Th17细胞抗肿瘤作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:机体特异性免疫功能包括体液免疫和细胞免疫,其中由各种T细胞介导的细胞免疫是机体抗肿瘤免疫的主体。肿瘤发生与转移的主要原因被认为是机体免疫系统功能减弱,不能对肿瘤细胞产生有效的免疫应答从而使肿瘤细胞逃逸机体的免疫监视。T细胞是一种重要的免疫活性细胞,根据表面CD分子的不同,可以分为CD4+T细胞和CD8+T细胞,其中的CD4+T细胞在整个细胞免疫应答中发挥重要的免疫调节作用。根据分泌细胞因子的不同,传统上将CD4+T细胞分为Th1、Th2、Treg三种类型。2005年新发现了一类CD4+T细胞亚群,因为这类细胞特征性产生IL-17,被称为Th17细胞。研究发现,Th17细胞在抗感染免疫、自身免疫和肿瘤发生发展中发挥重要作用,目前,国外研究机构对Th17细胞在肿瘤中作用的研究方兴未艾,但国内尚未见相关报道。
     乳腺癌是严重危害女性健康的恶性肿瘤,在发达国家及我国的一些大中型城市,乳腺癌的发病率已居女性恶性肿瘤的首位。目前,手术、化疗和放疗仍是乳腺癌的主要治疗手段,但是都存在一定的局限性。通常采用上述三种治疗方法的综合治疗,但乳腺癌患者的五年生存率仍不十分理想,因此,研究有效的乳腺癌治疗方法和手段是亟待解决的问题。
     近年来,肿瘤生物治疗发展迅速,因其治疗效果明显、副作用小而被医患双方所重视,已成为肿瘤治疗的新亮点。其中免疫治疗不仅能提高宿主免疫功能,特异性杀伤肿瘤细胞,而且对正常组织细胞无毒副作用或毒副作用甚微,因此,近些年发展很快。为了研究Th17细胞作为乳腺癌免疫治疗新靶标的可行性,本研究选择人乳腺癌组织和癌旁正常组织,对其中的Th17细胞数量及其临床意义进行了研究,进一步采用荷瘤动物模型研究了Th17细胞在乳腺癌发生发展中的作用及其机制,为乳腺癌的免疫治疗提供实验和理论依据。
     方法:
     1流式细胞术(FCM)检测30例乳腺癌组织及癌旁正常组织中Th17细胞和Treg细胞百分率,采用多元线性回归分析法统计肿瘤组织中Th17细胞和Treg细胞表达与患者临床病理学特征的相互关系;免疫组化法检测肿瘤组织及癌旁正常组织中IL-17、IL-1β、IL-6、TGF-β和IL-10的表达情况,采用直线相关分析法统计上述细胞因子表达与Th17细胞和Treg细胞数量的相关性。
     2免疫磁珠法分离小鼠脾初始CD4+T细胞,在多种细胞因子参与下体外诱导和扩增小鼠Th17细胞,并分别于小鼠乳腺癌细胞4T1接种BALB/c小鼠后不同时间(0天、7天和12天)过继Th17细胞进行免疫治疗,观察肿瘤生长情况和小鼠生存期。
     3将携带mIL-17基因的4T1(4T1/IL-17)细胞接种BALB/c小鼠体内,观察肿瘤生长情况和小鼠生存期;用流式细胞术、实时定量PCR以及Western blot等方法,研究IL-17在肿瘤组织的表达、肿瘤组织Th17细胞数量及其抗肿瘤作用,并对其可能的抗肿瘤机制进行研究。
     结果:
     1与癌旁正常组织相比,人乳腺癌组织中Th17细胞数量明显增加,而且TNM分期越低、转移性越低的人乳腺癌组织中Th17细胞表达率越高,提示Th17细胞具有抗肿瘤作用。
     2人乳腺癌组织高表达IL-1β和IL-6,形成利于Th17细胞分化的细胞因子微环境,导致人乳腺癌组织中Th17细胞数量增加。
     3与癌旁正常组织相比,人乳腺癌组织中Treg细胞数量明显增加,而且人乳腺癌组织中的Treg细胞通过分泌IL-10发挥促肿瘤作用。
     4人乳腺癌组织中Th17细胞数量与Treg细胞数量无相关性。
     5确定了体外诱导小鼠初始CD4+T细胞分化为Th17细胞的最佳细胞因子组合。
     6过继体外培养的Th17细胞进行免疫治疗可抑制4T1细胞荷瘤小鼠肿瘤的生长、延长荷瘤小鼠生存期。
     7转染IL-17基因的小鼠乳腺癌细胞4T1可在肿瘤局部形成利于Th17细胞分化的微环境(同时表达TGF-β和IL-6),使肿瘤组织中Th17细胞的数量明显增加。
     8肿瘤组织Th17细胞数量的增加可通过增加肿瘤组织CTL细胞的数量和功能发挥抗肿瘤作用。
     结论:与癌旁正常组织相比人乳腺癌组织中Th17细胞数量增加,并具有抗肿瘤活性,通过过继免疫治疗或改变肿瘤组织细胞因子微环境能够增加乳腺癌组织中Th17细胞的数量发挥抗肿瘤作用,这可能是乳腺癌免疫治疗的新策略。
Objective: Iit is presumede that the development of tumors is related to a defect of a host immunosurveillance system and an escape mechanism of tumors from host immune responses. The adaptive immunity in human being include humoral immunity and cell immunity, and the cell immunity mediated by T cells plays a crucial role in tumor immunosurveillance. T cells are significant immune competent cell, and according to the CD molecule on cellular membrane, T cells can be divided into CD4+T and CD8+T cells. CD4+T cells play central roles in regulation of the immune system in mammals, and CD4+T cells include distinct effector lineages, Th1, Th2 and Treg, each characterized by the production of a unique profile of effector cytokines. A new subset of CD4+ T cells, termed Th17 cells, has been characterized by the prodution of IL-17 in 2005. The primary function of Th17 cells is to fight infection by bacterial and fungal pathogens, and Th17 cells are also involved in inflammation and autoimmune disease. Recently, more and more research has shown that Th17 cells are found in both mouse and human tumors. However, the biologic role of Th17 cells is poorly understood in the tumor microenvironment.
