HIFU治疗后活化的淋巴细胞在肿瘤局部的特异性表达及其抗肿瘤效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     在前期研究基础上,本研究进一步观察高强度聚焦超声(high intensity focused ultrasound,HIFU)治疗H22移植性肝癌荷瘤鼠后,外周血抗肿瘤细胞免疫功能的变化,过继免疫后荷瘤鼠外周血淋巴细胞在肿瘤局部的特异性表达和抗肿瘤免疫功能的变化,为阐明HIFU治疗肿瘤所诱发的抗肿瘤免疫效应机制提供实验室依据。
     方法
     1、HIFU治疗后荷瘤鼠抗肿瘤细胞免疫功能的变化
     72只成年健康C57BL/6J系小鼠,随机分为三组:HIFU治疗组(n=24)、HIFU假照组(n=24)和对照组(n=24)。前两组小鼠背部皮下接种H22肝癌细胞株,成瘤后(接种7天时)分别接受HIFU治疗或HIFU假照;对照组为正常小鼠,不接种肿瘤也不接受HIFU照射。三组小鼠在HIFU治疗后第14天采取外周血,淋巴细胞密度梯度离心法分离外周血淋巴细胞,MHC-肽五聚体特异性荧光染色,流式细胞术分析CTL细胞数量的变化;乳酸脱氢酶释放法检测淋巴细胞对同种肿瘤细胞的特异性杀伤活性;酶联免疫吸附法检测淋巴细胞与H22细胞共培养24小时后上清液IFN-γ、TNF-α的含量。
     2、过继免疫HIFU活化的CTL在荷瘤鼠肿瘤局部的特异性表达
     24只背部皮下接种H22肝癌细胞株成功的C57BL/6J小鼠,在接种7天时随机分为三组:HIFU治疗组(n=8)、HIFU假照组(n=8)和对照组(n=8)。三组小鼠分别接受尾静脉注射HIFU治疗、HIFU假照后荷瘤鼠和正常小鼠经MHC-肽五聚体荧光染色的外周血淋巴细胞1×107个/只。输注24小时后处死小鼠,手术取出各组小鼠接种部位肿瘤组织块作冰冻切片,激光共聚焦显微镜观察荧光染色阳性的CTLs在肿瘤局部的表达,图像分析软件分析CTLs的数量, HE染色,光镜下观察、比较CTLs的分布情况。
    
     3、过继免疫HIFU活化的CTL在荷瘤鼠肿瘤局部的功能变化
     30只背部皮下接种H22肝癌细胞株成功的C57BL/6J小鼠,在接种7天时随机分为三组:HIFU治疗组(n=10)、HIFU假照组(n=10)和对照组(n=10)。三组小鼠分别接受尾静脉注射HIFU治疗、HIFU假照荷瘤鼠和正常小鼠外周血淋巴细胞1×107个/只。输注7天后处死小鼠,手术取出各组小鼠接种部位肿瘤组织块,制备成单细胞悬液,酶联免疫斑点法检测肿瘤局部淋巴细胞功能的变化。
     结果
     1、HIFU治疗后荷瘤鼠抗肿瘤细胞免疫功能的变化
     HIFU治疗后第14天,HIFU组、假照组和对照组淋巴细胞中CTL细胞表达率(%)分别为1.9±0.08、1.42±0.09和对照组1.27±0.05,与假照组或对照组比较,HIFU组CTL细胞明显增加,差异有显著的统计学意义(P<0.01)。
     HIFU组、假照组、对照组小鼠外周血淋巴细胞对H22肿瘤细胞的杀伤率随效靶比的增加而升高,HIFU组在1:1、2.5:1、5:1、10:1效靶比时的淋巴细胞杀伤率(%)分别为3.01±1.02、13.76±2.21、33.38±3.68、51.59±3.74;与假照组或对照组比较,效靶比在2.5:1、5:1、10:1时HIFU组淋巴细胞的细胞毒活性明显增加,差异有显著的统计学意义(P<0.01)。
     HIFU组、假照组、对照组小鼠外周血淋巴细胞与H22肿瘤细胞共培养24h时上清液INF-γ和TNF-α浓度随效靶比的增加而升高,HIFU组在1:1、10:1、20:1、40:1效靶比时,上清液INF-γ含量(pg/ml)分别为141.17±19.24、178.46±16.56、443.98±13.26、743.43±18.18;TNF-α含量(pg/ml)分别为242.41±21.74、510.07±16.63、764.86±15.86、1212.83±89.21;与假照组或对照组比较,效靶比在1:10、1:20、1:40时HIFU组上清液TNF-α和INF-γ含量明显增加,差异有显著的统计学意义(P<0.01)。
     2、过继免疫HIFU活化的CTL在荷瘤鼠肿瘤局部的特异性表达
     MHC-肽五聚体荧光染色的淋巴细胞过继免疫治疗后1天,HIFU组7只小鼠,假照组6只小鼠,对照组2只小鼠肿瘤局部有呈PE标记的MHC-肽五聚体红色荧光、FITC标记的CD8分子绿色荧光的阳性细胞和MHC-肽五聚体和CD8双重染色阳性的呈黄色荧光的淋巴细胞出现;CTL细胞主要分布在肿瘤与正常组织交界区,肿瘤中央区未见表达;HIFU组CTL细胞数每个视野17.13±8.29个,假照组10.37±6.47个,对照组0.83±0.74个,与假照组及对照组比较,HIFU组CTL细胞数量明显增多,差异有显著的统计学意义(P<0.05)。
     3、过继免疫HIFU活化的CTL在荷瘤鼠肿瘤局部的功能变化
     淋巴细胞过继免疫治疗后7天,HIFU组、假照组和对照组能分泌INF-γ的淋巴细胞数(个/孔)分别为110±18.04、38±9.41和23±1.87,与假照组或对照组比较,HIFU组能分泌INF-γ淋巴细胞数量明显增加,差异有显著的统计学意义(P <0.01)。
     结论
     1、HIFU治疗H22移植性肝癌后,荷瘤鼠外周血淋巴细胞受到活化,CTL细胞数量明显增多,对同种肿瘤细胞的特异性杀伤活性明显增强。
     2、HIFU活化的淋巴细胞过继免疫治疗同种肿瘤荷瘤鼠后,CTL细胞在肿瘤局部的特异性表达明显增加,表明活化的CTL细胞能从外周血迁移到肿瘤局部。
     3、HIFU活化的淋巴细胞过继免疫治疗同种肿瘤荷瘤鼠后,在肿瘤局部表达的CTL细胞特异性抗肿瘤免疫功能明显活跃。
OBJECTIVE
     Based on the previous results, this study was designed to investigate the functional changes in peripheral blood lymphocytes after high intensity focused ultrasound (HIFU) treatment of H22 implanted tumor in mice, and to determine the local expression and specific antitumor immunity of HIFU-activated cytotoxic T lymphocytes (CTLs) within the implanted tumor region after adoptive immunotherapy for the syngeneic tumor-bearing mice. It will provide more evidences involved in HIFU-triggered antitumor immune response against the homogeneous tumor cells.
