结构分析中的GPU并行快速多极边界元法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计是企业产品创新的源头,是制造业核心竞争力的关键所在。产品创新设计不仅要满足产品结构形状的需求,而且还要满足结构性能要求。当前,大量企业产品设计应用三维CAD软件进行几何建模,采用基于限元法的CAE软件进行结构性能分析,但CAD模型与CAE模型之间的模型转换、模型简化、网格剖分等前处理过程需耗费大量的时间,影响产品设计效率。为此,本文重点对边界元法和快速多极边界元法进行深入研究,提出一种GPU并行的快速多极边界元方法,并应用于产品结构性能分析。该方法能有效简化传统有限元分析前处理过程,提高产品设计效率,同时也为新一代产品设计CAD/CAE软件提供一种可行的集成化方法。论文主要研究工作如下:
     (1)对三维弹性力学问题的边界元法进行研究,包括边界积分方程建立、单元积分方法、角点问题处理、边界面应力计算及GMRES迭代求解算法等。针对角点处面力不连续问题,提出了一种边界条件相关的混合单元法,并利用三维模型BREP表达中角点拓扑关系实现了混合单元的自动生成。与现有混合单元角点处理算法相比,该方法仅在位移约束角点处采用非连续单元,有效减少非连续单元引起的附加自由度,降低结构分析问题求解规模。
     (2)对快速多极边界元法的算法原理进行研究,提出了一种节点单元双重信息自适应结构树的构建方法,实现了高阶边界单元积分的快速计算。基于该方法建立的双重信息快速多极边界元法可将边界元法的时间和空间复杂度由O(N2)降到O(N),且单元积分计算量仅为采用全局节点法和节点分片法的快速多极边界元法的三分之一。此外,将快速多极边界元法与给定边界条件结合,提出了一种适用于快速多极边界元法的刚体位移特解法,解决了1/r2奇异积分和自由项系数的求解问题。
     (3)针对快速多极边界元法中多极展开向局部展开系数传递(M2L)计算过程存在效率低的问题,本文对基于指数展开的新型快速多极边界元法进行探索,研究表明该方法在展开阶次较大时才能达到高的计算精度及显著的加速效果,且需额外增加存储。为此,本文进一步研究子层结点向父层结点越层传递的M2L优化改进方法,实验结果显示,越层传递M2L方法不需增加额外内存,且加速效果与展开阶次无关,有利于结构性能分析的快速计算。
     (4)充分利用边界单元及自适应结构树结点的固有并行特征,提出了一种基于CUDA架构的自适应快速多极边界元GPU并行算法,对快速多极边界元法中多极展开、多极展开系数传递、多极展开向局部展开系数传递、局部展开系数传递以及近场节点单元积分计算进行加速。实验结果表明,该算法不仅具有显著的加速效果,而且对不同形状的三维模型均具有良好的适应性,有效提高产品结构性能分析效率。
     最后,以上述理论研究为基础,对集成化CAD/CAE产品设计软件技术及系统架构进行研究,结合现有自主知识产权的三维参数化特征建模软件InterSolid,采用Visual C++集成开发环境,研制开发了集成化CAD/CAE设计分析原型系统软件。并以此为基础,针对不同形状、不同复杂程度的典型三维产品实例进行结构分析工程计算验证,实验结果表明,本文所提出的理论及算法具有计算效率高、求解规模大、适应性强等优势,具有良好的工程应用前景。
Design is the source of product innovation in enterprises and plays a key role in the corecompetitiveness of manufacturing industry. The innovative design of products not onlysatisfies the demands of structural shape, but also meets the requirements of structuralperformance. Nowadays, CAD and finite element method based CAE softwares are used ingeometrical modeling and structural performance analysis respectively in most productdesigns of enterprises, but it takes much time in the pre-processings between CAD modelsand CAE models such as model conversion, model simplification and mesh generation. Thuspre-processing simplification and CAD/CAE integration are of great importance to theimprovement of product design efficiency. In this dissertation, the boundary element method(BEM) and the fast multipole boundary element method (FMBEM) are intensively studied,and a GPU parallel adaptive FMBEM is presented and used in structural performance analysisof products. Such method can simplify the pre-processings and improve the efficiency ofproduct design, which provides an available method for CAD/CAE software integration. Themajor research works and contributions of this dissertation can be concluded as follows:
     (1) The BEM for3D elasticity problems has been studied in detail, including theestablishment of boundary integral equations, the element integral methods, the treatment ofcorner problem, the stress computing on boundary surfaces and generalized minimal residualmethod (GMRES) etc. In order to address the problem that tractions are discontinuous atcorners, a BEM with mixed boundary elements related to boundary conditions is proposedand the mixed boundary elements can be automatically generated according to the topologicalrelation of model’s BREP at corners. Comparing with other BEMs with mixed boundaryelements, our method distributes non-conforming elements only at the displacement-givencorners, which reduces the extra degrees of freedom introduced by the non-conformingelements and the solving scale of structure analysis.