     Breast carcinoma is a lethal malignant tumor, and in the first place of the serious diseases threatening female’s health in developed country and some big cities of our country. At present, operation, chemothreapy and radiotherapy are the main methods to treat tumors, while all have some limitations. In order to enhance the therapeutic efficacy of breast carcinoma, usually employ the combined therapy of the three main methods by turns. But the five year survival rate of breast carcinoma patient still is not satisfactory. It is the day to look for the better methods to treat breast carcinoma.
     Immunotherapy of tumors which can not only enhance the immune function of host, kill tumor cells in specific way, but also has less side-effects on normal tissues and more and more people have pay attention to immunotherapy. In order to investigate the possibility that if Th17 cells can be used as an new therpeutic target of breast carcinoma, in this study, we examined the express rate of Th17 cells in the cancer tissue and non-cancerous tissue of patients with invasive breast carcinoma, and determined if the express rate of Th17 cells in tumor tissues contribute to influence the clinical pathology factors of the homologous patients. In order to research the antitumor activity, relate mechanisms and provided basis for clinical application of Th17 cells, we study further the effects of Th17 cells in animal model.
     Methods:
     1 Expression of Th17 cells and Treg cells in the breast cancer tissues and non-cancerous tissues were detected by flow cytometry (FCM) in 30 breast carcinoma patients, and their correlation with clinical pathology factors was statistical analyzed by multiple linear regression analysis.The expression of interleukin-17 (IL-17), interleukin-1β(IL-1β), interleukin-6 (IL-6), transforming growth factor-β(TGF-β) and interleukin-10 (IL-10) in the breast cancer tissues were measured by immunohistochemical staining, and their correlation with the expression of Th17 cells or Treg cells were statistical analyzed by linear correlation dependablity analysis.
     2 The CD4+CD62L+ T cells purified by MACS were stimulated under different cytokine conditions to induce and amplify mice Th17 cells in vitro. At the 0, 7 or 12 day after mice were injected with tumor cells, the Th17 cells (experiment group) or PBS (control group) was infused through tumor adjacent into tumor barring mice. The tumor changing and the survival curves of tumor model were detected.
     3 4T1/IL-17, 4T1/pcDNA3.1 and the parental 4T1 cells were respectively inoculated to mice in the subcutaneous tissue. Three mice of every group were killed on the six weeks after tumor cells inoculation, the tumors were obtained from mice. The other mice of every group were used to observe survival and tumor size. FCM, real time PCR and Western blot were used to determine IL-17 protein expression and Th17 cells ratio in tumor tissues to explain the anti-tumor effect of 4T1/IL-17 cells.
     Results:
     1 Compared with the non-cancerous breast tissues, there are significant augment of Th17 cells in the malignant breast tissues, and the Th17 cells display anti-tumor effect in human breast cancer.
     2 Th17 cells skewing depend on the locally cytokines microenviroment in human breast cancer tissues.
     3 Compared with the non-cancerous breast tissues, there are significant augment of Treg cells in the malignant breast tissues, and the IL-10 secreted by Treg cells may involve in their promote-tumor effect.
     4 In human breast cancer tissues, the ratio of Th17 cells has nothing with the ratio of Treg cells.
     5 Ascertain the best cytokine combination inducing the mice Th17 cells from CD4+CD62L+ T cells in vitro.
     6 Adoptive transfer of Th17 cells cultured in vitro through tumor adjacent into tumor barring mice, the tumors of mice had accepted Th17 cells adoptive immunotherapy developed obviously slower than the mice had not. And the survival time of tumor barring mice had accepted Th17 cells adoptive immunotherapy also was more longer than the tumor barring mice had not.
     7 IL-17 secreted from 4T1/IL-17 cells can induce the express of TGF-βand IL-6, this cytokines microenviroment can benefit the skew of Th17 cells.
     8 The accrescence of Th17 cells in tumor tissues can promote the tumor infiltration and function of CTL, and this may involve in the anti-tumor effect of Th17 cells.
     Conclusion: There are significant augment of Th17 cells in the malignant breast tissues compared with the non-cancerous breast tissues. And the increased Th17 cells in the tumor tissue of breast cancer patients display anti-tumor effect.To augment the cells population of Th17 cells in the breast tumor tissues by adoptive immunotherapy or altering the cytokine microenvironment in breast tumor tissues may be the novel immunotherapy method of breast carcinoma.