     MATERIALS AND METHODS
     1. Changes in the cellular immune functions of peripheral blood lymphocytes after HIFU treatment in tumor-bearing mice
     Seventy-two normal C57BL/6J mice were randomly divided into three groups: HIFU group (n =24), sham-HIFU group (n =24), and control group (n=24). The mice in both HIFU group and sham-HIFU group received H22 hepatocellular carcinoma implantation using the hypodermic injection of H22 cells suspension in the back of each mouse. Seven days after the tumor implantation, tumor mass was obviously detected in the local region. Subsequently, the mice in HIFU group underwent HIFU ablation for the implanted tumor, but those in sham-HIFU group received a sham therapy procedure with no acoustic energy deposition in the tumor. Those in control group were normal mice, without either tumor implantation or HIFU treatment. Fourteen days after HIFU, the peripheral blood was collected in each mouse, and flow cytometry technique was employed to observe changes in the positive expression of CTLs stained with recombinant MHC peptide fluorescence in each group, respectively. Using lymphocyte density gradient centrifugation, lymphocytes were extracted and purified from the peripheral blood of each mouse, and LDH assay was performed to measure the cytotoxic activity of the lymphocytes against H22 tumor cells in vitro in the three groups respectively. In addition, both IFN-γand TNF-αlevels were determined by the ELISA method in the supernatant after a 24-hour culture of the lymphocytes with H22 cells. 2. Local expression of HIFU-activated CTLs after adoptive immunotherapy in the homogeneous tumor-bearing mice
     Seven days after after the H22 tumor implantation, 24 tumor-bearing C57BL/6J mice were randomly divided into three groups: HIFU group (n =8), sham-HIFU group (n =8), and control group (n=8). They underwent the intravenous injection of 1×107 lymphocytes stained with recombinant MHC peptide fluorescence via the tail vein. The lymphocytes were obtained from the syngeneic tumor-bearing mice treated by either HIFU or sham-HIFU procedure, and the normal syngeneic mice, respectively. Twenty-four hours after the injection, the tumor and normal tissues surrounding the tumor were harvested in each mouse, and then sliced into histological sections using a freeze section cutter. The local expression of the positive-stained CTLs was examined under a laser confocal microscope in the tumor, and Software Image-Pro Version 5.0 was used to analyze the amount of the positive-stained CTLs in each group. Furthermore, the slices were stained with H & E method, and were observed to determine the distribution characteristic of the CTLs using optical microscopy.
     3. The functional change of HIFU-activated CTLs after adoptive immunotherapy in the homogeneous tumor-bearing mice
     Seven days after H22 tumor implantation, 30 tumor-bearing C57BL/6J mice were randomly divided into three groups: HIFU group (n =10), sham-HIFU group (n =10), and control group (n=10). They received the intravenous injection of 1×107 lymphocytes via the tail vein. The lymphocytes were obtained from the syngeneic tumor-bearing mice treated by either HIFU or sham-HIFU procedure, and the normal syngeneic mice, respectively. Seven days after adoptive immunotherapy, surgical procedure was performed to harvest the implanted tumor in each mouse. Viable tumor tissue was minced and dispersed to a single-cell suspension by grinding in a loose-fitting ground glass homogenizer and filtrating through a sterile steel mesh. The ELISpot assay was used to measure the number of IFNγ-secreting lymphocytes.
     RESULTS
     1. Changes in the cellular immune functions of peripheral blood lymphocytes after HIFU treatment in the tumor-bearing mice
     Fourteen days after HIFU treatment, the positive expression rates (%) of CTLs in the HIFU group, sham-HIFU group and control group were 1.9±0.08, 1.42±0.09 and 1.27±0.05 respectively. Compared to the values in the sham-HIFU and control groups, a statistical increase of the positive CTLs was significantly observed in the HIFU group (P < 0.01). The cytotoxic activity of the lymphocytes against H22 tumor cells gradually enhanced with an increase of effector/target cell ratios in each group. The cytotoxicity of the lyphocytes was 3.01±1.02, 13.76±2.21, 33.38±3.68 and 51.59±3.74 in the HIFU group while effector/target cell ratios were 1:1, 2.5:1, 5:1 and 10:1 respectively. Compared to the sham-HIFU and control groups, the cytotoxic activity was significantly increased in the HIFU group, and statistical differences were observed among them while effector/target cell ratios were 2.5:1, 5:1 and 10:1. The concentration of the IFN-γand TNF-αwas increased in the supernatant with an increase of effector/target cell ratios in each group. The IFN-γlevels were 141.17±19.24, 178.46±16.56, 443.98±13.26 and 743.43±18.18 pg/ml in the HIFU group respectively while effector/target cell ratios were 1:1, 10:1, 20:1 and 40:1. The TNF-αlevels were 242.41±21.74, 510.07±16.63, 764.86±15.86 and 1212.83±89.21 pg/ml in the HIFU group respectively while effector/target cell ratios were 1:1, 10:1, 20:1 and 40:1. Compared to the sham-HIFU and control groups, there were significant increases of the IFN-γand TNF-αlevels in the HIFU group while effector/target cell ratios were 1:10, 1:20 and 1:40 (P <0.01).
     2. Local expression of HIFU-activated CTLs after adoptive immunotherapy in the homogeneous tumor-bearing mice
     One day after adoptive immunotherapy with the HIFU-activated lymphocytes stained by Pro5 Recombinant MHC peptide fluorescence, the positive-stained CTLs were observed in 7 mice in the HIFU group, 6 in the sham-HIFU group, and 2 in the control group. These positive cells mainly distributed along the marginal region between the tumor and normal tissues, with no appearance in the central tumor. The number of the positive-stained CTL was 17.13±8.29 in the HIFU group, 10.37±6.47 in the sham-HIFU group, and 0.83±0.74 in the control group. Compared to the values in the sham-HIFU group and control groups, there was a significant increase of the activated-CTL infiltration within the local tumor in the HIFU group (P < 0.05).
     3. The functional change of HIFU-activated CTLs after adoptive immunotherapy in the homogeneous tumor-bearing mice
     Seven days after adoptive immunotherapy with the HIFU-activated lymphocytes, the number of INF-γsereting lymphocyte frequencies was 110±18.04 in the HIFU group, 38±9.41 in the sham-HIFU group, and 23±1.87 in the control group respectively. Compared to the sham-HIFU and control groups, there was a significant increase of INF-γsereting lymphocytes in the HIFU group (P < 0.01).
     CONCLUSION
     1. Peripheral blood lymphocytes were significantly activated after HIFU treatment of implanted H22 hepatocellualr carcinoma in mice, with an increase of the positive CTLs. The activated lymphocytes had a stronger cytotoxicity against H22 tumor cells in vitro.
     2. After adoptive immunotherapy with the HIFU-activated lymphocytes, the local expression of the HIFU-activated CTLs was significantly increased within the implanted tumor in the homogeneous tumor-bearing mice, suggesting that the activated CTLs could move from peripheral blood into the local tumor.
