浅型湖库沉积物—水界面氮、磷迁移转化的实验模拟与动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展和城市化进程的逐步推进,浅型湖库存在的水化学污染和富营养化问题日趋严重,其中水体中氮、磷等营养盐的输入和富集是导致湖库水体富营养化,继之浮游植物大量繁殖的根本原因。底泥(沉积物)是富营养化水体营养盐的主要蓄积库,其内源负荷释放导致水体富营养化问题更加突出。而浅型湖库沉积物—水界面处的营养物质的运移是湖库底泥中的内源负荷释放和水体营养物质积聚的重要途径,氮、磷等生源要素的垂向循环研究,是了解沉积物—水界面氮、磷迁移规律及湖库内源性营养物质“源/汇”转换机理的基础,也可为水体富营养化的综合治理提供基础资料和科学依据。
     本文通过在典型的富营养化浅型湖库——滇池水域采样(共采集水样500L、底泥样40kg)作为模拟材料,利用PVC试筒和塑料筒作为模拟装置,进行水体中氮、磷沉降和沉积物中氮、磷扩散的室内模拟实验,以及pH值对氮、磷迁移的影响模拟实验,通过综合分析和动力学模拟,获取了对沉积物—水界面中各形态氮、磷迁移转化的规律性认识。主要成果如下:
     1、共完成测试样品2292件,其中水体样总氮TN、硝酸盐氮N03--N、亚硝酸盐氮NO2--N、铵态氮NH4+-N、总磷TP及可溶性磷DP浓度值各352件,底泥样TN.TP浓度值各90件。
     2、研究区水体中的氮、磷浓度值远超出水体富营养化临界值,且沉积物中的氮、磷营养盐存在明显的“源/汇”转换,并与上覆水体间存在能量与物质交换。
     3、沉积物是水体中NH4+-N的蓄积库,富氧条件下,沉积物中的有机氮化物经矿化作用,产生NH4+-N等无机离子扩散进入上覆水体中;NH4+-N由硝化细菌通过硝化作用转化为NO3--N,部分转化为NO2--N,并最终转化为NO3--N;NO3--N是含氮有机物氧化分解的最终产物。在相同的水深条件下,底泥的厚度越大则上覆水中的TP、DP、NO2--N.NH4+-N、浓度越大。酸性条件下,硝化作用被抑制,水体中的氮(N)以NH4+-N的形态存在;磷(P)的浓度则与中性条件接近,不受酸性条件影响;碱性条件下,沉积物P的释放作用以及水体P达到一定浓度时的沉降作用均非常强烈;各形态的N的浓度则与中性条件下的浓度和随时间的变化量接近,受碱性条件影响不大:弱碱环境促进NH4+-N硝化生成NO2--N,NO3--N也亦被反硝化生成NO2--N。
     4、利用实验数据中获取氮、磷转化的各种参数(氮的转化速率参数、磷的沉降系数和释放系数),初步建立了只考虑沉积物和水体中P释放沉降垂向过程的水体一维全磷迁移模型,以及一维“三氮”(NH4+-N、NO3--N、NO2--N)迁移转化模型。将模拟实验的数据应用到“三氮迁移转化模型中,模拟显示三种形态的N迁移转化的趋势与一级化学动力学方程理论计算曲线相一致;将全磷迁移模型运用到滇池中,并利用监测点2003年的监测数据进行对比,结果有较好的吻合度。
     5、本次建立的现代沉积物—水界面氮、磷迁移、转化模拟实验的流程、方法技术,以及获取的大量实验数据,可为有关实验研究提供借鉴,建立的动力学模拟模型可用于预测富营养化水体中氮、磷浓度的变化趋势及其迁移转化规律。
With the development of economic and urbanization, hydrochemical pollution and eutrophication of the shallow-type lake and reservoir becomes more and more serious.The import and beneficiation of the nutritive material such as nitrogen and phosphorus, is the fundamental reason of eutrophication and phytoplankton bloom of the water. Modern sedimentary is the main carrier of the nutritive material in the eutrophia water substance, and the releasing of these make the problem of the eutrophication more serious. Modern sedimentary-water interface is one of the most important interfaces in the lake and reservoir, nourishment material transferring between modern sedimentary and waterbody is the important approach of the endogenous capacity release in the substrate sludge and the accumulation of nourishment material in the water.Research of the vertical circulation of biogenic elements like nitrogen andphosphorus,and the diffusion, inversion and migration in vertical circulation of vital factors like nitrogen, phosphorus etc. is the key to understand the migration and transformation laws of nitrogen and phosphorus between modern sedimentary and water and the conversion mechanism of endogenous nutrients in the shallow-type lake and reservoir. And the results can provide a series of primary data and scientific principle for the eutrophication control and comprehensive management of lake and reservoir.