引文
1 Bettelli E, Kuchroo VK. IL-12-and IL-23-induced T helper cell subsets: birds of the same feather flock together. J Exp Med, 2005,201(2):169-171
    2 Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells[J]. Annu Rev Immunol, 2009,27:485-517
    3 Ouyang W, Kolls JK, Zheng Y, et al. The biological functions of T helper 17 cell effector cytokines in inflammation[J]. Immunity, 2008,28(4):454-467
    4 Weaver CT, Harrington LE, Mangan PR, et al. Th17: an effector CD4 T cell lineage with regulatory T cell ties[J]. Immunity, 2006,24(6):677-688
    5 Bettelli E, Oukka M, Kuchroo VK, et al. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol, 2007,8(4):345-350
    6 Yang ZZ, Novak AJ, Ziesmer SC, et al. Malignant B cells skew the balance of regulatory T cells and TH17 cells in B-cell non-Hodgkin's lymphoma. Cancer Res, 2009,69(13):5522-5530
    7 Kryczek I, Banerjee M, Cheng P, et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood, 2009,114(6):1141-1149
    8 Steiner GE, Newman ME, Paikl D, et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benignhyperplastic, and malignant prostate. Prostate, 2003,56(3):171-182
    9 Miyahara Y, Odunsi K, Chen W, et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer[J]. Proc Natl Acad Sci USA, 2008,105(40):15505-15510
    10 Kryczek I, Wei S, Zou L, et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol, 2007,178(11):6730-6733
    11 Sfanos KS, Bruno TC, Maris CH, et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res, 2008,14(11):3254-3261
    12 Koyama K, Kagamu H, Miura S, et al. Reciprocal CD4+ T-cell balance of effector CD62LlowCD4+ and CD62LhighCD25+CD4+ regulatory T cells in small cell lung cancer reflects disease stage[J]. Clin Cancer Res, 2008,14(21):6770-6779
    13 Boni A, Muranski P, Cassard L, et al. Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers. Blood, 2008,112(12):4746-4754
    14 Muranski P, Boni A, Antony PA, et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood, 2008,112(2):362-373
    15 Kottke T, Sanchez Perez L, Diaz RM, et al. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res, 2007,67(24):11970-11979
    16 Shime H, Yabu M, Akazawa T, et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol, 2008,180(11):7175-7183
    17 Lim HW, Lee J, Hillsamer P, et al. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J Immunol, 2008,180(1):122-129
    18 Zhang B, Rong G, Wei H, et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun, 2008,374(3):533-537
    19 Tesmer L A, Lundy SK, David A SS. Th17 cells in human disease[J].Immunological Reviews, 2008,223(1):87-113
    20 Romagnani S. Human Th17 cells[J]. Arthritis Res Ther, 2008,10(2):206
    21 Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008,453(7192):236-240
    22 Li Y, Yee C. IL-21 mediated Foxp3 suppression leads to enhanced generation of antigen-specific CD8+ cytotoxic T lymphocytes[J]. Blood, 2008,111(1):229-235
    23 Fantini MC, Rizzo A, Fina D, et al. IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells[J]. Eur J Immunol, 2007,37(11):3155-3163
    24 Wan S, Xia C, Morel L, et al. IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions[J]. J Immunol, 2007,178(1):271-279
    25 Schreiber TH, Deyev VV, Rosenblatt JD, et al. Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination[J]. Cancer Res, 2009,69(5):2026-2033
    26 Xu L, Kitani A, Fuss I, et al. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta[J]. J Immunol, 2007,178(11):6725-6729
    27 Koenen HJ, Smeets RL, Vink PM, et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells[J]. Blood, 2008,112(6):2340-2352
    28白平,王春晖. CD4+CD25+调节T细胞与肿瘤免疫治疗策略.肿瘤学杂志,2008,14(2):157-160
    29 Schabowsky RH, Madireddi S, Sharma R, et al. Targeting CD4+CD25+Foxp3+ regulatory T-cells for the augmentation of cancer immunotherapy[J]. Curr Opin Investig Drugs, 2007,8(12):1002-1008
    30 Yang ZZ, Novak AJ, Stenson MJ, et al. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma[J]. Blood, 2006,107(9):3639-3646
    31 Yang XH, Yamagiwa S, Ichida T, et al. Increase of CD4+CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma[J]. J Hepatol, 2006,45(2):254-262
    32 Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med, 2004,10(9):942-949
    33 Leffers N, Gooden MJ, de Jong RA, et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer[J]. Cancer Immunol Immunother, 2009,58(3):449-459
    34 Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3[J]. Nat Immunol, 2007,8(3):277-284
    35 Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression[J]. Nature, 2007,445(7129):766-770
    36李喆. CD4+CD25+调节性T细胞核调控基因FOXP3与移植物抗宿主病的关系.广西医科大学硕士研究生学位论文. 2008. http://dlib. cnki. net/kns50/detail. aspx?QueryID=3&CurRec=3
    37 Ebert LM, Tan BS, Browning J, et al. The Regulatory T Cell-Associated Transcription Factor FoxP3 Is Expressed by Tumor Cells[J]. Cancer Res, 2008,68:3001-3009
    38 Zuo T, Liu R, Zhang H, et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2[J]. J Clin Invest, 2007,117(12):3765-3773
    39 Zuo T, Wang L, Morrison C, et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene [J]. Cell, 2007,129(7):1275-1286
    40 Lu H. FOXP3 expression and prognosis: role of both the tumor and T cells [J]. J Clin Oncol, 2009,27(11):1735-1736