     3. After adoptive immunotherapy with the HIFU-activated lymphocytes, local CTLs presented a stronger specific antitumor immune response within the tumor in the homogeneous tumor-bearing mice.
引文
[1]刘振华,王苑本.肿瘤免疫治疗与预后[M].北京:人民卫生出版社,2006.3
    [2]王斌全,赵和平.肿瘤学概论[M].北京:军事医学科学出版社,2006. 175
    [3] ucas KG, Salzman D, Garcia A, et al. Adoptive immunotherapy with allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T-lymphocytes for recurrent, EBV-positive Hodgkin disease[J]. Cancer. 2004,100 (9): 1892-901
    [4] Sun Q, Burton R, Reddy V, et al. Safety of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for patients with refractory EBV-related lymphoma[J]. Br J Haematol. 2002 ,118(3): 799-808
    [5] Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma[J]. J Clin Oncol. 2005, 23(10): 2346-2357
    [6] Toh U, Yamana H, Kido K, et al. Autologous tumor specific immunotherapy of refractory cancers with ex vivo-generated T cells stimulated by autologous tumor cell[J]. Gan To Kagaku Ryoho. 2003, 30(11): 1566-1570
    [7] Maries F, Hans H. The role of perforin in infections and tumour surveillance[J]. Experimental Physiology. 2000, 85(6): 681-685
    [8]冀振华,赵平.肿瘤临床综合治疗新概念[M].北京:清华大学出版社,2006.35
    [9] Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nature[J]. Reviews Cancer. 2005, 5: 321-327
    [10]Wu F, Chen WZ,Bai J,et al. Pathological changes in human malignant carcinoma treated with high intensity focused ultrasound [J]. Ultrasound Med Biol. 2001, 27: 1099-1106
    [11]Wu F, Wang ZB, Chen WZ,et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview [J]. Ultrasonics Sonochemistry. 2004, 11:149-154
    [12] Wu F, Wang ZB, Jin CB, et al. Circulating tumor cells in patients with solid malignancy treated by high-intensity focused ultrasound [J]. Ultrasound Med Biol.2004, 30(4): 511-517
    [13] Wu F, Wang ZB, Chen WZ, et al. Advanced hepatocellular carcinoma: treatment with high intensity focused ultrasound ablation combined with transcatheter arterial embolization [J]. Radiology. 2005, 235(5): 659-667
    [14] Wu F, Wang ZB, Chen WZ, et al. Non-invasive ablation of high intensity focused ultrasound for the treatment of patients with malignant bone tumors [J]. J Bone & Joint Surg (Br). 2005, 87B(Supple 1): 4
    [15] Wu F, Wang ZB, Chen WZ, et al. Extracorporeal high intensity focused ultrasound treatment for liver tumours: clinical experience in China and England [J]. Asian J Surg. 2005, 28 (Supple 2): S74
    [16] Wu F, Wang ZB, Chen WZ, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma [J]. Ann Surg Oncology. 2004, 11: 1061-1069
    [17] Wu F, Wang ZB, Lu P, et al. Activated anti-tumour immunity in cancer patients after high intensity focused ultrasound ablation [J]. Ultrasound Med Biol. 2004, 30: 1217-1222
    [18] Kennedy JE, ter Haar GR, Wu F, et al. Contrast-enhanced ultrasound assessment of tissue response to high-intensity focused ultrasound [J]. Ultrasound Med. Biol 2004, 30: 851-854
    [19] Wu F, Wang ZB, Chen WZ, et al. Therapeutic high intensity focused ultrasound ablation for liver tumours: clinical experience in China and England [J]. ANZ J Surg. 2004, 74 (Supple): A69
    [20] Kennedy JE, Wu F, ter Haar GR, et al. High-intensity focused ultrasound for the treatment of liver tumours [J]. Ultrasonics. 2004, 42: 931-935
    [21] Wu F, Wang ZB, Chen WZ, et al. Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: early Chinese clinical experience [J]. Ultrasound Med Biol. 2004, 30: 245-260
    [22] Wu F, Wang ZB, Cao YD, et al. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breastcancer [J]. British J Cancer. 2003, 89: 2227-2233
    [23] Wu F, Wang ZB, Chen WZ, et al. Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy [J]. J Urol. 2003, 170: 2237-2240
    [24] Wu F, Wang ZB, Cao YD, et al. Changes in biologic characteristics of breast cancer treated with high-intensity focused ultrasound [J]. Ultrasound Med Biol. 2003, 29: 1487-1492
    [25] Wu F, Chen WZ, Bai J, et al. Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies [J]. Ultrasound Med Biol. 2002, 28: 535-542
    [26] Wu F, Wang ZB, Lu P, et al. Activaated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound Med Biol. 2004 Sep, 30(9): 1217-1222
    [27]鲁培,伍烽,王智彪,等.乳腺癌HIFU后免疫效应细胞及活化分子表达[J].中国超声医学杂志. 2002, 18(10):42
    [28] Lu P, Zhu XQ, Xu ZL, et al. Increased Infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery. 2009, 145: 286-293
    [29] Xu ZL, Zhu XQ, Lu P, et al. Activation of tumor-infiltrating antigen presenting cells by high intensity focused ultrasound ablation of human breast cancer. Ultrasound Med Biol. 2009, 35: 50-57
    [30]徐中林,伍烽.乳腺癌HIFU治疗后局部APC及活化分子的表达[D].重庆医科大学硕士学位论文, 2002.5
    [31]朱学强,伍烽.乳腺癌HIFU后靶区和淋巴结肿瘤细胞凋亡的变化及其机理[D].重庆医科大学硕士学位论文, 2003.5
    [32]周强,伍烽.恶性肿瘤HIFU治疗后免疫抑制因子变化的研究[D].重庆医科大学硕士学位论文, 2003.5
    [33] Zhou Q, Zhu XQ, Zhang J, et al. Changes in circulating immunosuppressive cytokine levels of cancer patients after high intensity focused ultrasoundtreatment. Ultrasound Med Biol. 2008, 34:81-88
    [34]张颖,伍烽. HIFU治疗肿瘤后局部HSP70的表达及其诱导的特异性抗肿瘤效应[D].重庆医科大学硕士学位论文, 2004.5
    [35]邓建,伍烽.HIFU治疗后肿瘤抗原对树突状细胞的活化及其抗肿瘤效应[D].重庆医科大学硕士学位论文, 2004.5
    [36]冯军,伍烽HIFU治疗肿瘤后树突状细胞疫苗诱导的特异性抗肿瘤效应[D].重庆医科大学硕士学位论文, 2004.5
    [37] Deng J, Zhang Y, Feng J, et al. Dendritic cells loaded with ultrasound-ablated t umour induce in vivo specific antitumour immune responses. Ultrasound Med Biol. 2010, 36:441-448
