边界面法四边形网格生成研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以边界积分方程为基础的边界面法继承了边界元法的所有优点,例如可以使求解问题域降低一维,也可以求解无限域问题和裂纹扩展等奇异性问题。由于该法的边界积分和场变量插值都是在以边界表征的实体边界曲面的参数空间里进行,积分点的坐标,法向量以及雅克比等几何数据都可以由曲面本身计算获得,而传统边界元法是通过网格单元插值近似得到,边界面法避免了几何误差,因此计算精度比传统边界元法高。
     在边界面法中,前处理网格生成对计算结果有着非常重要的影响,而且网格是定义在曲面的参数空间中,因此有必要对适合边界面法的网格生成算法进行研究。工程实际应用中,四边形网格在计算精度和计算效率方面都要优于三角形网格,本文对四边形网格生成算法—铺砖法及程序实现进行了详细研究,同时对铺砖法进行改进,把铺砖法推广到任意曲面的四边形网格生成,最后把生成的网格用于边界面法分析。
     本文研究主要内容如下:
     (1)根据边界面法的特点和铺砖法算法的一般流程对参数曲面四边形网格生成进行了多方面研究。重点研究运用黎曼度量在参数空间生成四边形网格,并且在原有算法的基础上进行了改进,文中引入点的迁移算子对在周期曲面上生成四边形网格进行了研究。
     (2)利用VC++与UG二次开发技术,建立边界面法前处理四边形网格模块。通过VC++进行程序设计实现了四边形网格生成程序,并对程序数据管理和网格生成算法关键问题的程序实现作了详细介绍。程序中通过调用UG/Open API中函数获取CAD模型边界表征信息和显示最终生成的网格。
     (3)利用生成的网格数据调用边界面法分析模块进行三维位势问题和线弹性问题分析。四边形网格是在CAD模型曲面参数空间生成的,网格数据保留了CAD几何模型的数据,利用网格数据调用边界面法分析程序进行计算,成功实现了CAD/CAE一体化,最后通过与精确解和有限元商业软件计算结果进行对比,证明算法的正确性和边界面法的优越性。
The boundary face method (BFM), which is based on the boundary integral equation (BIE), inherits all advantages of the boundary element method (BEM) such as a lower computational scale of one order and abilities to solve problems on infinite domain and problems with singularities including crack propagation. In the BFM, the integration and variable approximation are both performed in the parametric space of the boundary surface. The geometric data such as coordinates, outward normals and Jacobians on integral points can be calculated directly from the parametric surface.In the conventional BEM, however, the geometric data are calculated through element interpolation,thus no geometric errors are introduced. The BFM is usually more accurate than the conventional BEM.
     In the implementation of the BFM, the grid generation is of great importance to the computation. The mesh in the BFM, however, is defined in the parametric space of the boundary surface. The mesh generation algorithm that is suitable for the BFM should be studied. In engineering applications, quadrilateral mesh has many advantages over the triangular mesh on both accuracy and efficiency. This paper studies the paving method, which is one of the quadrilateral mesh generation method, and its program application. The paving method is improved and extended to generate quadrilateral mesh on arbitrary surface. The improved method is implemented in the BFM to solve 3D potential problems and 3D elasticity problems.
     Contents of this paper are listed as follows:
     (1) According to the feature of the BFM and the general procedure of the paving method, a full study on the generation of the quadrilateral mesh on parametric surface has been done. The mesh generation in parametric space applying Riemann metric is emphasized. The original paving method has been improved. Moreover, mesh generation on closed surface has been studied.
     (2) The pre-process module for quadrilateral mesh in the BFM has been developed by using both language of the visual C++ and the secondary developing technology of the Uni-Graphics. Using the language of the visual C++, the program for quadrilateral mesh generation has been developed. Furthermore, the data management and critical problems in the mesh generation algorithm in the program has been discussed in details. By calling the functions that are available in the UG/Open API, data of the boundary represented solid model have been obtained and the final meshes have been displayed on the model.
     (3) BFM analyses have been performed with the mesh generated by the developed program. The quadrilateral mesh is generated in the parametric space of the boundary surface of the CAD solid models. The topology data of the original CAD geometric model are preserved. Thus the BFM has integrated CAD and CAE successfully. The BFM has been verified by numerical examples in which comparison between the numerical solution and the analytical solution was made. Furthermore, comparison study between the BFM and the finite element method (FEM) has been made to illustrate the advantages of the BFM.
