR and up regulate the phosphorylation level of Flt-1 compared with hypoxia group.
     6.The results of immunohistochemistry test show that the expression of ICAM-1、E-selectin、vWF increased in hypoxia group compared with blank group(p<0.01). Mimeng Flower decoction could down regulate the expression of ICAM-1、E-selectin、vWF compared with hypoxia group(p<0.01) and the expression of ICAM-1、E-selectin reduced in high dose compared with low dose group(p<0.01).
     Conclusion
     Animal model study:
     1.STZ induced diabetic rat is a simple,easy and reliable animal model.
     2.Mimeng Flower decoction has the function of improving the general status,reducing the level of blood glucose,GHb,Blood rheology and Serum lipoids and inhibiting the development of cataract of DM rats induced by STZ to a certain.
     3.Median dosage of Mimeng Flower decoction can reduce the the pathological changes of retinal and retinal capillary vessels in diabetic rats to a certain.
     4.The effect of improving the pathological changes of retinal and retinal capillary vessels may be contributed to downregulating ICAM-1、E-selectin expression in retinal.
     5.Downregulating the protein phosphorylation level and mRNA expression of VEGF、Flk-1/KDR mRNA and upregulating the protein phosphorylation level and mRNA expression of Flt-1 mRNA may play a significant role in improving the pathological changes of retinal and retinal capillary vessels of DM rats.
     Cell culture in vitro study:
     1.Mimeng Flower decoction can markly inhibit the HUVEC proliferation in hypoxia state.
     2.The effect of inhibiting proliferation by Mimeng Flower decoction may be contributed to inducing G_1/S transition arrest and increasing the apoptosis of HUVEC.
     3.The effect of inhibiting proliferation by Mimeng Flower decoction may be contributed to downregulating PCNA expression and hindering the DNA synthesis of HUVEC.
     4.Downregulating the protein phosphorylation level and mRNA expression of VEGF、Flk-1/KDR mRNA and upregulating the protein phosphorylation level and mRNA expression of Flt-1 mRNA may play a significant role in inhibiting proliferation of HUVEC by Mimeng Flower decoction.
     5.Mimeng Flower decoction can improve the cells' function by reducing the expression of ICAM-1、E-selectin、vWF in HUVEC.
引文
1.Gilbert RE,Vranes D,Berka JL,Lab Invest.Vascular endothelial growth factor and its receptors in control and diabetic rat eyes.1998 Aug;78(8):1017-1027.
    2.Qaum T,Xu Q,Joussen AM,et al.VEGF-initiated blood-retinal barrier breakdown in early diabetes.Invest Ophthalmol Vis Sci.2001 Sep;42(10):2408-2413.
    3.Tolentino MJ,McLeod DS,Taomoto M,et al.Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate.Am J Ophthalmol.2002Mar;133(3):373-385.
    4.Wu Y,Zhang Q,Ann DK,et al.Increased vascular endothelial growth factor may account for elevated level of plasminogen activator inhibitor-1 via activating ERK1/2 in keloid fibroblasts.Am J Physiol Cell Physiol.2004 Apr;286(4):C905-912.
    5.Joussen AM,Poulaki V,Qin W,et al.Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo.Am J Pathol.2002Feb;160(2):501-509.
    6.Sone H,Deo BK,Kumagai AK.Enhancement of glucose trantsport by vascular endothelial growth factor in retinal endothelial cells.Invest Ophthalmol Vis Sci,2000,41(7):1876-1884.
    7.Sone H,Kawakami Y,Okuda Y,Sekine Y,et al.Ocular vascular endothelial growth factor levels in diabetic rats are elevated before observable retinal proliferative changes.Diabetologia.1997 Jun;40(6):726-730.
    8.Alikacem N,Yoshizawa T,Nelson KD,et al.Quantitative MR imaging study of intravitreal sustained release of VEGF in rabbits.Invest Ophthalmol Vis Sci.2000 May;41(6):1561-1569.