    [38] Zhang Y, Deng J, Feng J, et al. Enhancement of antitumor vaccine in ablated hepatocellular carcinoma by high-intensity focused ultrasound– A preliminary report. World J Gastroenterology. 2010, 16: in Press
    [39]谢方林,伍烽. HIFU治疗后荷瘤鼠外周血淋巴细胞的特异性抗肿瘤效应[D].重庆医科大学学位论文, 2005.5
    [40]冉立峰,伍烽. HIFU治疗后外周血CTL的特异性抗肿瘤效应[D].重庆医科大学学位论文, 2006.5
    [41]谢勋鹏,伍烽. HIFU治疗后外周血CTL对同种肿瘤免疫治疗作用的机制研究[D].重庆医科大学学位论文, 2006.5
    [42]范艳敏,伍烽. HIFU治疗后外周血对中晚期同种肿瘤的抗肿瘤效应[D].重庆医科大学学位论文, 2007.5
    [43]窦肇华,张远强,郭顺银.免疫细胞学与疾病[M].北京:中国医药科技出版社,2O04:60-64
    [44]李志辉,辛淑君,曹曦文,等.早期免疫干预防治毛细支气管炎后婴幼儿哮喘的研究[J].实用医学杂志.2006, 22 (1): 30-33
    [45]高平,陈正贤.非小细胞肺癌肿瘤浸润淋巴细胞TH免疫失衡[J].实用医学杂志. 2005, 21(21): 2376-2378
    [46]沈关心,周汝麟等.现代免疫学实验技术[M].湖北科学技术出版社. 1998, 10:329-331
    [47]刘彦虹,周赫男,安晶红.乙型肝炎患者特异性CTL细胞数量的研究[J].中国实验诊断学. 2007, 11 (8): 1055
    [48]彭吉芳,李胜利,王泉海,等.肝癌患者外周血中针对NY-ESO-1/LAGE-1表位的自发性CTL的定量检测[J].中国实验诊断学. 2009, 13 (8): 1057-1059
    [49] Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma [J]. Nat Med. 1998, 4(3): 321-327
    [50]张蕾,李芳秋,张士新,等. LDH释放法检测肿瘤患者PBMC和CIK细胞的细胞毒性[J].现代检验医学杂志. 2008, 23 (6): 27-29
    [51]姜平,王秦秦,陈新明,等.癌性胸腹水TIL体外抗肿瘤作用研究[J].昆明医学院学报. 1995, 16 (4): 21-22
    [52]赵洪,蔡端,张延龄.高强度聚焦超声对荷瘤鼠淋巴细胞杀伤功能的影响[J].肝胆胰外科杂志. 2004, 16 (3): 175-177
    [53]周晋华.流式细胞分析不同分期的恶性肿瘤外周血T淋巴细胞亚群的变化[J].临床肿瘤学杂志. 2009, 14 (7): 619-621
    [54] Broderick L, Yokota SJ, Reineke J, et al. Human CD4+ effector memory T cells persisting in the microenvironment of lung cancer xrnografts are activated by local delivery of IL-2 to proliferate, produce IFN2γ, and eradicate tumor cells[J]. J Immunol. 2005, 174(2): 898-906
    [55]吉春宇,杨异,赵珩,等.手术对肺癌患者外周血T细胞亚群的影响[J].上海医学. 2004, 27 (10): 763-764
    [56] Zhang B, Karrison T, Rowley DA, et al. INF-gamma and TNF-dependent bystander of antigen-loss variants in established moused cancers. J Clin Invest. 2008 Apr, 118 (4): 1398-1404
    [57] Aqah R, Malloy B, Sherrod A, et al. Successful therapy of natural killer-resistant pulmonary metastases by the synergism of gamma-interferon with tumor necrosis factor and interleukin-2 in mice[J]. Cancer Res. 1988 Apr 15, 48 (8): 2245-2248
    [58] Rubin SC, Hoskins WJ, Markman M, et al. Synergistic activity of tumor necrosis factor and interferon in nude mouse model of human ovarian cancer[J]. Gynecol Oncol. 1989 Sep, 34 (3): 353-356
    [59] Suk K, Chang I, Kim YH, et al. Interferon gamma (IFN gamma) and tumor necrosis factor alpha synergism in ME-180 cervical cancer cell apoptosis and necrosis. IFN gamma inhibits cyoprotective NF-kappa B through STAT1/IRF-1 pathways[J]. J Biol Chem. 2001 Apr 20, 276 (16): 13153-13159
    [60] Lewis GD, Aqqarwal BB, Eessalu TE, et al. Modulation of the growth of transformed cells by human necrosis factor-alpha and interfron-gamma[J]. Cncer Res. 1987 Oct 15, 47(20): 5382-5385
    [61] Hu Z, Yang XY, Liu Y, et al. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model[J]. J Transl Med. 2007 Jul 11, 5:34
    [62] Park EK, Bae SM, Kwak SY, et al. Photodynamic therapy with recombinant adenovirus AsmlL-12 enhances anti-tumor therapy efficacy in human papillomavirus 16 (E6/E7) infected tumor madel[J]. Immunology. 2008 Aug, 124 (4): 461-468
    [63] Bae SM, Kim YW, Kwak SY, et al. Photodynamic therapy-generated tumor cell lysates with CpG-oligodeoxynycleotide enhance immunotherapy efficacy in human papillomavirus 16(E6/E7) immortalized tumor cells[J]. Cancer Sci. 2007 May, 98 (5): 747-752
    [64]王问中,欧阳茂,罗亿治,等.高强度聚焦超声对W256肝癌鼠局部组织中T淋巴细胞亚群的影响[J].中华普外科杂志. 2000, 15 (9): 536-539
    [65] Yang R, Reilly GR, Rescorla F, et al. Effects of high intensity focused Ultrasound in the treatment of experimental neuroblastoma[J]. J Pediatr Surg. 1992, 27: 246
    [56]赵子粼,鄢莉,崔建东,等.热休克蛋白-抗原肽复合物育苗预防肝癌术后复发32例[J].第四军医大学学报. 2005, 26 (22): 2076-2078
    [67] Manjili MH,Wang XY,Park J’et a1.Immunotherapy of cancer using heat shock proteins[J].Front Biosci. 2002, 7d43-d52
    [68] Chen J, Rivens I, Ter Haar GR, et al. Histological changes in rat liver tumorstreated with high-intensity focused ultrasound[J]. Ultrasound in Med Biol. 1993, 19: 67-74
    [69]叶欣,费兴波,赫崇军,等.老年人转移性肝癌患者高强度聚焦超声热疗后TH1/TH2漂移的研究[J].中华医学超声杂志(电子版) 2004, 1: 43-45
    [70] Monsurro V, Wang E, Panelli MC, et al. Active-specific immunization against cancer: is the problem at the receiving end [J]. Semin Cancer Biol. 2003, 13: 473-480
    [71] Altrnan JD, Moss PA, Goulder PJ, et al. Phenotypic analysis of antigen-specific T lymphocytes[J]. Science. 1996, 274 (5284): 94-96
    [72]管洪文,季明春,刘敖农,等.肿瘤特异性细胞毒T淋巴细胞(CTL)治疗恶性肿瘤的临床疗效观察[J].江苏临床医学杂志. 2000, 4 (1): 17-19
    [73] Meidenbauer N, Marienhagen J, Laumer M, et al. Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients [J]. J Immunol. 2003,170 (4): 2161-2169
    [74] Czerkinsky C, Nilsson LA, Nygren H, et al. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of sepecific antibody-secreting cells[J]. J Immunol Methods. 1983, 65 (1/2): 109-121
    [75] Sedgwick, JD, Holt PC. A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells[J]. J Immunol Methods. 1983, 57: 301-309
    [76] Czerkinsky C, Andersson G, Ekre HP, et al. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-seretiong cells[J]. J Immunol Methods. 1998, 110: 29
    [77] Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma [J]. Nat Med. 1998, 4(3): 321-327
    1. Cabibbo G, Latteri F, Antonucci M, CraxìA. Multimodal approaches to the treatment of hepatocellular carcinoma. Nat Clin Pract Gastroenterol Hepatol 2009; 6:159-69.