     As a case to Dianchi Lake, sampling in the typical eutrophic shallow-type-lake and reservoir(water sample 500 litre, modern sedimentary sample 40 kilogram),using the PVC bucket and the bucket made of plastic as the analog device, indoor simulation experiment—sedimentation experiment of nitrogen, phosphorus in water substance, diffusion experiment of nitrogen, phosphorus in modern sedimentary, pH vable of nitrogen and phosphorus migration. A series of migration and transformation laws about various forms of nitrogen and phosphorus has been provided. Based on the comprehensive studying, the results obtained is listed as follows:
     Firstly, tested 2292 simples altogether,the simple of consistency on TN, NO3--N, NO2--N, NH4+-N, TP, DP in water has 352 pieces each and the simple of consistency on TN, TP in modern sedimentary has 90 pieces each.
     Secondly, in the study area, concentration of the nitrogen and phosphorus far beyond the critical value of eutrophication. Nitrogen and phosphorus in the modern sedimentary has a clear "source/sink" conversion,and changes energy and matter with the water.
     Thirdly, modern sedimentary is the carrier of NH4+-N in water substance.When oxygen is sufficient, organic nitrogen content of modern sedimentary generate NH4+-N and other inorganic ion diffusion into the overlying water, nitrifying bacteria translate the NH4+-N into NOO--N by nitration, part into NO2--N, ultimately translated into NO3-N. Insufficient oxygen in the water substance, inhibiting the occurrence of nitrification, N in the overlying water mainly existed in the form of NH4+-N. When water depth in the same conditions,the greater thickness of substrate sludge is, the greater concentration of NO2--N、H4+-N、TP、DP in overlying water becomes. Under the acidic conditions, nitrification was inhibited, the N in water in the form of NH4+-N, yet P is not affected. In alkaline conditions, the release action of P in modern sedimentary and the deposition of P in the water that reaches a certain concentration are very strong, and all the forms of N are not affected. In alkalescent environment, NH4+-N turns to NO2--N by nitrification,and NO3--N turns to NO2--N by denitrification.
     Fourthly, on the basis of obtainning various parameter of nitrogen, phosphorus conversion from the experimental data(including rate parameters of the transformation of nitrogen, sedimentation and release coefficient of phosphorus), the one-dimensional TP models of TP concentration in the different depth of water change over time, and the one-dimensional "3N" (NH4+-N、NO3--N、NO2--N) model of migration and transformation is established. Then, applying the simulation experiment data to the model, the compatibility of the trend of the migration and transformation of "3N" and the theoretical calculation curve of first-order chemical dynamic equation is gained. Using the migaration model of TP to the Dianchi lake, and comparing with the monitoring data of the monitoring points in 2003, it is showed that there be little difference between them.
     Lastly, the simulation experimental process of the transformation and migration of nitrogen and phosphorus between modern sedimentary and waterbody, and the detailed methods and techniques established in this thesis can be used to the similar research field. At the same time, a large number of experimental data can also be refered to other related experiments. The dynamics simulation model could be used to forecasting the consistency trends and migration laws of nitrogen and phosphorus in the eutrophia water of Dianchi lake and similar shallow-type lake and reservoir.
引文
①汤利,陈永川,等.2004.滇池沉积物及水体营养盐监测总结报告[R].昆明:云南农业大学.
    [1]国家环境保护总局科技标准司.中国湖泊富营养化及其防治研究[M].北京中国环境科学出版社,2001:1-43.