    9. Qaum T, Xu Q, Joussen AM,et al.VEGF-initiated blood-retinal barrier breakdown in early diabetes.Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2408-2413.
    10. Adamis AP, Miller JW, Bernal MT, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy.Am J Ophthalmol. 1994 Oct 15;118(4):445-450.
    11. Malecaze F, Clamens S, Simorre-Pinatel V, et al.Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy.Arch Ophthalmol. 1994 Nov; 112(11): 1476-1482.
    12. Lip PL, Belgore F, Blann AD, Hope-Ross MW, et al. Plasma VEGF and soluble VEGF receptor FLT-1 in proliferative retinopathy: relationship to endothelial dysfunction and laser treatment.Invest Ophthalmol Vis Sci. 2000 Jul;41(8):2115-2119.
    13. Funatsu H, Yamashita H, Nakanishi Y, Hori S.Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy.Br J Ophthalmol. 2002 Mar;86(3):311-315.
    14. Okamoto T, Yamagishi S, Inagaki Y, et al.Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin.FASEB J. 2002 Dec;16(14):1928-1930.
    15. Polak BC, Reichert-Thoen JW, de Vries-Knoppert WA, et al. Angiotensin converting enzyme inhibiting therapy is associated with lower vitreous vascular endothelial growth factor concentrations in patients with proliferative diabetic retinopathy.Diabetologia. 2002 Feb;45(2):203-209.
    16. Zhang X, Lassila M, Cooper ME, Cao Z. Retinal expression of vascular endothelial growth factor is mediated by angiotensin type 1 and type 2 receptors. Hypertension. 2004 Feb;43(2):276-281.
    17. Obrosova IG, Minchenko AG, Marinescu V, et al. Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabetic rats. Diabetologia. 2001 Sep;44(9):1102-1110.
    18. Obrosova IG, Minchenko AG, Vasupuram R, et al. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats.Diabetes. 2003 Mar;52(3):864-871.
    19. Nomura M, Yamagishi S, Harada S, et al. Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem. 1995 Nov 24;270(47):28316-28324.
    20. Robinson GS, Pierce EA, Rook SL,et al. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4851-4856.
    21. Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis. 2003 May 30;9: 210-216.
    22. Cohen AF,Van Bronswigk H. New medications:bevacizumab.Ned Tijdschr Geneeskd. 2006:13(5):473-475.
    23. Sone H, Kawakami Y, Segawa T, et al. Effects of intraocular or systemic administration of neutralizing antibody against vascular endothelial growth factor on the murine experimental model of retinopathy.Life Sci. 1999;65(24):2573-2580.
    24. Binetruy-Tournaire R, Demangel C, Malavaud B, et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J. 2000 Apr 3;19(7):1525-1533.
    25. Ueda Y, Yamagishi T, Samata K, et al. A novel low molecular weight antagonist of vascular endothelial growth factor receptor binding: VGA1155. Mol Cancer Ther. 2003 Nov;2(11):1105-1111.
    26. Roeckl W, Hecht D, Sztajer H, et al. Differential binding characteristics and cellular inhibition by soluble VEGF receptors 1 and 2. Exp Cell Res. 1998 May 25;241(1):161-170.
    27. Gehlbach P, Demetriades AM, Yamamoto S, et al. Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and vascular endothelial growth factor-induced breakdown of the blood-retinal barrier.Hum Gene Ther. 2003 Jan 20; 14(2): 129-141.
    28. Bainbridge JW, Mistry A, De Alwis M, et al. Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Ther. 2002 Mar;9(5):320-326.
    29. Aiello LP, Pierce EA, Foley ED, et al.Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins.Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10457-10461.
    30. Woolard J, Wang WY, Bevan HS, et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004 Nov l;64(21):7822-7835.
    31. Ozaki H, Seo MS, Ozaki K, et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol. 2000 Feb;156(2):697-707.
    32. Aiello LP, George DJ, Cahill MT, et al. Rapid and durable recovery of visual function in a patient with von hippel-lindau syndrome after systemic therapy with vascular endothelial growth factor receptor inhibitor su5416.Ophthalmology. 2002 Sep;109(9):1745-1751.