    41 Merlo A, Casalini P, Carcangiu ML, et al. FOXP3 Expression and OverallSurvival in Breast Cancer[J]. J Clin Oncol, 2009,27(11):1746-1752
    42王慧,潘科,夏建川。IDO和CD4+CD25+调节性T细胞在肿瘤免疫逃逸中相互作用的研究进展[J].癌症, 2009,28(2):221-224
    43 Sasada T, Kimura M, Yoshida Y, et al. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression[J]. Cancer, 2003,98(5):1089-1099
    1 Muranski P, Boni A, Antony PA, et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood, 2008,112(2):362-373
    2 Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med, 2006,203(12):2673-2682
    3 Chen Dong. TH17 cells in development: an updated view of their molecular identity and genetic programming[J]. Nature Reviews Immunology, 2008,8:337-348
    4 Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells[J]. Annu Rev Immunol, 2009,27:485-517
    5 Lee YK, Mukasa R, Hatton RD, et al. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol, 2009,21(3):274-280
    6 Lim HW, Lee J, Hillsamer P, et al. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells[J]. J Immunol, 2008,180(1):122-129
    7 Hirota K, Yoshitomi H, Hashimoto M, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med, 2007,204(12):2803-2812
    8 Afzali B, Lombardi G, Lechler RI, The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease[J]. Clin Exp Immunol, 2007,148(1):32-46
    9 Bi Y, Liu G, Yang R, et al. Th17 cell induction and immune regulatory effects[J]. J Cell Physiol, 2007,211(2):273-278
    10 Bettelli E, Korn T, Kuchroo VK, et al. Th17: the third member of the effector T cell trilogy[J]. Curr Opin Immunol, 2007,19(6):652-657
    11 Fitch E, Harper E, Skorcheva I, et al. Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines. Curr Rheumatol Rep, 2007,9(6):461-467
    12 Tesmer LA, Lundy SK, David A SS. Th17 cells in human disease[J]. Immunological Reviews, 2008,223(1):87-113
    13 Parrish Novak J, Dillon SR, Nelson A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature, 2000,408(6808):57-63
    14 Martinez GJ, Nurieva RI, Yang XO, et al. Regulation and Function of Proinflammatory TH17 Cells. Ann N Y Acad Sci, 2008,1143:188-211
    15 Nurieva RI, Dong C. Keeping autoimmunity in check: how to control a Th17 cell controller. Immunity, 2008,29(6):841-843
    16 Lee YK, Turner H, Maynard CL, et al. Late Developmental Plasticity in the T Helper 17 Lineage[J]. Immunity, 2009,30(1):92-107
    17 Fantini MC, Rizzo A, Fina D, et al. IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells[J]. Eur J Immunol, 2007,37(11):3155-3163
    18 Deenick EK, Tangye SG. Autoimmunity: IL-21: a new player in Th17-cell differentiation. Immunol Cell Biol, 2007,85(7):503-505
    19 Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 2007,448(7152):484-487
    20 Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature, 2007,448(7152):480-483
    21 Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol, 2007,8(9):967-974
    22 Chen Z, O'Shea JJ. Th17 cells:a new fate for differentiating helper T cells. Immunol Res, 2008,41(2):87-102
    23 Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000,13(5):715-725
    24 Iwamoto S, Iwai S, Tsujiyama K, et al. TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J Immunol, 2007,179(3):1449-1457
    25 Stockinger B. Th17 cells: An orphan with influence. Immunol Cell Biol, 2007,85(2):83-84
    26 Kleinschek MA, Owyang AM, Joyce Shaikh B, et al. IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med, 2007,204(1):161-170
    27 Furuzawa Carballeda J, Vargas Rojas MI, Cabral AR, et al. Autoimmune inflammation from the Th17 perspective. Autoimmun Rev, 2007,6(3):169-175
    28 Shime H, Yabu M, Akazawa T, et al. Tumor-Secreted Lactic Acid Promotes IL-23/IL-17 Proinflammatory Pathway[J]. J Immunol, 2008,180:7175-7183
    29 Koyama K, Kagamu H, Miura S, et al. Reciprocal CD4+ T-cell balance of effector CD62LlowCD4+ and CD62LhighCD25+CD4+ regulatory T cells in small cell lung cancer reflects disease stage[J]. Clin Cancer Res, 2008,14(21):6770-6779
    30 Kaufmann SH, Kuchroo VK. Th17 cells. Microbes Infect, 2009,11(5):579-583
    31 McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor isessential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol, 2009,10(3):314-324
    32 Cooke A. Th17 cells in inflammatory conditions. Rev Diabet Stud, 2006,3(2):72-75
    33 Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells[J]. J Exp Med, 2007,204(8):1849-1861
    34 Weaver CT, Harrington LE, Mangan PR, et al. Th17: an effector CD4 T cell lineage with regulatory T cell ties[J]. Immunity, 2006,24(6):677-688
    35 Brownell I. Sexy and 17: TH17 effector T cells and psoriasis. J Drugs Dermatol, 2007,6(8):853-856
    36 Miyahara Y, Odunsi K, Chen W, et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA, 2008,105(40):15505-15510
    1 Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORγt directs the differentiation program of pro-inflammatory IL-17+ T helper cells[J]. Cell, 2006,126(6):1121-1133
    2 Dong C. Differentiation and function of pro-inflammatory Th17 cells. Microbes Infect, 2009,11(5):584-588
    3 Sfanos KS, Bruno TC, Maris CH, et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res, 2008,14(11):3254-3261