引文
[1]钟万勰,陆仲绩. CAE:事关国家竞争力和国家安全的战略技术—关于发展我国CAE软件产业的思考.中国科学院季刊, 2007, 22(1):115-119
    [2]崔俊芝. CAE—推动工程和产品创新的生产力.科技创新和品牌, 2010, 3:18-20
    [3]龚科家,杨光,胡平.汽车覆盖件工具曲面有限元网格自适应转换方法.计算力学学报, 2006, 23(3):338-343
    [4] Greengard L, Rokhlin V. A new version of the Fast Multipole Method for the Laplace equation in three dimensions. Acta Numerica, 1997, 6:229-269
    [5] Wang H T, Lei T, Li J, et al. A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations. International Journal for Numerical Methods in Engineering, 2007, 70:812-839
    [6]孟文辉,崔俊芝.求解二维随机多区域声波散射问题的快速多极边界元法.数值计算与计算机应用, 2010, 31(2):141-151
    [7] Gao X W. The radial integration method for evaluation of domain integrals with boundary-only discretization. Engineering Analysis with Boundary Elements, 2002, 26(10):905-916
    [8]周焕林,牛忠荣,王秀喜.薄体位势问题边界元法中的解析积分算法.力学季刊, 2003, 24(3):319-326
    [9]陈海波,金建峰,张培强等. Multi-Variable Non-Singular BEM for 2-D Potential Problems.清华大学学报:自然科学英文版, 2005, 10(1):43-50
    [10] Cirak F, Ortiz M. Fully C1-conforming subdivision elements for finite deformation thin-shell analysis. International Journal for Numerical Methods in Engineering, 2001, 51(7):813–833
    [11] Hughes T J R., Cottrell J A, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer methods in applied Mechanic and Engineering, 2005, 194(39-41):4135–4195
    [12] Zhang J M, Yao Z H. Meshless regular hybrid boundary node method. Computer Modeling in Engineering and Sciences, 2001, 2(3):307-318
    [13] Zhang J M, Yao Z H, Li H. A hybrid boundary node method. International Journal for Numerical Methods in Engineering, 2002, 53(4):751-763
    [14] Zhang J M, Yao Z H, Tanaka M. The meshless regular hybrid boundary nodemethod for 2-D linear elasticity. Engineering Analysis with Boundary Elements, 2003, 27(3):259-268
    [15] Zhang J M, Tanaka M, Matsumoto T. Meshess analysis of potential problems in three dimensions with the hybrid boundary node method. International Journal for Numerical Methods in Engineering, 2004, 59(9):1147–1166
    [16] Zhang J M, Yao Z H. The regular hybrid boundary node method for three dimensional linear elasticity. Engineering Analysis with Boundary Elements, 2004, 28(5):525-534
    [17] Zhang J M, Numerical Simulation of 3-D Potential Problems by Regular Hybrid Boundary Node Method. International Journal for Computational Methods in Engineering Science and Mechanics, 2008, 9(2):111-120
    [18] Zhang J M, Tanaka M, Matsumoto T. A simplified approach for heat conduction analysis of CNT-based nano-composites. Computer Methods in Applied Mechanics and Engineering, 2004, 193(52):5597-5609
    [19] Tanaka M, Zhang J M. A tree data structure for MLS approximation on surfaces. Transactions of the Japan Society for Computational Methods in Engineering, 2004, 4:43-46
    [20] Zhang J M, Qin X Y, Han X, et al. A boundary face method for potential problems in three dimensions. International Journal for Numerical Methods in Engineering, 2009,80(3):320–337
    [21] Qin X Y, Zhang J M, Li G Y, et al. An element implementation of the boundary face method for 3D potential problems. Engineering Analysis with Boundary Elements, 2010, 34(11):934-943
    [22]姚振汉,王海涛著.边界元法.北京:高等教育出版社, 2010, 1-6
    [23] Brebbia C A, Telles J C F, Wrobel L C.. Boundary Element Techniques, Theory and Applications in Engineering. Berlin,Germany: Springer-Verlag, 1984
    [24] Yao Z H, Du Q H. Some aspects of the BEM research in China. Electronie Journal of Boundary Elements, 2003, 1:61-67
    [25] Zhang J M, Tanaka M. Adaptive spatial decomposition in fast multiple method. Journal of Computational Physics, 2007, 226(1):17-28
    [26] Zhou F L, Zhang J M, Sheng X M, et al. Shape variable radial basis function and its application in dual reciprocity boundary face method. Engineering Analysis with Boundary Elements, 2011, 35(2):244-252
    [27] Xie G Z, Zhang J M, Qin X Y, et al. New variable transformations for evaluating nearly singular integrals in 2D boundary element method.Engineering Analysis with Boundary Elements, 2011, 35(6):811-817
    [28] Cass R J, Benzley S E, Meyers R J, Blacker T D. Generalized 3-D Paving: An Automated Quadrilateral Surface Mesh Generation Algorithm. International Journal for Numerical Methods in Engineering , 1996, 39(9):1475-1489
    [29]陈文亮,孙立波,张胜.复杂曲面混合网格的生成算法.中国图形图象学报, 2004, 9(8):1014-1018
    [30] Borouchaki H, Laug P, George P L. Parametric Surface Meshing Using a Combined Advancing-Front Generalized Delaunay Approach. International Journal for Numerical Methods in Engineering , 2000, 49(1):233-259
    [31]关振群,单菊林,顾元宪.基于黎曼度量的复杂参数曲面有限元网格生成方法.计算机学报, 2006, 29(10):1823-1833
    [32] Lohner R, Parikh P. Generation of Three—Dimentional Unstructured Grids by the Advancing-Front Method. International Journal for Numerical Methods in Fluids, 1988, 8(10):1135-1149
    [33] Lau T S, L0 S H, Lee C K. Generation of quadrilateral mesh over analytical curved surfaces. Finite Elements in Analysis and Design, 1997, 27(3):251-272.