     (2) The algorithm theory of the FMBEM is studied. Then a construction method of thedual-information adaptive tree containing both node and element information is presented,which can computes the integrals of high-order elements efficiently. Based on this method, the dual-information FMBEM can reduce the BEM’s complexities of both time and spacefrom O(N2) to O(N), and the computational complexity of element integrals is only one thirdof the FMBEM with the global node method or node patch method. Furthermore, a rigid bodymovement method for FMBEM is proposed by combining the FMBEM with given boundaryconditions, which is used to compute the1/r2singular integrals and the free-term coefficients.
     (3) For the purpose of improving the efficiency of the moment-to-local (M2L) translation,the new FMBEM based on the exponential-expansion is researched. The results show thatsuch method obtains high accuracy and remarkable acceleration only if the number ofexpansion terms is large, and increases the memory cost. Therefore, the child-to-parent M2Ltranslation optimization method is studied as an alternative. The examples show that thechild-to-parent M2L can accelerate all the expansion terms almost without memory increment,which is more suitable for structural performance analysis.
     (4) A CUDA based GPU parallel algorithm of the adaptive FMBEM is presentedaccording to the intrinsic parallelism of boundary elements and knots of the adaptive tree,which accelerates moment expansion, moment-to-moment translation, M2L translation,local-to-local translation and near field direct computing in the FMBEM. The experimentalexamples show that the parallel algorithm not only obviously accelerates the FMBEM butalso obtains load balancing for models with different shapes, which effectively improves theefficiency of structural performance analysis of products.
     Finally, on the basis of above proposed methods, the software technique and systemarchitecture of CAD/CAE integrated product design have been studied. The CAD/CAEintegrated prototype system software has been developed using Visual C++by combiningwith the3D modeling software InterSolid which owns proprietary intellectual property rights.Whereafter,3D engineering examples with different shapes and complexities are analyzed bythe software to verify their structures. The results show that the theories and algorithms in thisdissertation have advantages of high computing efficiency, large solving scale and strongadaptability, which have promising future in engineering.
引文
[1] Mun D, Han S, Kim J, et al. A set of standard modeling commands for the history-basedparametric approach. Computer-Aided Design,2003,35(13):1171-1179.
    [2] Choi GH, Mun D, Han S. Exchange of CAD part models based on the macro-parametricapproach. International Journal of CAD/CAM,2002,2(1):13-21.
    [3] Pellissetti MF, Schu ller GI. On general purpose software in structural reliability–Anoverview. Structural Safety,2006,28(1):3-16.
    [4] Moaveni S. Finite element analysis—theory and application with ANSYS. Delhi:Pearson Education India,2003.
    [5]石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社,2006.
    [6] MSC. MD/MSC Nastran2010Quick Reference Guide,2010.
    [7] Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: its basis andfundamentals. Oxford: Butterworth-Heinemann,2005.
    [8]王勖成.有限单元法.北京:清华大学出版社,2003.
    [9] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements,NURBS, exact geometry and mesh refinement. Computer Methods in AppliedMechanics and Engineering,2005,194(39):4135-4195.
    [10] Park HS, Dang XP. Structural optimization based on CAD-CAE integration andmetamodeling techniques. Computer-Aided Design,2010,42(10):889-902.
    [11]唐荣锡. CAD/CAM技术.北京:北京航空航天大学出版社,1994.
    [12] Bazilevs Y, Calo VM, Cottrell JA, et al. Isogeometric analysis using T-splines.Computer Methods in Applied Mechanics and Engineering,2010,199(5):229-263.