    4 Koyama K, Kagamu H, Miura S, et al. Reciprocal CD4+ T-cell balance of effector CD62LlowCD4+ and CD62LhighCD25+CD4+ regulatory T cells in small cell lung cancer reflects disease stage. Clin Cancer Res, 2008,14(21):6770-6779
    5 Muranski P, Boni A, Antony PA, et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood, 2008,112(2):362-373
    6 Kryczek I, Wei S, Zou L, et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment[J]. J Immunol, 2007,178(11):6730-6733
    7 Miyahara Y, Odunsi K, Chen W, et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer[J]. Proc Natl Acad Sci USA, 2008,105(40):15505-15510
    8 Shime H, Yabu M, Akazawa T, et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol, 2008,180(11):7175-7183
    9 Fitch E, Harper E, Skorcheva I, et al. Pathophysiology of psoriasis:recent advances on IL-23 and Th17 cytokines. Curr Rheumatol Rep,2007,9(6):461-467
    10杨丽娟,王润田,刘京生等.黄芪对S180肿瘤培养上清免疫抑制作用影响研究.中国肿瘤生物治疗杂志. 2003,10(3):210-213
    11杨丽娟,王润田,刘京生等.猪苓多糖对S180细胞培养上清免疫抑制作用影响的研究.细胞与分子免疫学杂志. 2004,20(2):234-237
    12 Bouguermouh S, Fortin G, Baba N, et al. CD28 co-stimulation down regulates Th17 development. PLoS One, 2009,4(3):e5087
    13 Starnes T, BroxmeyerHE, Robertson MJ, et al. Cutting edge: IL-17D, a novel memberof the IL-17 family, stimulates cytokine production and inhibitshemopoiesis[J]. Immuinity, 2002,169:642-646
    14 Weaver CT, Harrington LE, Mangan PR, et al. Th17: an effector CD4 T cell lineage with regulatory T cell ties[J]. Immunity, 2006,24(6):677-688
    15 Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage[J]. Nature, 2006,441(7090):231-234
    16 Afzali B, Lombardi G, Lechler RI, et al. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol, 2007,148(1):32-46
    17 Schreiber TH, Deyev VV, Rosenblatt JD, et al. Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination[J]. Cancer Res, 2009,69(5):2026-2033
    18 Tesmer LA, Lundy SK, David A SS. Th17 cells in human disease[J]. Immunological Reviews, 2008,223(1):87-113
    19 Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008,453(7192):236-240
    20 Li Y, Yee C. IL-21 mediated Foxp3 suppression leads to enhanced generation of antigen-specific CD8+ cytotoxic T lymphocytes[J]. Blood, 2008,111(1):229-235
    21 Fantini MC, Rizzo A, Fina D, et al. IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells[J]. Eur J Immunol,2007,37(11):3155-3163
    22 Wan S, Xia C, Morel L, et al. IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions[J]. J Immunol, 2007,178(1):271-279
    23 Beriou G, Costantino CM, Ashley CW, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function[J]. Blood, 2009,113:4240-4249
    1 Weaver CT, Murphy KM. T-cell subsets: the more the merrier[J]. Curr Biol, 2007,17(2):R61-R63
    2 Bettelli E, Kuchroo VK. IL-12-and IL-23-induced T helper cell subsets: birds of the same feather flock together[J]. J Exp Med, 2005,201(2):169-171
    3 Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005,6:1133-1141
    4 Tesmer LA, Lundy SK, David A SS. Th17 cells in human disease[J]. Immunological Reviews, 2008,223(1):87-113
    5 Weaver CT, Hatton RD, Mangan PR, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages[J]. Annu Rev Immunol, 2007,25:821-52
    6 Yang ZZ, Novak AJ, Witzig TE, et al. Malignant B Cells Skew the Balance between Treg Cell and TH17 Cell Differentiation in B-Cell Non-HodgkinLymphoma (NHL)[J]. Blood (ASH Annual Meeting Abstracts), 2007,110:1347
    7 Afzali B, Lombardi G, Lechler RI, The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease[J]. Clin Exp Immunol, 2007,148(1):32-46
    8 Weaver CT, Harrington LE, Mangan PR, et al. Th17: an effector CD4 T cell lineage with regulatory T cell ties[J]. Immunity, 2006,24(6):677-688
    9 Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth[J]. Nature, 2006,442(7101):461-465
    10 Kryczek I, Wei S, Zou L, et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment[J]. J Immunol, 2007,178(11):6730-6733
    11 Schmidt Weber CB, Akdis M, Akdis CA, et al. TH17 cells in the big picture of immunology[J]. J Allergy Clin Immunol, 2007,120(2):247-254
    12 Wakkach A, Fournier N, Brun V, et al. Characterization of denritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo[J]. Immunity, 2003,18:605-617
    13 Fantini MC, Becker C, Monteleone G, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7[J]. J Immunol, 2004,172:5149-5153
    14 Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma[J]. Immunity, 2008,28(1):29-39
    15 Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006,126(6):1121-1133
    16 Harrington LE, Mangan PR, Weaver CT, et al. Expanding the effector CD4 T-cell repertoire: the Th17 lineage[J]. Curr Opin Immunol, 2006,18(3):349-356
    17 Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells[J]. Nature, 2007,448:480-483
    18 Wan S, Xia C, Morel L. IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+T cell regulatory functions[J]. J Immunol, 2007,178(1):271-279
    19 Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage[J]. Nature, 2006,441(7090):231-234
    20 Lubberts E. IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis?[J]. Cytokine, 2008,41(2):84-91