    2. Timmerman RD, Bizekis CS, Pass HI, Fong Y, Dupuy DE, Dawson LA, Lu D. Local surgical, ablative, and radiation treatment of metastases. CA Cancer J Clin 2009; 59: 145-170.
    3. Liapi E, Geschwind JF. Transcatheter and ablative therapeutic approaches for solidmalignancies. J Clin Oncol 2007; 25:978-986.
    4. Hong K, Georgiades CS, Geschwind JF. Technology insight: Image-guided therapies for hepatocellular carcinoma—intra-arterial and ablative techniques. Nat Clin Pract Oncol 2006; 3:315-324.
    5. Hafron J, Kaouk JH. Ablative techniques for the management of kidney cancer. Nat Clin Pract Urol 2007; 4:261-9.
    6. Decadt B, Siriwardena AK. Radiofrequency ablation of liver tumours: systematic review. Lancet Oncol 2004; 5:550-60.
    7. Wu F, Zhou L, Chen WR. Host antitumour immune responses to HIFU ablation. Int J Hyperthermia 2007; 23:165-71.
    8. Gravante G, Sconocchia G, Ong SL, Dennison AR, Lloyd DM. Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies. Liver Int 2009;29:18-24.
    9. Fagnoni FF, Zerbini A, Pelosi G, Missale G. Combination of radiofrequency ablation and immunotherapy. Front Biosci 2008; 13:369-81.
    10. Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 2009; 58:1-11.
    11. Lau WY, Lai EC. The current role of radiofrequency ablation in the management of hepatocellular carcinoma: a systematic review. Ann Surg 2009; 249:20-5.
    12. Curley SA. Radiofrequency ablation of malignant liver tumors. Oncologist 2001; 6:14-23.
    13. Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation; importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol 1996; 3:212–8.
    14. Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999; 5: 1249–55.
    15. Matzinger P. The danger model: a renewed sense of self. Science 2002; 296: 301-5.
    16. Gravante G, Sconocchia G, Ong SL, Dennison AR, Lloyd DM. Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies. Liver Int 2009; 29:18-24.
    17. Evrard S, Menetrier-Caux C, Biota C, Neaud V, Mathoulin-Pélissier S, Blay JY, Rosenbaum J. Cytokines pattern after surgical radiofrequency ablation of liver colorectal metastases. Gastroenterol Clin Biol 2007; 31: 141–5.
    18. Schell SR, Wessels FJ, Abouhamze A, Moldawer LL, Copeland EM III. Pro- and antiinflammatory cytokine production after radiofrequency ablation of unresectable hepatic tumors. J Am Coll Surg 2002; 195: 774–81.
    19. Meredith K, Haemmerich D, Qi C, Mahvi D. Hepatic resection but not radiofrequency ablation results in tumor growth and increased growth factor expression. Ann Surg 2007; 245: 771–6.
    20. Schueller G, Stift A, Friedl J, Dubsky P, Bachleitner-Hofmann T, Benkoe T, Jakesz R, Gnant M. Hyperthermia improves cellular immune response to human hepatocellular carcinoma subsequent to co-culture with tumor lysate pulsed dendritic cells. Int J Oncol 2003; 22: 1397–402.
    21. Fietta AM, Morosini M, Passadore I, Cascina A, Draghi P, Dore R, Rossi S, Pozzi E, Meloni F. Systemic inflammatory response and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Hum Immunol 2009; 70:477-86.
    22. Pockley AG. Heat shock proteins as regulators of the immune response. Lancet 2003; 362:469–76.
    23. Todryk SM, Michael J. Goughy MJ, Pockley AG. Facets of heat shock protein 70 show immunotherapeutic potential. Immunology 2003; 110:1–9.
    24. Schueller G, Kettenbach J, Sedivy R, Bergmeister H, Stift A, Fried J, Gnant M, Lammer J. Expression of heat shock proteins in human hepatocellular carcinoma after radiofrequency ablation in an animal model. Oncol Rep 2004; 12:495-9.
    25. Rai R, Richardson C, Flecknell P, Robertson H, Burt A, Manas DM. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). J Surg Res 2005; 129:147-51.
    26. Melief CJ. Cancer immunotherapy by dendritic cells. Immunity 2008; 29:372-83.
    27. Lutz MB, Schuler G. Immature: semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 2002; 23:445-9.
    28. Ali MY, Grimm CF, Ritter M, Mohr L, Allgaier HP, Weth R, Bocher WO, Endrulat K, Blum HE, Geissler M. Activation of dendritic cells by local ablation of hepatocellular carcinoma. J Hepatol 2005; 43:817–22.
    29. den Brok MH, Sutmuller RP, Nierkens S, Bennink EJ, Frielink C, Toonen LW, Boerman OC, Figdor CG, Ruers TJ, Adema GJ. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces antitumour immunity. Br J Cancer 2006; 95: 896-905.
    30. Zerbini A, Pilli M, Fagnoni F, Pelosi G, Pizzi MG, Schivazappa S, Laccabue D, Cavallo C, Schianchi C, Ferrari C, Missale G. Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation. J Immunother 2008; 31:271-82.
    31. Dromi SA, Walsh MP, Herby S, Traughber B, Xie J, Sharma KV, Sekhar KP, Luk A, Liewehr DJ, Dreher MR, Fry TJ, Wood BJ. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity. Radiology 2009; 251:58-66.
    32. H?nsler J, Neureiter D, Strobel D, Müller W, Mutter D, Bernatik T, Hahn EG, Becker D. Cellular and vascular reactions in the liver to radiofrequency thermo-ablation with wet needle applicators. Study on juvenile domestic pigs. Eur Surg Res 2002; 34: 357–63.
    33. Wissniowski TT, H?nsler J, Neureiter D, Frieser M, Schaber S, Esslinger B, Voll R, Strobel D, Hahn EG, Schuppan D. Activation of tumorspecific T lymphocytes byradio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res 2003; 63: 6496–500.