    [13] Brebbia CA, Telles JCF, Wrobel LC. Boundary element techniques: theory andapplications in engineering. Berlin and New York: Springer-Verlag,1984.
    [14] Banerjee PK. Boundary element methods in engineering science. London: McGraw-HillInc.,1981.
    [15] Wang L. Integration of CAD and boundary element analysis through subdivisionmethods. Computers&Industrial Engineering,2009,57(3):691-698.
    [16] Citarella R, Gerbino S. BE analysis of shaft–hub couplings with polygonal profiles.Journal of Materials Processing Technology,2001,109(1):30-37.
    [17]李善德,黄其柏,张潜.快速多极边界元方法在大规模声学问题中的应用.机械工程学报,2011,47(7):82-89.
    [18] Sutherland IE. Sketch pad a man-machine graphical communication system. In:Proceedings of the SHARE design automation workshop, Atlantic,1964.
    [19] Barnhill RE. A survey of the representation and design of surfaces. Computer Graphicsand Applications, IEEE,1983,3(7):9-16.
    [20] Blinn JF. A generalization of algebraic surface drawing. ACM Transactions on Graphics(TOG),1982,1(3):235-256.
    [21] Clark JH. Designing surfaces in3-D. Communications of the ACM,1976,19(8):454-460.
    [22] Requicha AAG, Voelcker HB. Solid Modeling: A Historical Summary andContemporary Assessment. IEEE COMP GRAPHICS&APPLIC,1982,2(2):9-24.
    [23] Requicha AAG, Voelcker HB. Solid modeling: Current status and research directions.Computer Graphics and Applications, IEEE,1983,3(7):25-37.
    [24] Boyse JW, Gilchrist JE. GMSolid-interactive modeling for design and analysis of solids.IEEE Computer Graphics and Applications,1982,2:27-30.
    [25]叶修梓,彭维,唐荣锡.国际CAD产业的发展历史回顾与几点经验教训.计算机辅助设计与图形学学报,2003,15(10):1185-1193.
    [26] Anderl R, Mendgen R. Parametric design and its impact on solid modeling applications.In: Proceedings of the third ACM symposium on Solid modeling and applications,1995.
    [27] Monedero J. Parametric design: a review and some experiences. Automation inConstruction,2000,9(4):369-377.
    [28] Bettig B, Hoffmann CM. Geometric Constraint Solving in Parametric Computer-AidedDesign. Journal of computing and information science in engineering,2011,11(2):1-9.
    [29] Kurland R. Solid Edge with synchronous technology changes solid modeling.2008.
    [30]张玉峰.特征造型技术在有限元分析建模中的应用研究:[博士学位论文].武汉:武汉大学,2004.
    [31]童秉枢.机械CAD技术基础.北京:清华大学出版社,2003.
    [32] Yang WZ, Xie SQ, Ai QS, et al. Recent development on product modelling: a review.International Journal of Production Research,2008,46(21):6055-6085.
    [33] Xu XW, He Q. Striving for a total integration of CAD, CAPP, CAM and CNC. Roboticsand Computer-Integrated Manufacturing,2004,20(2):101-109.
    [34] Zhou XH, Qiu YJ, Hua GR, et al. A feasible approach to the integration of CAD andCAPP. Computer-Aided Design,2007,39(4):324-338.
    [35] Courant R. Variational methods for the solution of problems of equilibrium andvibrations. Bulletin of the American Mathematical Society,1943,49:1-23.
    [36] Turner MJ, Clough RW, Martin H.C., et al. Stiffness and deflection analysis of complexstructures. Journal of the Aeronautical Sciences (Institute of the Aeronautical Sciences),1956,23(9):805-823.
    [37] Clough RW. The finite element method in plane stress analysis. In: ASCE2ndConference on Eletronic Cpmputation, Pittsburgh,1960.
    [38]冯康.基于变分原理的差分格式.应用数学与计算数学,1965,2(4):238-262.
    [39]吴新跃.有限元网格划分及发展趋势.计算机科学与探索,2008,2(3):248-259.
    [40] Raphael B, Krishnamoorthy CS. Automating finite element development using objectoriented techniques. Engineering Computations,1993,10(3):267-278.