    33. McLeod DS, Taomoto M, Cao J, et al. Lutty GA.Localization of VEGF receptor-2 (KDR/Flk-1) and effects of blocking it in oxygen-induced retinopathy.Invest Ophthalmol Vis Sci. 2002 Feb;43(2):474-482.
    34. Avery RL, Pearlman J, Pieramici DJ, et al. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology. 2006 Oct;113(10): 1695.
    35. Kernt M, Neubauer AS, Kampik A.Intravitreal bevacizumab (Avastin) treatment is safe in terms of intraocular and blood pressure.Acta Ophthalmol Scand. 2007 Feb;85(1): 119-120.
    36. Weigert G, Michels S, Sacu S, Intravitreal bevacizumab (Avastin) therapy versus photodynamic therapy plus intravitreal triamcinolone for neovascular age-related macular degeneration: 6-month RESULTS of a prospective, randomised, controlled clinical study. Br J Ophthalmol. 2008 Mar; 92(3): 356-360.
    37. Haritoglou C, Kook D, Neubauer A, et al. Intravitreal bevacizumab (Avastin) therapy for persistent diffuse diabetic macular edema.Retina. 2006 Nov-Dec;26(9):999-1005.
    38. Shimura M, Nakazawa T, Yasuda K, Comparative Therapy Evaluation of Intravitreal Bevacizumab and Triamcinolone Acetonide on Persistent Diffuse Diabetic Macular Edema. Am J Ophthalmol. 2008 Mar 5.
    39. Mirshahi A, Roohipoor R, Lashay A, et al. Bevacizumab-augmented retinal laser photocoagulation in proliferative diabetic retinopathy: A randomized double-masked clinical trial. Eur J Ophthalmol. 2008 Mar-Apr;18(2):263-269.
    40. Rizzo S, Genovesi-Ebert F, Di Bartolo E, et al. Injection of intravitreal bevacizumab (Avastin) as a preoperative adjunct before vitrectomy surgery in the treatment of severe proliferative diabetic retinopathy (PDR).Graefes Arch Clin Exp Ophthalmol. 2008 Feb 20.
    41. Fung AE, Rosenfeld PJ, Reichel E.The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide.Br J Ophthalmol. 2006 Nov;90(11): 1344-1349.
    42. Simo R, Hernandez C. Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy. Diabetologia. 2008 Apr 11.
    43. Wu L, Martinez-Castellanos MA, Quiroz-Mercado H Twelve-month safety of intravitreal injections of bevacizumab (Avastin(R)): RESULTS of the Pan-American Collaborative Retina Study Group (PACORES). Graefes Arch Clin Exp Ophthalmol. 2008 Jan; 246(1): 81-87.
    1.张伯臾.中医内科学.上海:上海科学技术出版社,1985.249-250.
    2.接传红,高健生.眼底血证辨证论治思路探讨,山东中医药大学学报.2002,26,(4):258.
    3.罗旭昇,高健生,于航.糖尿病视网膜病变病机和证候研究概况.中华现代眼科学杂志,2004,1(1):32-34.
    4.高健生,接传红,罗旭昇等交泰丸合密蒙花辨证治疗早期糖尿病视网膜病变的新思路.世界中医药.2007.5(3)143-144.
    5.史宇广,单书健,主编.当代名医临证精华·消渴专辑.北京:中医古籍出版社,1992.
    6.Khan A,Safdar M,Ali Khan MM,et al.Cinnamon improves glucose and lipids of people with type 2 diabetes.Diabetes Care,2003,26(12):3215-3218.
    7.中药材肉桂防治糖尿病.中国中医药信息杂志,2001,8(2):77.