    [34]梅中义,范玉青,胡世光. NURBS曲面的有限元网格三角剖分.计算机辅助设计与图形学学报, 1997, 9(4): 289-294
    [35] Lau T S, Lo S H. Finite Element Mesh Generation Over Analytical Curved Surfaces. Computers and Structures, 1999, 59(2):301—309
    [36] Lee C K. Automatic adaptive mesh generation using metric advancing front approach. Engineering Computations, 1999, 16(2):230–263
    [37] Lee C K. Automatic adaptive metric advancing front triangulation over curved surfaces. Engineering Computations, 2000, 17(1):48–74
    [38]陈建军.非结构化网格生成及其并行化的若干问题研究: [浙江大学博士学位论文].杭州:浙江大学, 2006, 15-26
    [39] Chrisochoides N, Nave D. Parallel Delaunay Mesh Generation Kernel. Intemational Journal for Numerical Methods in Engineering, 2003,58(2):161-176
    [40]孙力胜.基于前沿推进技术的自适应曲面三角形和四边形网格生成方法研究: [浙江大学硕士学位论文].杭州:浙江大学, 2010, 39-48
    [41] Zhu J Z, Zienkiewicz O C, Hinton E, et al. A new approach to the development of automatic quadrilateral mesh generation.International Journal for Numerical Methods in Engineering, 1991, 32(4):849-866
    [42] Blacker T D, Stephenson M B. Paving: A New Approach to Automated Quadrilateral Mesh Generation.International Journal for Numerical Methods inEngineering, 1991, 32(4):811-847
    [43]张清萍,尚勇,赵国群.二维全四边形网格的自动生成算法.山东大学学报, 2002, 32(3):254-259
    [44]林胜良,方兴,张武,王正光.一种改进的高品质全四边形网格生成方法.江南大学学报, 2006, 5(1):70-73
    [45]梅中义,范玉青.一种用于自动生成二维全四边形有限元网格的改进的铺设算法.计算机辅助设计与图形学学报, 2000, 12(6):428-434
    [46] Tristano J R, Owen S J, Canann S A. Advancing Front Surface Mesh Generatioin in Parametric Space Using a Riemannian Surface Definition. In: Proceedings of the 7th International Meshing Roundtable. Dearborn, 1998, 429-445
    [47] Mobley A V., Carroll M P, Tristano J R.. A 3D Surface Meshing Algorithm Using Riemann Calculations with 2D Delaunay in Parametric Space. In: Numerical Grid Generation in Computational Field Simulations. International Society of Grid Generation, 2000, 729-742
    [48] Cuilliere J C. A direct method for the automatic discretization of 3D parametric curves. Computer-Aided Design, 1997, 29(9):639-647
    [49]覃先云.基于参数曲面的边界面法研究: [湖南大学硕士学位论文].长沙:湖南大学, 2010, 13-66
    [50]单菊林.自适应有限元网格生成算法研究与应用: [大连理工大学博士学位论文].大连:大连理工大学, 2007, 85-97
    [51]莫蓉,常智勇,刘红军等.图表详解UGNX二次开发.北京:电子工业出版社, 2008, 23-216
    [52]黄翔,李迎光. UG应用开发教程与实例精解.北京:清华大学出版社, 2005, 9-187
    [53]宋敏.边界面法后处理研究与程序实现:[湖南大学硕士学位论文].长沙:湖南大学, 2010, 40-49
    [54] Lee C K, Lo S H. A New Scheme for the Generation of a Graded Quadrilateral Mesh. Computers and Structures. 1994, 52(5):847-857
    [55]张见明.基于边界面法的完整实体应力分析理论与应用.计算机辅助工程, 2010, 19(3), 5-10
    [56]姜弘道.弹性力学问题的边界元法.北京:中国水利水电出版社, 2008, 79-109
    [57]王勖成,邵敏.有限单元基本原理和数值方法.北京:清华大学出版社, 1997, 38-88