    21 Chen Dong. TH17 cells in development: an updated view of their molecular identity and genetic programming[J]. Nature Reviews Immunology, 2008,8:337-348
    22 Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells[J]. J Biol Chem, 2007,282(13):9358-9363
    23 Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways[J]. Nat Immunol, 2007,8(9):967-974
    24 Mathur AN, Chang HC, Zisoulis DG, et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells[J]. J Immunol, 2007,178(8):4901-4907
    25 Harris TJ, Grosso JF, Yen HR, et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity[J]. J Immunol, 2007,179(7):4313-4317
    26 Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J]. Nature, 2007,448(7152):484-487
    27 Goriely S, Neurath MF, Goldman M, et al. How microorganisms tip the balance between interleukin-12 family members[J]. Nat Rev Immunol, 2008,8(1):81-86
    28 Hajishengallis G, Tapping RI, Harokopakis E, et al. Differential interactions of fimbriae and lipopolysaccharide from Porphyromonas gingivalis with the Tolllike receptor 2-centred pattern recognition apparatus[J]. Cell Microbiol, 2006,8:1557-1570
    29 Hajishengallis G, Shakhatreh MA, Wang M, et al. Complement receptor 3 blockade promotes IL-12-mediated clearance of Porphyromonas gingivalis and negates its virulence in vivo[J]. J Immunol, 2007,179:2359-2367
    30 Taylor PR, Tsoni SV, Willment JA, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection[J]. Nat Immunol, 2007,8:31-38
    31 Willment JA, Brown GD. C-type lectin receptors in antifungal immunity[J]. Trends Microbiol, 2008,16(1):27-32
    32 Abdollahi Roodsaz S, Joosten LA, Koenders MI, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis[J]. J Clin Invest, 2008,118(1):205-216
    33 Amsen D, Blander JM, Lee GR, et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells[J]. Cell, 2004,117(4):515-526
    34 Liotta F, Frosali F, Querci V, et al. Human immature myeloid dendritic cells trigger a TH2-polarizing program via Jagged-1/Notch interaction[J]. J Allergy Clin Immunol, 2008,121(4):1000-5. e8
    35 Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells[J]. Immunity, 2006,24(2):179-189
    36 Lee YK, Turner H, Maynard CL, et al. Late Developmental Plasticity in the T Helper 17 Lineage[J]. Immunity, 2009,30(1):92-107
    37 McGeachy MJ, Bak Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology[J]. Nat Immunol, 2007,8(12):1390-1397
    38 Nakae S, Iwakura Y, Suto H, et al. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17[J]. J Leukoc Biol, 2007,81(5):1258-1268
    39 Horai R, Nakajima A, Habiro K, et al. TNF-alpha is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice[J]. J Clin Invest, 2004,114(11):1603-1611
    40 Korn T, Reddy J, Gao W, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nature Medicine, 2007,13:423-431
    41 Bettelli E, Oukka M, Kuchroo VK, et al. T(H)-17 cells in the circle of immunity and autoimmunity[J]. Nat Immunol, 2007,8(4):345-350
    42 Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells[J]. J Exp Med, 2007,204(8):1849-1861
    43 Thakker P, Leach MW, Kuang W, et al. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis[J]. J Immunol, 2007,178(4):2589-2598
    44 Gocke AR, Cravens PD, Ben LH, et al. T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity[J]. J Immunol, 2007,178(3):1341-1348
    45 Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12[J]. Immunity, 2000,13(5):715-725
    46 Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment[J]. Cell, 2000,100(6):655-669
    47 Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005,6(11):1123-1132
    48 Bettelli E, Sullivan B, Szabo SJ, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis[J]. J Exp Med, 2004,200(1):79-87
    49 Natalia MO, Yeonseok C, Seon Hee C, et al. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells[J]. Eur J Immunol, 2009,216(39):216-224
    50 Suryani S, Sutton I. An interferon-gamma-producing Th1 subset is the major source of IL-17 in experimental autoimmune encephalitis[J]. J Neuroimmunol, 2007,183(1-2):96-103
    51 Romagnani S. Human Th17 cells[J]. Arthritis Res Ther, 2008,10(2):206
    52 McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road[J]. Immunity, 2008,28(4):445-453
    53 Stummvoll GH, DiPaolo RJ, Huter EN, et al. Th1, Th2 and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells[J]. J Immunol, 2008,181(3):1908-1916
    54 Dardalhon V, Korn T, Kuchroo VK, et al. Role of Th1 and Th17 cells in organ-specific autoimmunity[J]. J Autoimmun, 2008,31:252-256
    55 Neurath MF, Weigmann B, Finotto S, et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease[J]. J Exp Med, 2002,195(9):1129-1143
    56 Chitnis T, Najafian N, Benou C, et al. Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis[J]. J Clin Invest, 2001,108(5):739-747
    57 Khader SA, Bell GK, Pearl JE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge[J]. Nat Immunol, 2007,8(4):369-377
    58 Acosta Rodriguez EV, Napolitani G, Lanzavecchia A, et al. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells[J]. Nat Immunol, 2007,8(9):942-949
    59 Chen Z, Tato CM, Muul L, et al. Distinct regulation of interleukin-17 in human T helper lymphocytes[J]. Arthritis Rheum, 2007,56(9):2936-2946