    34. den Brok MH, Sutmuller RP, van der Voort R, Bennink EJ, Figdor CG, Ruers TJ, Adema GJ. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 2004; 64: 4024–9.
    35. Zhang JP, Pan HM, Huang LP, Huang LP, Wu JM. Impact of radiofrequency on splenocyte immunity of mice bearing H22 liver cancer. Ai Zheng 2006; 25:34-9 (Chinese with English abstract).
    36. van Duijnhoven FH, Tollenaar RA, Terpstra OT, Kuppen PJ. Locoregional therapies of liver metastases in a rat CC531 coloncarcinoma model results in increased resistance to tumour rechallenge. Clin Exp Metastasis 2005; 22:247-53.
    37. Zerbini A, Pilli M, Penna A, Pelosi G, Schianchi C, Molinari A, Schivazappa S, Zibera C, Fagnoni FF, Ferrari C, Missale G. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res 2006; 66: 1139-46.
    38. H?nsler J, Wissniowski TT, Schuppan D, Witte A, Bernatik T, Hahn EG, Strobel D. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol 2006; 12: 3716-21.
    39. Napoletano C, Taurino F, Biffoni M, De Majo A, Coscarella G, Bellati F, Rahimi H, Pauselli S, Pellicciotta I, Burchell JM, Gaspari LA, Ercoli L, Rossi P, Rughetti A. RFA strongly modulates the immune system and anti-tumor immune responses in metastatic liver patients. Int J Oncol 2008; 32: 481-90.
    40. Saji H, Song W, Nakamura H, Saijo T, Hosaka M, Hagiwara M, Ogata A, Kawasaki N, Engleman EG, Kato H. A possibility of overcoming local tumor immune tolerance by radiofrequency ablation in combination with intratumoral injection of na?ve dendritic cell. Gan To Kagaku Ryoho 2006; 33:1736-8 (Japanese with English abstract).
    41. Saito K, Haas A, Albelda S, Li D, O’Malley Jr BW. Combination of immunotherapy with radiofrequency ablation for head and neck cancer. Otolaryngol Head Neck Surg 2005; 133 (Supple): P98-9.
    42. Habibi M, Kmieciak M, Graham L, Morales JK, Bear HD, Manjili MH. Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast Cancer Res Treat 2009; 114:423-31.
    43. Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD 3rd, Dupuy DE, Gervais D, Gillams AR, Kane RA, Lee FT Jr, Livraghi T, McGahan J, Phillips DA, Rhim H, Silverman SG. Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology 2005; 235: 728-739.
    44. Gough-Palmer AL, Gedroyc WM. Laser ablation of hepatocellular carcinoma - a review. World J Gastroenterol 2008; 14:7170-4.
    45. Sabharwal T, Katsanos K, Buy X, Gangi A. Image-guided ablation therapy of bone tumors. Semin Ultrasound CT MR 2009; 30:78-90.
    46. M?ller PH, Ivarsson K, Stenram U, Radnell M, Tranberg KG. Comparison between interstitial laser thermotherapy and excision of an adenocarcinoma transplanted into rat liver. Br J Cancer 1998; 77:1884-92.
    47. Ivarsson K, Myllym?ki L, Jansner K, Bruun A, Stenram U, Tranberg KG. Heat shock protein 70 (HSP70) after laser thermotherapy of an adenocarcinoma transplanted into rat liver. Anticancer Res 2003; 23:3703-3712.
    48. Nikfarjam M, Muralidharan V, Su K, Malcontenti-Wilson C, Christophi C. Patterns of heat shock protein (HSP70) expression and Kupffer cell activity following thermal ablation of liver and colorectal liver metastases. Int J Hyperthermia 2005; 21:319-332.
    49. Paulus JA, Tucker RD, Flanagan SW, Moseley PL, Loening SA, Park JB. Heat shock protein response in a prostate tumor model to interstitial thermotherapy: implications for clinical treatment. Prostate 1993; 23: 263-270.
    50. Rylander MN, Feng Y, Zhang Y, Bass J, Jason Stafford R, Volgin A, Hazle JD, Diller KR. Optimizing heat shock protein expression induced by prostate cancer laser therapy through predictive computational models. J Biomed Opt 2006; 11:041113.
    51. Isbert C, Ritz JP, Roggan A, et al. Enhancement of the immune response to residual intrahepatic tumor tissue by laser-induced thermotherapy (LITT) compared to hepatic resection. Lasers Surg Med 2004; 35: 284-292.
    52. Ivarsson K, Myllym?ki L, Jansner K, Stenram U, Tranberg KG. Resistance to tumour challenge after tumour laser thermotherapy is associated with a cellular immune response. Br J Cancer 2005; 93:435-440.
    53. Kallio R, Sequeiros R, Surcel HM, Ohtonen P, Kiviniemi H, Syrj?l? H. Early cytokine responses after percutaneous magnetic resonance imaging guided laser thermoablation of malignant liver tumors. Cytokine 2006; 34: 278–83.
    54. Vogl TJ, Wissniowski TT, Naguib NN, Hammerstingl RM, Mack MG, Münch S, Ocker M, Strobel D, Hahn EG, H?nsler J. Activation of tumor-specific T lymphocytes after laser-induced thermotherapy in patients with colorectal liver metastases. Cancer Immunol Immunother 2009; 58:1557-1563.
    55. Rybak LD. Fire and ice: thermal ablation of musculoskeletal tumors. Radiol Clin North Am 2009; 47:455-469.
    56. Dumot JA, Greenwald BD. Argon plasma coagulation, bipolar cautery, and cryotherapy: ABC's of ablative techniques. Endoscopy 2008; 40:1026-1032.
    57. Babaian RJ, Donnelly B, Bahn D, Baust JG, Dineen M, Ellis D, Katz A, Pisters L, Rukstalis D, Shinohara K, Thrasher JB. Best practice statement on cryosurgery for the treatment of localized prostate cancer. J Urol 2008; 180:1993-2004.
    58. Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 2009; 58:1-11.
    59. Redondo P, del Olmo J, Lopez-Diaz de Cerio A, Inoges S, Marquina M, Melero I, Bendandi M. Imiquimod enhances the systemic immunity attained by localcryosurgery destruction of melanoma lesions. J Invest Dermatol 2007; 127:1673-1680.
    60. den Brok MH, Sutmuller RP, Nierkens S, Bennink EJ, Frielink C, Toonen LW, Boerman OC, Figdor CG, Ruers TJ, Adema GJ. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 2006; 95:896-905.
    61. Sabel MS, Nehs MA, Su G, Lowler KP, Ferrara JL, Chang AE. Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat 2005; 90:97-104.
    62. Joosten JJ, Muijen GN, Wobbes T, Ruers TJ. In vivo destruction of tumor tissue by cryoablation can induce inhibition of secondary tumor growth: an experimental study. Cryobiology 2001; 41:49-58.