    [41]谢世坤,黄菊花,杨国泰. CAD/CAE集成中的有限元模型转换之研究.中国机械工程,2005,16(5):428-431.
    [42] Deng YM, Lam Y, Tor S, et al. A CAD-CAE integrated injection molding design system.Engineering with Computers,2002,18(1):80-92.
    [43] Hamri O, Léon J, Giannini F, et al. Software environment for CAD/CAE integration.Advances in Engineering Software,2010,41(10):1211-1222.
    [44] Véron P, Léon JC. Using polyhedral models to automatically sketch idealized geometryfor structural analysis. Engineering with Computers,2001,17(4):373-385.
    [45] Cao BW, Chen JJ, Huang ZG, et al. CAD/CAE integration framework with layeredsoftware architecture. In: Proceedings of the11th IEEE International Conference onCAD/Graphics, Yellow Mountain,2009.
    [46] Gujarathi G, Ma YS. Parametric CAD/CAE integration using a common data model.Journal of Manufacturing Systems,2011,30(3)118-132.
    [47] Cottrell JA, Hughes TJ, Bazilevs Y. Isogeometric analysis: toward integration of CADand FEA. West Sussex: Wiley,2009.
    [48] Zhang JM, Qin XY, Han X, et al. A boundary face method for potential problems inthree dimensions. International Journal for Numerical Methods in Engineering,2009,80(3):320-337.
    [49] Qin XY, Zhang JM, Li GY, et al. An element implementation of the boundary facemethod for3D potential problems. Engineering Analysis with Boundary Elements,2010,34(11):934-943.
    [50]覃先云,张见明,李光耀,等.边界面法分析三维实体线弹性问题.固体力学学报,2011,32(5):500-506.
    [51] Wang YJ, Wang QF, Wang G, et al. Boundary Element Parallel Computation for3DElastostatics Using CUDA. In: Proceedings of the ASME IDETC/CIE. Washington, DC,2011.
    [52] Cheng AHD, Cheng DT. Heritage and early history of the boundary element method.Engineering Analysis with Boundary Elements,2005,29(3):268-302.
    [53] Jaswon MA. Integral equation methods in potential theory. I. Proceedings of the RoyalSociety of London Series A Mathematical and Physical Sciences,1963,275(1360):23-32.
    [54] Symm GT. Integral equation methods in potential theory II. In: Proceedings of theRoyal Society of London Series A. Mathematical and Physical Sciences,1963,275(1360):33-46.
    [55] Rizzo FJ. An integral equation approach to boundary value problems of classicalelastostatics. Quart Appl Math,1967,25(1):83-95.
    [56] Cruse TA. Numerical solutions in three dimensional elastostatics. International journalof solids and structures,1969,5(12):1259-1274.
    [57] Riccardella P. An implementation of the boundary integral techniques for planeproblems in elasticity and elasto-plasticity. Pittsburgh: Carnegie Mellon University,1973.
    [58] Lachat JC, Watson JO. Effective numerical treatment of boundary integral equations: Aformulation for three-dimensional elastostatics. International Journal for NumericalMethods in Engineering,1976,10(5):991-1005.
    [59] Brebbia CA. The boundary element method for engineers. London: Pentech Press,1978.
    [60] Yu KH, Kadarman AH, Djojodihardjo H. Development and implementation of someBEM variants—A critical review. Engineering Analysis with Boundary Elements,2010,34(10):884-899.
    [61] Wrobel LC. The Boundary Element Method, Vol1: Applications in Thermo-Fluids andAcoustics.2002.
    [62] Aliabadi MH. The boundary element method, vol.2, applications in solids andstructures. New York: Wiley,2002.
    [63]杜庆华,姚振汉.边界积分方程-边界元发的基本理论及其在弹性力学方面的若干工程应用.固体力学学报,1982,(1):1-22.
    [64]秦荣.样条边界元法.南宁:广西科学技术出版社,1988.
    [65]张有天,王镭,陈平.边界元方法及其在工程中的应用.北京:水利电力出版社,1989.
    [66]嵇醒.边界元法进展及通用程序.上海:同济大学出版社,1997.
    [67]孙焕纯.无奇异边界元法.大连:大连理工大学出版社,1999.