    [2]薛传东.富营养化水体底泥掩蔽修复技术的试验与机理研究[博士后出站报告].中国科学院南京土壤研究所(合作导师:杨浩),2005.
    [3]杨文龙,杨树华.滇池流域非点源污染控制区划研究[J].湖泊科学,1998,10(3):55-60.
    [4]田升平,东野脉兴,周建民,等.滇池湖泊磷负荷及其对水环境的影响[J].化工矿产地质,2002,24(1):11-16.
    [5]杨文龙,杨树华.滇池流域非点源污染控制区划研究[J].湖泊科学,1998,10(3):55~60.
    [6]李震宇,朱荫湄,王进.杭州西湖沉积物的若干物理和化学性状[J].湖泊科学,1998,10(1):79-84.
    [7]孙亚敏,董曼玲,汪家权.内源污染对湖泊富营养化的作用及对策[J].合肥工业大学学报(自然科学版),2000,23(2):210~213.
    [8]谢丽强,谢平,唐汇娟.武汉东湖不同湖区底泥总磷含量及变化的研究[J].水生生物学报,2001,25(4):305-310.
    [9]Watter J, Weber Jr, Paul Metal. Distributed reactivity model for sorption by soils and sediments 1. conceptual basis and equilibrium assessments[J].Environ. Sci.-Technol.,1992,26(10):1955-1962
    [10]Wentzel M, Gorzawski H, Naumann KH, etal; Transmission electron microscopical and aerosol dynamical characterization of sootaerosols [M];J of Aerosol Science; 2003
    [11]Vollenweider R A.Input-output models with special reference to the phosphorus loading concept in limnology[J].Schweizerische Zeitschrift Hydrol,1975,37:53-84.
    [12]Organization for Economic Cooperation and Development.Eutrophication of waters monitoring,assessment and control[M].OECD.Paris:OECD,1982.
    [13]章旭,王小波,等.藻毒素生物降解技术的研究进展[J].安全与环境工程,2006,13(2):34-37.
    [14]秦伯强.长江中下游浅水湖泊发生机制与控制途径初探[J].湖泊科学,2002,14(3),193-202.
    [15]陈永川,汤利,谌丽,李杰.滇池水体中磷的时空变化特征研究[J].农业环境科学学报,2005,24(6):1145-1151.
    [16]杨浩,杜明远,赵其国,阳捷行,八田珠郎.基于137Cs地表富集作用的土壤侵蚀速率的定量模型[J].水土保持学报,1999,(3):25-28.
    [17]Uban V.1998.Sediment phosphorus and internal phosphate flux in the hydroelectric reservoir of Bort-les-Orgues, France[J]. Hydrobiologia,373-374(1-3):349-359.
    [18]Rydin. Potentially mobile phosphorus in lake Erken sediment[J]. Water Research,2000,34:2037-2042.
    [19]Zhou Q, Gibson C E, Zhu Y. Evaluation phosphorus bioavailability in sediment ofthree contrasting lakes in China and the UK[J]. Chemosphere,2001,42:221-225.
    [20]陈敬安,万国江,唐德贵,黄荣贵.洱海近代气候变化的沉积物粒度与同位素记录[J].自然科学进展,2000(3):253-259.
    [21]毛建忠,王雨春,赵琼美,吴秀萍.滇池沉积物内源磷释放初步研究[J].中国水利水电科学研究院学报,2005,3(3):229~233.
    [22]Sundby B, Gobeil C, et al. The phosphorus cycle in coastal marine sediments [J]. Limnology and Oceanography,1992,37(6):1129-1145.
    [23]王晓蓉,华兆哲,等.环境条件变化对太湖沉积物磷释放的影响[J].1996.环境化学,15(1):15-19.
    [24]韩伟明.杭州西湖底泥释磷及其对富营养化的影响[J].环境科学,1992,13(3):25-29
    [25]黄绍基.质量衡算模型计算太湖底泥磷的交换[J].环境科学,1992,13(1):83-84.
    [26]Tohru S, Hirofumi I, Etsuji D. Benthic nutrient remineralization and oxygen consumtion in the coastal area of Hiroshima Bay[J]. Water Res,1989,23(2):219~228.