    60 Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells[J]. Nat Immunol, 2007,8(9):950-957
    61 van Beelen AJ, Zelinkova Z, Taanman Kueter EW, et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells[J]. Immunity, 2007,27(4):660-669
    62 Bi Y, Liu G, Yang R, et al. Th17 cell induction and immune regulatory effects[J]. J Cell Physiol, 2007,211(2):273-278
    63 Lim HW, Lee J, Hillsamer P, et al. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells[J]. J Immunol, 2008,180(1):122-129
    64 Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature, 2003,421(6924):744-748
    65 Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation[J]. J Exp Med, 2003,198(12):1951-1957
    66 Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006,441(7090):235-238
    67 Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid[J]. Science, 2007,317(5835):256-260
    68 Bettelli E, Korn T, Kuchroo VK, et al. Th17: the third member of the effector T cell trilogy[J]. Curr Opin Immunol, 2007,19(6):652-657
    69 Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008,453(7192):236-240
    70 Bettelli E, Oukka M, Kuchroo VK, et al. T(H)-17 cells in the circle of immunity and autoimmunity[J]. Nat Immunol, 2007,8(4):345-350
    71 Xu L, Kitani A, Fuss I, et al. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta[J]. J Immunol, 2007,178(11):6725-6729
    72 Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells[J]. Curr Opin Immunol, 2007,19(3):281-286
    73 Miyahara Y, Odunsi K, Chen W, et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer[J]. PNAS, 2008,105:15505-15510
    74 Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells[J]. Science, 2003,299(5609):1033-1036
    75 Massague J, Seoane J, Wotton D, et al. Smad transcription facto rs[J]. Genes Dev, 2005,19(23):2783-2810
    76 Zhang Z, Zheng M, Bindas J, et al. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis[J]. Inflamm Bowel Dis, 2006,12(5):382-388
    77 Zheng SG, Wang JH, Stohl W, et al. TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+regulatory cells[J]. J Immunol, 2006,176(6):3321-3329
    78 Beriou G, Costantino CM, Ashley CW, et al. IL-17 producing human peripheral regulatory T cells retain suppressive function[J]. Blood, 2009,113:4240-4249
    79 Radhakrishnan S, Cabrera R, Schenk EL, et al. Reprogrammed FoxP3+ T Regulatory Cells Become IL-17+ Antigen-Specific Autoimmune Effectors In Vitro and In Vivo[J]. J Immunol, 2008,181:3137-3147
    80 Koenen HJ, Smeets RL, Vink PM, et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells[J]. Blood, 2008,112(6):2340-2352
    81 Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of Human CD4+CD25+high Regulatory T Cell Function[J]. J Immunol, 2002,169:6210-6217
    82 Beyer M, Schultze JL. Regulatory T cells in cancer[J]. Blood, 2006,108(3):804-811
    83 Powell DJ Jr, Felipe Silva A, Merino MJ, et al. Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo[J]. J Immunol, 2007,179(7):4919-4928
    84 ViguierM, Lemaitre F, Verola O, et al. Foxp3 Expressing CD4+CD25high Regulatory T Cells Are Overrepresented in Human Metastatic Melanoma Lymph Nodes and Inhibit the Function of Infiltrating T Cells[J]. J Immunol, 2004,173:1444-1453
    85 Kato T, Furumoto H, Ogura T, et al. Expression of IL-17 mRNA in ovarian cancer[J]. Biochem Biophys Res Commun, 2001,282(3):735-738
    1 Tesmer LA, Lundy SK, David A SS. Th17 cells in human disease[J]. Immunological Reviews, 2008,223(1):87-113
    2 Kryczek I, Wei S, Zou L, et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment[J]. J Immunol, 2007,178(11):6730-6733
    3 Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells[J]. Annu Rev Immunol, 2009,27:485-517
    4 Hirahara N, Nio Y, Sasaki S, et al. Inoculation of human interleukin-17gene-transfected Meth-A fibrosarcoma cells induces T cell-dependent tumor-specific immunity in mice[J]. Oncology, 2001,61(1):79-89
    5 Hirahara N, Nio Y, Sasaki S, et al. Reduced invasiveness and metastasis of Chinese hamster overy cells transfected with human interleukin-17 gene[J]. Anticancer Res, 2000,20(5A):3137-3142
    6 Benchetrit F, Ciree A, Vives V, et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism[J]. Blood, 2002,99(6):2114-2121
    7 Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis[J]. J Immunol, 2005,175(9):6177-6189
    8 Kato T, Furumoto H, Ogura T, et al. Expression of IL-17 mRNA in ovarian cancer[J]. Biochem Biophys Res Commun, 2001,282(3):735-738
    9 Ouyang W, Kolls JK, Zheng Y, et al. The biological functions of T helper 17 cell effector cytokines in inflammation[J]. Immunity, 2008,28(4):454-467
    10 Dhodapkar KM, Barbuto S, Matthews P, et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma[J]. Blood, 2008,112(7):2878-2885
    11 Kasakura S. IL-21 and IL-21 receptor immunomodulatory and antitumor effects[J]. Biotherapy, 2007,21(2):83-91
    12 Ma HL, Whitters MJ, Konz RF, et al. IL-21 Activates Both Innate and Adaptive Immunity to Generate Potent Antitumor Responses that Require Perforin but Are Independent of IFN- [J]. J Immunol, 2003,171(2):608-615
    13 Peluso I, Fantini MC, Fina D, et al. IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes[J]. J Immunol, 2007,178(2):732-739