    [68] Symm GT. Boundary elements on a distributed array processor. Engineering Analysis,1984,1(3):162-165.
    [69] Davies AJ. The boundary element method on the ICL DAP. Parallel Computing,1988,8(1):335-343.
    [70] Kreienmeyer M, Stein E. Parallel implementation of the boundary element method forlinear elastic problems on a MIMD parallel computer. Computational mechanics,1995,15(4):342-349.
    [71] Cunha MTF, Telles JCF, Coutinho A. A portable parallel implementation of a boundaryelement elastostatic code for shared and distributed memory systems. Advances inEngineering Software,2004,35(7):453-460.
    [72]尹欣.三维弹性问题边界元法并行计算及其工程应用:[博士学位论文].北京:清华大学,2000.
    [73]申光宪,化春键,刘德义.三维弹塑性接触边界元网络并行解法.计算力学学报,2003,20(5):530-534.
    [74]张健飞,姜弘道.大规模边界元分析的子域并行算法及其工程应用.应用力学学报,2006,23(1):85-89.
    [75] Greengard L, Rokhlin V. A fast algorithm for particle simulations. Journal ofComputational Physics,1987,73(2):325-348.
    [76] Barnes J, Hut P. A hierarchical O(N log N) force-calculation algorithm. nature,1986,324(4).
    [77] Carrier J, Greengard L, Rokhlin V. A fast adaptive multipole algorithm for particlesimulations. SIAM Journal on Scientific and Statistical Computing,1988,9(4):669-686.
    [78] Greengard L, Rokhlin V. A new version of the Fast Multipole Method for the Laplaceequation in three dimensions. Acta numerica,1997,6(1):229-269.
    [79] Cheng H, Greengard L, Rokhlin V. A fast adaptive multipole algorithm in threedimensions. Journal of Computational Physics,1999,155(2):468-498.
    [80] Ying LX, Biros G, Zorin D. A kernel-independent adaptive fast multipole algorithm intwo and three dimensions. Journal of Computational Physics,2004,196(2):591-626.
    [81] Zhang JM, Tanaka M. An effective tree data structure in Fast Multipole Method.Transactions of the Japan Society for Computational Methods in Engineering,2006,6(1):17-22.
    [82] Gumerov NA, Duraiswami R. Fast multipole methods on graphics processors. Journalof Computational Physics,2008,227(18):8290-8313.
    [83] Bapat MS, Liu YJ. A New Adaptive Algorithm for the Fast Multipole BoundaryElement Method. Computer Modeling in Engineering&Sciences,2010,58(2):161-184.
    [84] Bishop TC, Skeel RD, Schulten K. Difficulties with multiple time stepping and fastmultipole algorithm in molecular dynamics. Journal of Computational Chemistry,1997,18(14):1785-1791.
    [85] Schneider S. Application of fast methods for acoustic scattering and radiation problems.Journal of Computational Acoustics,2003,11(03):387-401.
    [86] Greengard L, Huang JF, Rokhlin V, et al. Accelerating fast multipole methods for theHelmholtz equation at low frequencies. Computational Science&Engineering, IEEE,1998,5(3):32-38.
    [87] Darve E. The fast multipole method I: Error analysis and asymptotic complexity. SIAMJournal on Numerical Analysis,2000,38(1):98-128.
    [88] Chew WC, Jin JM, Lu CC, et al. Fast solution methods in electromagnetics. Antennasand Propagation, IEEE Transactions on,1997,45(3):533-543.
    [89] Fu Y, Klimkowski KJ, Rodin GJ, et al. A fast solution method for three-dimensionalmany-particle problems of linear elasticity. International Journal for Numerical Methodsin Engineering,1998,42:1215-1229.
    [90] Wang HT, Lei T, Li J, et al. A parallel fast multipole accelerated integral equationscheme for3D Stokes equations. International Journal for Numerical Methods inEngineering,2007,70(7):812-839.
    [91] Dongarra J, Sullivan F. Guest Editors' Introduction: The Top10Algorithms. Computingin Science and Engineering,2000,2(1):22-23.
    [92] Sakuma T, Yasuda Y. Fast multipole boundary element method for large-scalesteady-state sound field analysis. Part I: setup and validation. Acta Acustica united withAcustica,2002,88(4):513-525.