    [27]Austin E R, Lee C F. Nitrogen release from lake sediment[J]. Wat Pollut Control Fed,1973, 45:870~879.
    [28]Boers P C M, O Van Hese. Phosphorus release from the peaty sediment of the Loosdrecht Lakes(The Netherlands) [J]. Water Reseach,1988,22:355~363.
    [29]Markert B E, et al. An in situsediment oxygen demand sampler[J]. Water Res,1983,17(6):603~ 606.
    [30]范成新,相崎守弘,福岛武彦,等.霞浦湖沉积物需氧速率的研究[J].海洋与湖沼,1998,2(5):508-513.
    [31]McDuff R E, Ellis R A. Determining diffusion cofficient in marine sediments:A laboratory study of the validity of resistivity techniqes[J]. Am J Sci,1979,279:666~675.
    [32]傅国伟,程声通.水污染控制规划[M].北京:清华大学出版社,1985.
    [33]谢永明.环境水质模型概论[M].中国科技大学出版社,1996.
    [34]H.W.Streeter and E.B.Phelps.A Study of the Pollutional and Natural Purification of the Ohio River. Factor Concerned the Phenomena of Oxidation and Reaeration[J].Public Health Bulletin. 1925,No.146, Feb.
    [35]杨具瑞,方泽.滇池二维分层水质模拟研究[J].环境科学学报,2000,20(5):533-535.
    [36]唐森本,王欢畅,葛碧洲,等.环境有机污染化学[M].北京:冶金工业出版社,1995.
    [37]陈伟民,黄祥飞,周万平等.湖泊生态系统观测方法[M].北京:中国环境科学出版社,2004:
    [38]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:42-49,76~79.
    [39]中华人名共和国国家标准水质亚硝酸盐氮的测定分光光度法149~153 UDC 614.777 543.42GB7493-87.
    [40]中华人名共和国国家标准 水质 总氮的测定碱性过硫酸钾消解紫外分光光度法GB11894-89192~195.
    [41]中华人民共和国国家标准水质总磷的测定铝酸铵分光光度法GB11893-89 188~191.
    [42]Albert A Koelans. Sorption of 1,2,3,4~terach lorobenaene and Cadmium to sediments and suspended solids in lake Uolkerk/zoom[J]. Water Research,1992,26(3):327-337)
    [43]Heinrich F K, Rodney A A, Ianc B. Microbialnitrog~transformations in sediments and inorganic nitrogen fluxes across the sediment/water inter ce On the south island Ⅷ m, New Zealand[J] Estuarlne, G:astal and Shescience.1985.21.245~255.
    [44]唐森本,王欢畅,葛碧洲等.环境有机污染化学[M].北京:冶金工业出版社,1995.
    [45]张成云,孙莉,金立坚,朱鸿斌,刘奎.生活饮用水中的铵态氮污染问题探讨[J].中华医学研究杂志,2007,7(6):495~498.
    [46]陈永川,汤利.沉积物一水体界面氮磷的迁移转化规律研究进展[J].农业大学学报,2005(4)527~533.
    [47]Olila O G, Reddy K R. Influence of pH on phosphorus retention in oxidized lake sediments[J]. Soil Sci Soc Am J,1995,59:946-959.
    [48]BostrSm B, Jansson M, Forsberg C. Phosphorus release from lake sediment[J]. Arch Hyarobiol., 1982,18(1):55~59.
    [49]高超,张桃林,吴蔚东.氧化还原条件对土壤P素固定与释放的影响[J].土壤学报,2002,39(4):542-549.
    [50]刘敏,侯立军,许世远,张斌亮,欧冬妮.河口滨岸潮滩沉积物—水界面NP的扩散通量[J].海洋环境科学,2001,22(3):19~23.
    [51]王彩虹,牛晓君,周兴求,印春喜,任洪强.不同pH环境下沉积磷释放到水体中化学行为的模拟研究[J].四川环境,2005,25(1):20~41
    [52]商卫纯,潘培峰,蒋海滨,林峰.城市浅水型湖泊底泥污染物释放过程模拟实验研究[J].环境污染与防治,2007,29(8):602~604.