    8.罗旭昇,高健生,潘琳.交泰丸对链脲佐菌素性糖尿病大鼠视网膜血管病理改变的作用.中国中医眼科杂志,2007.1
    9.黄泰康主编.常用中药成分与药理手册.北京:中国医药科技出版社,1994,1647
    10.接传红,高健生.糖尿病性视网膜病变相关因素的研究现状.中国中医眼科杂志. 1996;6(4):246-24819.
    11.接传红,高健生.中药血清对体外培养脐静脉内皮细胞增殖的影响.中国中医眼科杂志,2004,14(4):214-216.
    12.接传红,高健生.中药密蒙花抗EC细胞增生作用的研究.眼科,2004,13(6):348-350.17.
    1.Martin Silink.Unite for diabetes:the campaign for a UN Resolutin.Diabetes Voice,2006,June;51(2):27-30.
    2.World Health Organization prevention of Blindness from Diabetes Mellitus:Report of a WHO consultation in Geneva,Switzerland,9-11.November 2005.Witzerland.2006:1.
    3.Resnikoff S,Pascolini D,Etya'ale D,et al.Global data on visual impairment in the year 2002.Bull World Health Organ.2004,82(11):844-851.
    4.Amano S,Yamagishi S,Kato N,et al.Sorbitol dehydrogenase overexpression potentiates glucose toxicity tocultured retinal pericytes.Biochem Biophys Res Commun.2002Nov29;299(2):183-188.
    5.杨培增,陈家祺,葛坚等.眼科学基础与临床.第一版.北京.人民卫生出版社.2006,800-804.
    6.Qaum T,Xu Q,Joussen AM,et al.VEGF-initiated blood-retinal barrier breakdown in early diabetes.Invest Ophthalmol Vis Sci.2001;42(10):2408-2413.
    7.Duh E,Aiello LP.Vascular endothelial growth factor and diabetes:the agonist versus antagonist paradox.Diabetes.1999 Oct;48(10):1899-1906.
    8.Aiello LP,Wong JS.Role of vascular endothelial growth factor in diabetic vascular compli- cations.Kidney Int Suppl.2000 Sep;77:S113-119.
    9.Ferrara N,Gerber HP,LeCouter J.The biology of VEGF and its receptors.Nat Med.2003;9(6):669-676.
    10.Caldwell RB,Bartoli M,Behzadian MA,et al.Vascular endothelial growth factor and diabetic retinopathy:pathophysiological mechanisms and treatment perspectives.Diabetes Metab Res Rev.2003;19(6):442-445.
    11.袁佳琴,林少明.21世纪眼科学前沿.天津:天津科学技术出版社;2001:993-1000.
    12.LimbG A.Vascular adhesion molecules in vitreous from eyes with proliferative diabetic reti- nopathy.Invest Ophthalmol Vis Sci,1999,40(10):2453-2457.
    13.Yang XD,Sara AM,Retina EM,et al.The role of cell adhesion molecules in the development of IDDM.Diabetes,1996,45:705-710.
    14.吴其夏,余应年,卢建.新编病理生理学.北京:中国协和医科大学出版社,1999,89,97-98.
    15.Blann AD,Lip GY.Cell adhesion molecules in caraiovascular disease and its risk factor-what can soluble levels tell us?J Clin Endocrinol Metab.2000;85(5):1745-1747.
    16.沈文红,沈蕾.2型糖尿病患者血浆NO,vWF和DD水平的变化及临床意义.苏州大学学报.2004,21(4):58-59.
    17.张伯臾.中医内科学.上海:上海科学技术出版社,1985.249-250.
    18.接传红,高健生.眼底血证辨证论治思路探讨,山东中医药大学学报.2002,26,(4):258.
    19.高健生,接传红,罗旭昇等交泰丸合密蒙花辨证治疗早期糖尿病视网膜病变的新思路.世界中医药.2007.5(3)143-144.
    20.史宇广,单书健,主编.当代名医临证精华·消渴专辑.北京:中医古籍出版社,1992.
    21.Khan A,Safdar M,Ali Khan MM,et al.Cinnamon improves glucose and lipids of people with type 2 diabetes.Diabetes Care,2003,26(12):3215-3218.