    [93] Yasuda Y, Sakuma T. Fast multipole boundary element method for large-scalesteady-state sound field analysis. Part II: examination of numerical items. Acta Acusticaunited with Acustica,2003,89(1):28-38.
    [94] Liu YJ. Dual BIE approaches for modeling electrostatic MEMS problems with thinbeams and accelerated by the fast multipole method. Engineering Analysis withBoundary Elements,2006,30(11):940-948.
    [95] Liu YJ, Shen L. A dual BIE approach for large‐scale modelling of3‐D electrostaticproblems with the fast multipole boundary element method. International Journal forNumerical Methods in Engineering,2007,71(7):837-855.
    [96] Shen L, Liu YJ. An adaptive fast multipole boundary element method forthree-dimensional acoustic wave problems based on the Burton–Miller formulation.Computational mechanics,2007,40(3):461-472.
    [97] Bapat MS, Shen L, Liu YJ. Adaptive fast multipole boundary element method forthree-dimensional half-space acoustic wave problems. Engineering Analysis withBoundary Elements,2009,33(8):1113-1123.
    [98] http://www.fastbem.com.
    [99] http://www.lmschina.com/simulation/lmsvirtuallab/acoustics/fast-multipole-boundary-element-acoustics.
    [100] Yamada Y, Hayami K. A multipole boundary element method for two dimensionalelastostatics. Technical Reports. Department of Mathematical Engineering andInformation Physics. Faculty of Engineering, The University of Tokyo,1995.
    [101] Popov V, Power H. An O (N) Taylor series multipole boundary element method forthree-dimensional elasticity problems. Engineering Analysis with Boundary Elements,2001,25(1):7-18.
    [102] Yoshida K. Applications of fast multipole method to boundary integral equation method:[PhD dissertation]. Kyoto: Kyoto University,2001.
    [103]刘德义.三维弹塑性摩擦接触多极边界元法和四辊轧机轧制模拟:[博士学位论文].秦皇岛:燕山大学,2003.
    [104] Wang HT, Yao ZH. Application of a new fast multipole BEM for simulation of2Delastic solid with large number of inclusions. Acta Mechanica Sinica,2004,20(6):613-622.
    [105] Wang HT, Yao ZH, Wang PB. On the preconditioners for fast multipole boundaryelement methods for2D multi-domain elastostatics. Engineering Analysis withBoundary Elements,2005,29(7):673-688.
    [106] Wang HT, Yao ZH. A New Fast Multipole Boundary Element Method for Large ScaleAnalysis of Mechanical Properties in3D Particle-Reinforced Composites. ComputerModeling in Engineering&Sciences,2005,7(1):85-96.
    [107] Liu YJ, Nishimura N, Otani Y, et al. A fast boundary element method for the analysis offiber-reinforced composites based on a rigid-inclusion model. Journal of appliedmechanics,2005,72(1):115-128.
    [108] Chen ZJ, Xiao H. The vectorization expressions of Taylor series multipole-BEM for3Delasticity problems. Computational mechanics,2009,43(2):297-306.
    [109] Chen ZJ, Xiao H, Yang X. Error analysis and novel near-field preconditioningtechniques for Taylor series multipole-BEM. Engineering Analysis with BoundaryElements,2010,34(2):173-181.
    [110] Pham AD, Mouhoubi S, Bonnet M, et al. Fast multipole method applied to SymmetricGalerkin boundary element method for3D elasticity and fracture problems. EngineeringAnalysis with Boundary Elements,2012,36(12):1838-1847.
    [111] Greengard L, Gropp WD. A parallel version of the fast multipole method. Computers&Mathematics with Applications,1990,20(7):63-71.
    [112] Singh JP, Holt C, Hennessy JL, et al. A parallel adaptive fast multipole method. In:Proceedings of the1993ACM/IEEE conference on Supercomputing, Portland,1993.54-65.
    [113] Lei T, Yao ZH, Wang HT, et al. A parallel fast multipole BEM and its applications tolarge-scale analysis of3-D fiber-reinforced composites. Acta Mechanica Sinica,2006,22(3):225-232.
    [114] Quevedo L, Morra G, Müller RD. Parallel fast multipole boundary element method forcrustal dynamics. In: IOP Conference Series: Materials Science and Engineering, IOPPublishing,2010.