    63. Shibata T, Yamashita T, Suzuki K, Takeichi N, Micallef M, Hosokawa M, Kobayashi H, Murata M, Arisue M. Enhancement of experimental pulmonary metastaseis and inhibition of subcutaneously transplanted tumor growth following cryosurgery. Anticancer Res 1998; 18:4443-4448.
    64. Müller LC, Micksche M, Yamagata S, Kerschbaumer F. Therapeutic effect of cryosurgery of murine osteosarcoma—influence on disease outcome and immune function. Cryobiology 1985; 22:77-85.
    65. Urano M, Tanaka C, Sugiyama Y, Miya K, Saji S. Antitumor effects of residual tumor after cryoablation: the combined effect of residual tumor and a protein-bound polysaccharaide on multiple liver metastases in a murine model. Cryobiology 2003; 46:238-245.
    66. Hoffmann NE, Coad JE, Huot CS, Swanlund DJ, Bischof JC. Investigation of the mechanism and the effect of cryoimmunology in the Copenhagen rat. Cryobiology 2001; 41: 59-68.
    67. Udagawa M, Kudo-Saito C, Hasegawa G, Yano K, Yamamoto A, Yaguchi M, Toda M, Azuma I, Iwai T, Kawakami Y. Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination withcryoablative tumor pretreatment and bacillus calmetteguerin cell wall skeleton stimulation. Clin Cancer Res 2006; 12:7465-7475.
    68. Machlenkin A, Goldberger O, Tirosh B, Paz A, Volovitz I, Bar-Haim E, Lee SH, Vadai E, Tzehoval E, Eisenbach L. Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity. Clin Cancer Res 2005; 11:4955-4961.
    69. Hanawa S. An experimental study on the induction of anti-tumor immunological activity after cryosurgery for liver carcinoma, and the effect of concomitant immunotherapy with OK432. Nippon Geka Gakkai Zasshi 1993; 94:57-65 (Japanese with English abstract).
    70. Miya K, Saji S, Morita T, Niwa H, Sakata K. Experimental study on mechanism of absorption of cryonecrotized tumor antigens. Cryobiology 1987; 24:135-139.
    71. Viorritto ICB, Nikolov NP, Siegel RM. Autoimmunity versus tolerance: can dying cells tip the balance? Clin Immunol 2007; 122:125-134.
    72. Peng Y, Martin DA, Kenkel J, Zhang K, Ogden CA, Elkon KB. Innate and adaptive immune response to apoptotic cells. J Autoimmun 2007; 29:303-309.
    73. Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2002; 2:965-975.
    74. Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM. Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 2002; 196:1091-1097.
    75. Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999; 5:1249-1255.
    76. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000; 191: 423-434.
    77. Skoberne M, Beignon AS, Bhardwaj N. Danger signals: a time and space continuum. Trends Mol Med 2004; 10:251-257.
    78. Rock KL, Hearn A, Chen CJ, Shi Y. Natural endogenous adjuvants. Springer Semin Immunopathol 2005; 26:231-246.
    79. Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM, Manns MP, Greten TF. Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer 2003; 103:205-211.
    80. Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, R?be J, Endres S, Eigler A. Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T-cells and activate NK and gammadelta T cells. Cancer Res 2002; 62:2347-2352.
    81. Osada S, Imai H, Tomita H, Tokuyama Y, Okumura N, Matsuhashi N, Sakashita F, Nonaka K. Serum cytokine levels in response to hepatic cryoablation. J Surg Oncol 2007; 95: 491-498.
    82. Ravindranath MH, Wood TF, Soh D, Gonzales A, Muthugounder S, Perez C, Morton DL, Bilchik AJ. Cryosurgical ablation of liver tumors in colon cancer patients increases the serum total ganglioside level and then selectively augments antiganglioside IgM. Cryobiology 2002; 45: 10-21.
    83. Si T, Guo Z, Hao X. Immunologic response to primary cryoablation of high-risk prostate cancer. Cryobiology 2008; 57:66-71.
    84. Si T, Guo Z, Hao X. Combined cryoablation and GM-CSF treatment for metastatic hormone refractory prostate cancer. J Immunother 2009; 32:86-91.
    85. Seifert JK, Junginger T. Cryotherapy for liver tumors: current status, perspectives, clinical results, and review of literature. Technol Cancer Res Treat 2004; 3:151-163.
    86. Chapman WC, Debelak JP, Blackwell TS, Gainer KA, Christman JW, Pinson CW, Brigham KL, Parker RE. Hepatic cryoablation-induced acute lung injury: pulmonary hemodynamic and permeability effects in a sheep model. Arch Surg 2000; 135: 667–672.
    87. Sadikot RT, Wudel LJ, Jansen DE, Debelak JP, Yull FE, Christman JW, Blackwell TS, Chapman WC. Hepatic cryoablation-induced multisystem injury:bioluminescent detection of NF-kappaB activation in a transgenic mouse model. J Gastrointest Surg 2002; 6: 264–270.
    88. Seifert JK, France MP, Zhao J, Bolton EJ, Finlay I, Junginger T, Morris DL. Large volume hepatic freezing: association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model.World J Surg 2002; 26:1333-1341.
    89. Chapman WC, Debelak JP, Wright Pinson C, Washington MK, Atkinson JB, Venkatakrishnan A, Blackwell TS, Christman JW. Hepatic cryoablation, but not radiofrequency ablation, results in lung inflammation. Ann Surg 2000; 231:752-761.
    90. Carrafiello G, LaganàD, Mangini M, Fontana F, Dionigi G, Boni L, Rovera F, Cuffari S, Fugazzola C. Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. Int J Surg 2008; 6 (Suppl 1):S65-69.
    91. Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics 2005; 25(Suppl 1):S69-83.
    92. Beland M, Mueller PR, Gervais DA. Thermal ablation in interventional oncology. Semin Roentgenol 2007; 42:175-190.
    93. Nakayama J, Kokuba H, Kobayashi J, Yoshida Y, Hori Y. Experimental approaches for the treatment of murine B16 melanomas of various sizes. I: local injection of ethanol with a combination of interleukin-2 or microwaval hyperthermia for B16 melanomas with a size of less than 7 mm in diameter. J Dermatol Sci 1997; 15: 75-81.
    94. Nakayama J, KokubaH, Kobayashi J, Yoshida Y,Hori Y. Experimental approaches for the treatment of murine B16 melanomas of various sizes. II: injection of ethanol with combinations of beta-interferon and microwaval hyperthermia for B16 melanomas with a size of greater than 10mm in diameter. J Dermatol Sci 1997; 15: 82-88.
    95. Fesenko EE, Makar VR, Novoselova EG, Sadovnikov VB. Microwaves and cellular immunity. I. Effect of whole body microwave irradiation on tumor necrosis factor production in mouse cells. Bioelectrochem Bioenerg 1999; 49: 29-35.
    96. Yao LC, Yang RJ. Immunotherapy against tumor with dendritic cell sensitized by necrotic tumor tissue after microwave coagulation therpy. Zhonghua Yi Xue Za Zhi 2007; 87:2552-2556 (Chinese with English abstract).