    22.中药材肉桂防治糖尿病.中国中医药信息杂志,2001,8(2):77.
    23.韩澎,崔亚君等.密蒙花化学成份及其活性研究.中草药.2004,35(10):1086.
    24.接传红,高健生.糖尿病性视网膜病变相关因素的研究现状.中国中医眼科杂志.1996;6(4):246-24819.
    25.接传红,高健生.中药血清对体外培养脐静脉内皮细胞增殖的影响.中国中医眼科杂志,2004,14(4):214-216.
    26.接传红,高健生.中药密蒙花抗EC细胞增生作用的研究.眼科,2004,13(6):348-350.17.
    27.Lorenzi M,Gerhardinger C.Early cellular and molecular changes induced by diabetes in the retina.Diabetologia.2001 Jul;44(7):791-804.
    28.Thompson CS.Animal models of diabetes mellitus:relevance to vascular complications.Curr Pharm Des.2008;14(4):309-324.
    29.Kern TS.Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy.Exp Diabetes Res.2007;2007:95-103.
    30.Engerman RL KT.Retinopathy in animal models of diabetes.Diabetes/Metabolism.1995,11:109-120.
    31.廖蓉,谭毅,王鸿稚.糖尿病研究与动物模型.实动物科学与管理验.2001,18:36-42.
    32.孙素馨,王宏,孙晓芹.羟苯磺酸钙的药理及临床应用.中国医院药学杂志,2003,23(2):100-101.
    33.Sakai M,Sakamoto Y,Hariuchi S.The mechanisms of the development and progression of diabetic macrovascular complications.Clin Calicium 2003;13(9):1143-1148.
    34.Schmid-Schonbein GW.The damaging potential of leukocyte activation in the microcirculation.Angiology.1993 Jan;44(1):45-56.
    35.Mackay CR,Imhof BA.Cell adhesion in the immune system.Immunol Today.1993Mar;14(3):99-102
    36.McLeod DS,Lefer D J,Merges C,et al.Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid.Am J Pathol.1995Sep;147(3):642-653
    37.Joussen AM,Poulaki V,Le ML,A central role for inflammation in the pathogenesis of diabetic retinopathy.FASEB J.2004 Sep;18(12):1450-1452.
    38.Joussen AM,Poulaki V,Qin W,Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo.Am J Pathol.2002Feb;160(2):501-509.
    39.Haidari M,Javadi E,Sadeghi B,Evaluation of C-reactive protein,a sensitive marker of infla- mmation,as a risk factor for stable coronary artery disease.Clin Biochem.2001Jun;34(4):309-315.
    40.成军.细胞外基质的分子生物学与临床疾病.北京:北京医科大学出版社,1999,1-6.
    41.Nomura S,Shouzu A,Omoto S,et al.Significance of chemokines and activated platelets in patients with diabetes.Clin Exp Immunol.2000 Sep;121(3):437-443.
    42.Fasching P,Veitl M,Rohac M,Elevated concentrations of circulating adhesion molecules and their association with microvascular complications in insulin-dependent diabetes mellitus.J Clin Endocrinol Metab.1996 Dec;81(12):4313-4317.
    43.Murata T,Nakagawa K,Khalil A,et al.The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas.Lab Invest.1996 Apr;74(4):819-825.
    44.Sueishi K,Hata Y,Murata T,et al.Endothelial and glial cell interaction in diabetic retinopathy via the function of vascular endothelial growth factor(VEGF).Pol J Pharmacol.1996 May-Jun;(3):307-316.
    45.Murata T,Ishibashi T,Khalil A,et al.Vascular endothelial growth factor plays a role in hyper- permeability of diabetic retinal vessels.Ophthalmic Res.1995;27(1):48-52.
    46.Clermont AC,Aiello LP,Moil F,et al.Vascular endothelial growth factor and severity of nonproliferative diabetic retinopathy mediate retinal hemodynamics in vivo:a potential role for vascular endothelial growth factor in the progression of nonproliferative diabetic retinopathy.Am J Ophthalmol.1997 Oct;124(4):433-446.