    [115] Takahashi Y, Iwashita T, Nakashima H, et al. Performance Evaluation of a Parallel FastMultipole Accelerated Boundary Integral Equation Method in Electrostatic FieldAnalysis. IEEE Transactions on Magnetics,2011,47(5):1174-1177.
    [116] Larsen ES, McAllister D. Fast matrix multiplies using graphics hardware. In:Proceedings of the2001ACM/IEEE conference on Supercomputing (CDROM), Denver,2001.
    [117] Thompson CJ, Hahn S, Oskin M. Using modern graphics architectures forgeneral-purpose computing: a framework and analysis. In: Proceedings of the35thannual ACM/IEEE international symposium on Microarchitecture, IEEE ComputerSociety Press,2002.306-317.
    [118] Krüger J, Westermann R. Linear algebra operators for GPU implementation ofnumerical algorithms. ACM Transactions on Graphics (TOG),2003,22(3):908-916.
    [119] Nvidia C. NVIDIA CUDA Programming Guide5.0.2012.
    [120] Harish P, Narayanan P. Accelerating large graph algorithms on the GPU using CUDA.In: High Performance Computing–HiPC2007, Springer Berlin,2007.197-208.
    [121] Liu WG, Schmidt B, Voss G, et al. Accelerating molecular dynamics simulations usingGraphics Processing Units with CUDA. Computer Physics Communications,2008,179(9):634-641.
    [122] Thibault JC, Senocak I. CUDA implementation of a Navier-Stokes solver on multi-GPUdesktop platforms for incompressible flows. In: Proceedings of the47thAIAAAerospace Sciences Meeting, Orlando,2009.
    [123] De Veronese LP, Krohling RA. Differential evolution algorithm on the GPU withC-CUDA. In: Evolutionary Computation (CEC),2010IEEE Congress on, IEEE,Barcelona,2010.
    [124]甘新标,沈立,王志英.基于CUDA的并行全搜索运动估计算法.计算机辅助设计与图形学学报,2010,22(3):457-460.
    [125] O'Neil MA, Tamir D, Burtscher M. A Parallel GPU Version of the Traveling SalesmanProblem. In:2011International Conference on Parallel and Distributed ProcessingTechniques and Applications, Las Vegas,2011.348-353.
    [126]程峰,李德华.基于CUDA的Adaboost算法并行实现.计算机工程与科学,2011,33(002):118-123.
    [127] Li CG, Maa JPY, Kang HG. Solving generalized lattice Boltzmann model for3-D cavityflows using CUDA-GPU. Science China Physics, Mechanics&Astronomy,2012,55(10):1984-1904.
    [128] NVIDIA. Popular GPU-Accelerated Applications.2012.
    [129] Takahashi T, Hamada T. GPU‐accelerated boundary element method for Helmholtz'equation in three dimensions. International Journal for Numerical Methods inEngineering,2009,80(10):1295-1321.
    [130] Stock MJ, Gharakhani A. A GPU-accelerated Boundary Element Method and VortexParticle Method. In: AIAA40th Fluid Dynamics Conference and Exhibit, Chicago,2010.
    [131] Hamada S. GPU-accelerated indirect boundary element method for voxel modelanalyses with fast multipole method. Computer Physics Communications,2011,182(5):1162-1168.
    [132] Yokota R, Barba LA. Treecode and Fast Multipole Method for N-Body Simulation withCUDA. GPU Computing Gems Emerald Edition,2011.113-132.
    [133]黄铄,校金友,胡玉财,等.声学Burton-Miller方程边界元法GPU并行计算.计算物理,2011,28(4):481-487.
    [134] Lashuk I, Chandramowlishwaran A, Langston H, et al. A massively parallel adaptivefast multipole method on heterogeneous architectures. Communications of the ACM,2012,55(5):101-109.
    [135] Lee MC, Joun MS. Adaptive triangular element generation and optimization-basedsmoothing, Part1: On the plane. Advances in Engineering Software,2008,39(1):25-34.
    [136]雷霆,姚振汉,王海涛.三维快速多极边界元高性能并行计算.清华大学学报(自然科学版),2007,47(2):29-34.