    97. Szmigielski S, Sobczynski J, Sokolska G, Stawarz B, Zielinski H, Petrovich Z. Effects of local prostatic hyperthermia on human NK and T cell function. Int J Hyperthermia 1991; 7: 869-880.
    98. Fan Q, Ma B, Guo A, Li Y, Ye J, Zhou Y, Qiu X. Surgical treatment of bone tumors in conjunction with microwave-induced hyperthermia and adjuvant immunotherapy. A preliminary report. Chin Med J (Engl) 1996; 109:425-431.
    99. Zhang J, Dong B, Liang P, Yu X, Su L, Yu D, Ji X, Yu G. Significance of changes in local immunity in patients with hepatocellular carcinoma after percutaneous microwave coagulation therapy. Chin Med J (Engl) 2002; 115: 1367-1371.
    100. Dong BW, Zhang J, Liang , Yu XL, Su L, Yu DJ, Ji XL, Yu G. Sequential pathological and immunologic of percutaneous microwave coagulation therapy of hepatocellular carcinoma. Int J Hyperthermia 2003; 19: 119-133.
    101. Dong B, Zhang J, Liang P, Yu X, Su L, Yu D, Ji X, Yu G, Yin Z. Influencing factors of local immunocyte infiltration in hepatocellular carcinoma tissues pre-and post-percutaneous microwave coagulation therapy. Zhonghua Yi Xue Za Zhi 2002; 82: 393-397 (Chinese with English abstract).
    102. Sadamori H, Yagi T, Kanaoka Y, Morimoto Y, Inagaki M, Ishikawa T, Matsukawa H, Matsuda H, Iwagaki H, Tanaka N. The analysis of the usefulness of laparoscopic microwave coagulation therapy for hepatocellular carcinoma in patients with poor hepatic reserve by serial measurements of IL-6, cytokine antagonists, and C-reactive protein. Surg Endosc 2003; 17: 510-514.
    103. Lin JJ, Jin CN, Zheng ML, Ouyang XN, Zeng JX, Dai XH. Clinical study on treatment of primary hepatocelluar carcinoma by Shenqi mixture combined with microwave coagulation. Chin J Integr Med 2005; 11: 104-110.
    104. Han XJ, Dong BW, Liang P, Yu XL, Yu DJ. Local cellular immune response induced by ultrasound-guided tumor bed superantigen injection after percutaneous microwave coagulation therapy for liver cancer. Zhonghua Zhong Liu Za Zhi 2009; 31:602-606 (Chinese with English abstract).
    105. Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumors. Nat Rev Cancer 2005; 5:321-327.
    106. Chaussy C, Thuroff S, Rebillard X, Gelet A. Technology insight: High-intensity focused ultrasound for urologic cancers. Nat Clin Pract Urol 2005; 2:191-198.
    107. Wu F. Extracorporeal high intensity focused ultrasound in the treatment of patients with solid malignancy. Minim Invasive Ther Allied Technol 2006; 15:26-35.
    108. ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol 2007; 93:111-129.
    109. Yang R, Reilly CR, Rescorla FJ, Sanghvi NT, Fry FJ, Franklin TD Jr, Grosfeld JL. Effects of high-intensity focused ultrasound in the treatment of experimental neuroblastoma. J Pediatr Surg 1992; 27:246-250.
    110. Wu F, Zhou L, Chen WR. Host antitumor immune responses to HIFU ablation. Int J Hyperthermia 2007; 23:165-171
    111. Hu Z, Yang XY, Liu Y, Sankin GN, Pua EC, Morse MA, Lyerly HK, Clay TM, Zhong P. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J Transl Med 2007; 5:34.
    112. Zhang Y, Deng J, Feng J, Wu F. Enhancement of antitumor vaccine in ablated hepatocellular carcinoma by high-intensity focused ultrasound: A preliminary report. World J Gastroenterology 2010; 16: in Press.
    113. Deng J, Zhang Y, Feng J, Wu F. Dendritic cells loaded with ultrasound-ablated tumour induce in vivo specific antitumour immune responses. Ultrasound Med Biol 2010; 36:441-448.
    114. Hu Z, Yang XY, Liu Y, Morse MA, Lyerly HK, Clay TM, Zhong P. Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs. Biochem Biophys Res Commun 2005; 335:124-131.
    115. Kruse DE, Mackanos MA, O'Connell-Rodwell CE, Contag CH, Ferrara KW. Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo. Phys Med Biol 2008; 53:3641-3660.
    116. Hundt W, O'Connell-Rodwell CE, Bednarski MD, Steinbach S, Guccione S. In vitro effect of focused ultrasound or thermal stress on HSP70 expression and cell viability in three tumor cell lines. Acad Radiol 2007; 14:859-870.
    117. Liu F, Hu Z, Qiu L, Hui C, Li C, Zhong P, Zhang J. Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation. J Transl Med 2010; 8:7.
    118. Zhou P, Fu M, Bai J, Wang Z, Wu F. Immune response after high-intensity focused ultrasound ablation for H22 tumor. J Clin Oncol 2007; 25 (S18):21169.
    119. Rosberger DF, Coleman DJ, Silverman R, Woods S, Rondeau M, Cunningham-Rundles S. Immunomodulation in choroidal melanoma: Reversal of inverted CD4/CD8 ratios following treatment with ultrasonic hyperthermia. Biotechnol Ther 1994; 5:59–68.
    120. Wang X, Sun J. High-intensity focused ultrasound in patients with late-stage pancreatic carcinoma. Chin Med J (Engl.) 2002; 115:1332–1335.
    121. Wu F, Wang ZB, Lu P, Xu ZL, Chen WZ, Zhu H, Jin CB. Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound Med Biol 2004; 30:1217-1222.
    122. Zhou Q, Zhu XQ, Zhang J, Xu ZL, Lu P, Wu F. Changes in circulating immunosuppressive cytokine levels of cancer patients after high intensity focused ultrasound treatment. Ultrasound Med Bio 2008; 34:81-88.
    123. Kramer G, Steiner GE, Grobl M, Hrachowitz K, Reithmayr F, Paucz L, Newman M, Madersbacher S, Gruber D, Susani M, Marberger M. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate 2004; 58:109-120.
    124. Wu F, Wang ZB, Cao YD, Zhou Q, Zhang Y, Xu ZL, Zhu XQ. Expression of tumor antigens and heat-shock protein 70 in breast cancer cells after high-intensity focused ultrasound ablation. Ann Surg Oncol 2007; 14:1237-1242.
    125. Xu ZL, Zhu XQ, Lu P, Zhou Q, Zhang J, Wu F. Activation of tumor-infiltrating antigen presenting cells by high intensity focused ultrasound ablation of human breast cancer. Ultrasound Med Biol 2009; 35: 50-57.
    126. Lu P, Zhu XQ, Xu ZL, Zhou Q, Zhang J, Wu F. Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery 2009; 145:286-93.