    14 Ugai S, Shimozato O, Kawamura K, et al. Expression of the interleukin-21gene in murine colon carcinoma cells generates systemic immunity in the inoculated hosts[J]. Cancer Gene Ther, 2003,10(3):187-192
    15方丽娟。IL-21在肿瘤免疫治疗中的应用及研究进展。国际免疫学杂志,2006,29(3):189-193
    16 Carlo ED, Comes A, Orengo AM, et al. IL-21 Induces Tumor Rejection by Specific CTL and IFN- -Dependent CXC Chemokines in Syngeneic Mice[J]. J Immunol, 2004,172:1540-1547
    17 Kishida T, Asada H, Itokawa Y, et al. Interleukin (IL)-21 and IL-15 genetic transfer synergistically augments therapeutic antitumor immunity and promotes regression of metastatic lymphoma[J]. Mol Ther, 2003,8(4):552-558
    18 Curti BD. Immunomodulatory and antitumor effects of interleukin-21 in patients with renal cell carcinoma[J]. Expert Rev Anticancer Ther, 2006,6(6):905-909
    19 Schmechel S, Konrad A, Diegelmann J, et al. Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status[J]. Inflamm Bowel Dis, 2008,14(2):204-212
    20 Nagakawa H, Shimozato O, Yu L, et al. Expression of interleukin-22 in murine carcinoma cells did not influence tumour growth in vivo but did improve survival of the inoculated hosts[J]. Scand J Immunol, 2004,60(5):449-454
    21 Weber GF, Gaertner FC, Erl W, et al.IL-22-mediated tumor growth reduction correlates with inhibition of ERK1/2 and AKT phosphorylation and induction of cell cycle arrest in the G2-M phase[J]. J Immunol, 2006,177(11):8266-8272
    22 Bard JD, Gelebart P, Anand M, et al. Aberrant expression of IL-22 receptor 1 and autocrine IL-22 stimulation contribute to tumorigenicity in ALK+ anaplastic large cell lymphoma[J]. Leukemia, 2008,22(8):1595-1603
    23 Zhang W, Chen Y, Wei H, et al. Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interferingRNA on human lung cancer xenografts[J]. Clin Cancer Res, 2008,14(20):6432-6439
    24 Nam JS, Terabe M, Kang MJ, et al. Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17[J]. Cancer Res, 2008,68(10):3915-3923
    25 Miyahara Y, Odunsi K, Chen W, et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer[J]. Proc Natl Acad Sci USA, 2008,105(40):15505-15510
    26 Shime H, Yabu M, Akazawa T, et al. Tumor-Secreted Lactic Acid Promotes IL-23/IL-17 Proinflammatory Pathway[J]. J Immunol, 2008,180:7175-7183
    27 Sfanos KS, Bruno TC, Maris CH, et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing[J]. Clin Cancer Res, 2008,14(11):3254-3261
    28 Koyama K, Kagamu H, Miura S, et al. Reciprocal CD4+ T-cell balance of effector CD62LlowCD4+ and CD62LhighCD25+CD4+ regulatory T cells in small cell lung cancer reflects disease stage[J]. Clin Cancer Res, 2008,14(21):6770-6779
    29 Inozume T, Hanada K, Wang QJ, et al. IL-17 Secreted by Tumor Reactive T Cells Induces IL-8 Release by Human Renal Cancer Cells[J]. J Immunother, 2009,32:109-117
    30 Kottke T, Sanchez Perez L, Diaz RM, et al. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer[J]. Cancer Res, 2007,67(24):11970-11979
    31 Muranski P, Boni A, Antony PA, et al. Tumor-specific Th17-polarized cells eradicate large established melanoma[J]. Blood, 2008,112(2):362-373
    32 Boni A, Muranski P, Cassard L, et al. Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers[J]. Blood, 2008,112(12):4746-4754
    33 Romagnani S. Human Th17 cells[J]. Arthritis Res Ther, 2008,10(2):206
    34 Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibitsT(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008,453(7192):236-240
    35 Li Y, Yee C. IL-21 mediated Foxp3 suppression leads to enhanced generation of antigen-specific CD8+ cytotoxic T lymphocytes[J]. Blood, 2008,111(1):229-235
    36 Fantini MC, Rizzo A, Fina D, et al. IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells[J]. Eur J Immunol, 2007,37(11):3155-3163
    37 Lim HW, Lee J, Hillsamer P, et al. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells[J]. J Immunol, 2008,180(1):122-129
    38 Wan S, Xia C, Morel L, et al. IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions[J]. J Immunol, 2007,178(1):271-279
    39 Xu L, Kitani A, Fuss I, et al. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta[J]. J Immunol, 2007,178(11):6725-6729
    40 Koenen HJ, Smeets RL, Vink PM, et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells[J]. Blood, 2008,112(6):2340-2352
    41 Beriou G, Costantino CM, Ashley CW, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function[J]. Blood, 2009,113:4240-4249
    42 Schreiber TH, Deyev VV, Rosenblatt JD, et al. Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination[J]. Cancer Res, 2009,69(5):2026-2033
    43 Beyer M, Schultze JL. Regulatory T cells in cancer[J]. Blood, 2006,108(3):804-811
    44 Powell DJ Jr, Felipe Silva A, Merino MJ, et al. Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells invivo[J]. J Immunol, 2007,179(7):4919-4928
    45 Prabhala R, Pelluru D, Fulciniti M, et al. TH17 Pathway Promotes Tumor Cell Growth and Suppresses Immune Function in Myeloma: Potential for Therapeutic Application[J]. Blood (ASH Annual Meeting Abstracts), 2008,112:2737
    46 Xiao M, Wang C, Zhang J, et al. IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation[J]. Cancer Res, 2009,69(5):2010-2017