    [137] Dunavant DA. High degree efficient symmetrical Gaussian quadrature rules for thetriangle. International Journal for Numerical Methods in Engineering,1985,21(6):1129-1148.
    [138]胡圣荣,陈国华.一种新的三角极坐标变换.计算力学学报,1997,14(3):372-376.
    [139] Gao XW, Davies TG. Boundary element programming in mechanics. New York:Cambridge University Press,2002.
    [140] Spatial. ACIS R15Online Help.2004.
    [141]杜庆华.边界积分方程方法—边界元法力学基础与工程应用.北京:高等教育出版社,1989.
    [142]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版,1997.
    [143] Xiao H, Chen ZJ. Numerical experiments of preconditioned Krylov subspace methodssolving the dense non-symmetric systems arising from BEM. Engineering Analysis withBoundary Elements,2007,31(12):1013-1023.
    [144] Saad Y. Iterative methods for sparse linear systems. Philadelphia: Society for Industrialand Applied Mathematics,2003.
    [145]马振华.现代应用数学手册—计算与数值分析卷.北京:清华大学出版社,2005.
    [146]雷霆.快速多极边界元并行算法的研究与工程应用:[博士学位论文].北京:清华大学,2006.
    [147] Benzi M. Preconditioning techniques for large linear systems: a survey. Journal ofComputational Physics,2002,182(2):418-477.
    [148] Gould NIM, Scott JA. Sparse approximate-inverse preconditioners usingnorm-minimization techniques. SIAM Journal on Scientific Computing,1998,19(2):605-625.
    [149] Carr M, Bleszynski M, Volakis JL. A near-field preconditioner and its performance inconjunction with the BiCGstab (ell) solver. Antennas and Propagation Magazine, IEEE,2004,46(2):23-30.
    [150] Mi Y, Aliabadi MH. Discontinuous crack-tip elements: application to3D boundaryelement method. International journal of fracture,1994,67(3):67-71.
    [151] Subia SR, Ingber MS, Mitra AK. A comparison of the semidiscontinuous element andmultiple node with auxiliary boundary collocation approaches for the boundary elementmethod. Engineering Analysis with Boundary Elements,1995,15(1):19-27.
    [152] Guzina BB, Pak RYS, Martínez-Castro AE. Singular boundary elements forthree-dimensional elasticity problems. Engineering Analysis with Boundary Elements,2006,30(8):623-639.
    [153] ANSYS. ANSYS13.0Online Help.2010.
    [154] Liu YJ. Fast multipole boundary element method: theory and applications inengineering. New York: Cambridge University Press,2009.
    [155]王海涛.快速多极边界元法研究及其在复合材料模拟中的应用:[博士学位论文].北京:清华大学,2005.
    [156] Yoshida K, Nishimura N, Kobayashi S. Application of new fast multipole boundaryintegral equation method to crack problems in3D. Engineering Analysis with BoundaryElements,2001,25(4):239-247.
    [157]姚振汉,王海涛.边界元法.北京:高等教育出版社,2010.
    [158] Lu BZ, Cheng XL, Huang JF, et al. An Adaptive Fast Multipole Boundary ElementMethod for Poisson-Boltzmann Electrostatics. Journal of Chemical Theory andComputation,2009,5(6):1692-1699.
    [159] Li HB, Han GM, Mang HA. A new method for evaluating singular integrals in stressanalysis of solids by the direct boundary element method. International Journal forNumerical Methods in Engineering,1985,21(11):2071-2098.
    [160] Guiggiani M, Gigante A. A general algorithm for multidimensional Cauchy principalvalue integrals in the boundary element method. Journal of applied mechanics,1990,57(4):906-915.
    [161] Tecplot. Tecplot Focus2011online help.2011.
    [162] Labaki J, Mesquita E, Saraiva Ferreira LO. The BEM on general purpose graphicsprocessing units (GPGPU): a study on three distinct implementations. In: Proceedingsof International Conference on Boundary Element Techniques XI, Berlin. EC Ltd Press,2010.316-323.
    [163] Shen L, Liu YJ. An adaptive fast multipole boundary element method forthree-dimensional potential problems. Computational mechanics,2007,39(6):681-691.
    [164] http://www.hustcad.com/NewContent.asp?ID=296.