    47.Aiello LP,Bursell SE,Clermont A,et al.Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor.Diabetes.1997 Sep;46(9):1473-1480.
    48.张惠荣.视网膜病临床和基础研究.山西科学技术出版社.1995.
    49.邹颖,王斌,袁志兰等.金雀异黄素对氯化钴诱导的兔视网膜色素上皮细胞血管内皮生长因子表达的影响.南京医科大学学报,2003,23(2):142-145.
    50.Hudson CC,Liu M,Chiang CC,et al.Regulation of hypoxia-inducible factor lalpha expression and function by the mammalian target of rapamycin.Mol Cell Biol 2002,22:7004-7014.
    51.王金发.细胞生物学.科学出版社.2003年8月第1次出版.508-511.
    52.Celis JE,Celis A.Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells:subdivision of S phase.Proc Natl Acad Sci,1985,82:3262-3266.
    53.Kuroki M,Kawakami M,Diabetic retinopathy themechinisms of the ocular nevascularization and development of antiangiogemic drugs.Nippon Rinsho,1999;57:584-589.
    54.Ferrara N,Henzel WJ.Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells.Cancer,1996,77:858-208.
    55.Funatsu H,Yamashita H,Nakanishi Y,Hori S.Angiotensin Ⅱ and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy.Br J Ophthalmol 2002;86(3):311-315.
    56.Roeckl W,Hecht D,Sztajer H,et al.Differential binding characteristics and cellular inhibtion by soluble VEGF receptors 1 and 2.Exp Cell Res 1998;241(1):161-170.
    57.WaltenbergerJ,Mayr U,Pentz S,et al.Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia.Circulation.1996;94:1647-1654.
    58.Brogi E,Schatteman G,Wu T,et al.Hypoxia-induced paracrine of vascular endothelial growth factor receptor expression.J Clin Invest.1996;97(2):469-476.
    59.Ottino P,Finlcy J,Rojo E,et al.Hypoxia activates matrix metalloproteinase expression and the VEGF system in monkey choroid-retinal endothelial cells:Involvement of cytosolic phospholipase A2 activity.Mol Vis.2004;10:341-350.
    60.Gogat K,Le Gat L,Van Den Berghe L,et al.VEGF and KDR gene expression during human embryonic and fetal eye development.Invest Ophthalmol Vis Sci.2004; 45(1):7-14.
    61.Thakker GD,Hajjar DP,Muller WA,et al.The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling.J Biol Chem.1999;274:10002-10007.
    62.Ferrar N.Molecular and biological properties of vascular endothelial growth facor.J Mol Med.1999;77:527-543.
    63.Bhatt AJ,Amin SB,Chess P,Watkins RH,Maniscalco WM.Expression of vascular endothelial growth factor and flk-1 in developing and glucocorticoid-treated mouse lung.Pediatric Research.2000,47:606-613.
    64.Siemianowicz K,Francuz T,Gminski J,et al.Endothelium dysfunction markers in patients with diabetic retinopathy.Int J Mol Med,2005,15(3):459-462.
    65.刘景生.细胞信息与调控.第一版.北京.北京医科大学中国协和医科大学联合出版社.1998,176-206.
    66.Kado S,Nagata N.Circulating intercellular adhesion molecule-1,vascular cell adhesion molecule-1,and E-selectin in patients with type 2 diabetes mellitus.Diabetes Res Clin Pract.1999 Nov;46(2):143-148.
    67.Lopes AA,Maeda NY,Goncalves RC,et al.Endothelial cell dysfunction correlates differentially with survival in primary and secondary pulmonary hypertension.Am Heart J.2000 Apr;139(4):618-23.
    68.Lopes AA,Peranovich TM,Maeda NY,et al.Differential effects of enzymatic treatments on the storage and secretion of von Willebrand factor by human endothelial cells.Thromb Res.2001 Feb 15;101(4):291-297.