    [53]李大鹏,黄勇,李伟光.底泥再悬浮对不同营养水平上覆水中磷酸盐迁移的影响[J].水处理技术,2008,34(6):4~7.
    [54]高丽,杨浩,周健民,陈捷.滇池沉积物磷的释放以及不同形态磷的贡献[J].农业环境科学学报,2004,23.
    [55]李萍.水中铵态氮、亚硝酸盐氮及硝酸盐氮相互关系探讨[J].上海环境科学,2006,25(6):245~250.
    [56]孙青,黄怀曾,何红蓼,汪双清,张玲金,许虹,罗松光,李奇.北京官厅水库沉积物—水界面磷的分布和迁移特征[J].境地球化学2003,2(2):137~139.
    [57]张斌亮,刘云翔,刘敏.潮滩沉积物—水界面营养盐N、P分布及交换特征[J].上海环境科学,(10):677~681.
    [58]M.Zhang,J.Xu,P.Xie.Nitrogen dynamics in large shallow eutrophic Lack ChaoHu China[J].Environ Geol,2008,55(1):1~8.
    [59]詹姆斯,埃里奥特,陈祖明等.水质模拟导论[M].成都:成都科技大学出版社,1989,145-156.
    [60]周其炎等Moldflow 5.0基础与典型范例[M].北京:电子工业出版社,2007.
    [61]宋新山,邓伟等.环境数学模型[M].北京:科学出版社,2004,218-225.
    [62]金磊,黄国河,周怀东,王莉,傅海燕.河流水质模型的发展和概况[J].高科技与产业化,87.
    [63]曹永忠,周孝德,吴秋萍,孙东迁.河流水质模型要就概述[J].水利科技与经济,2008,14(3):197~206.
    [64]谢永明.河流硝化模型中的参数估计[M].环境科技,10(6):3-8.
    [65]李克强,王修林,韩秀荣,石晓勇,祝陈坚,李瑞香莱州湾围隔浮游生态系统氮、磷营养盐迁移转化模型研究[J].中国海洋大学学报,2007,37(6):987~994
    [66]汪礼乃.环境数学模型[M].上海:华东师范大学出版社,1997,65-68.
    [67]谢永明.环境水质模型概论[M].北京:中国科学技术出版社,1996,163-193.
    [68]陈刚.浅水湖泊底泥与上覆水间磷迁移规律的研究[J].环境研究与监测,2006,19(3):17~19.
    [69]宋建华,苏育志,张建华,黄松龄,莫俊英,刘军涛.浅谈化学动力学关于速率常数的计算[J].广州化工,2002,30(4):139~141.
    [70]刘静,张永祥.三氮在地下水中的运移模拟研究[J].山西建筑,2008,34(14):28~29.
    [71]姜彬.三氮转化规律实验结果初探[J].环境科技,15(4):28~36.
    [72]文湘华,钱易,顾夏生.生物稳定塘碳、氮、磷物质迁移转化模型的研究[J].生态学报,1992,12(3):193~200.
    [73]彭泽洲,杨天行,梁秀娟等.水环境数学模型及其应用[M].北京:化学工业出版社,2007,1-19,53-57,129-140.
    [74]李继选,王军.水环境数学模型研究进展[J].水资源保护,2006,22(1):9~14.
    [75]杨天行,王运国.水环境中三氮转化的化学动力学规律及其在环境评价中的应用[J].吉林地质,1990,6(2):13~28.
    [76]余盈,付广义,陈繁忠,盛彦青.水体中三氮转化规律及影响因素研究[J].地球化学,2008,37(6):565~571.
    [77]联邦德国W金士博.水环境数学模型[M].北京:中国建筑工业出版社,1987.83.
    [78]吴持平,杨天行.阳泉矿区三矿扩建工程地下潜水三氮转移水质评价数学模型的研究及应用[R].核工业部第七研究所,长春地质学院,1987,28~35.
    [79]宋国浩,张云怀.水质模型研究进展及发展趋势[J].装备环境工程,2008,5(2):32~50.
    [80]陈阳,施介宽,陈亮.一维非稳态河流水质模型的一种数值解法[J].辽宁城乡环境科技,18(6):13~16.