连续波无线测量系统中的非线性问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性问题是连续波无线测量系统设计中的一个关键课题。本学位论文主要研究连续波无线测量系统中非线性问题的来源,分析其对系统应用的影响,并提出相应的抑制方法。
     论文首先从系统分析的角度,指出了连续波无线测量系统的线性测量需求,以及系统的非线性组成之间的矛盾。为解决这一矛盾,需要通过数学推导或者实验分析的方式,对系统的非线性子系统进行精确建模,并在此基础上构建严格的逆向子系统。
     论文进一步指出,系统软硬件设计中常见的非理想因素(如正交解调不平衡、基带信号中的直流偏移和反正切函数值域限制引入的相位截断等),会破坏逆向子系统的构建,并在系统输出中引入额外的非线性分量。为抑制上述典型非线性因素的影响,论文分别采用了数字中频接收机架构,基于最小二乘法的直流偏移补偿算法和扩展DACM算法。在此基础上,论文给出了基于射频仪表的连续波无线测量系统的实现方法。
     之后,论文介绍了连续波无线测量系统在不同领域中的应用。在介绍无线测量位移与振动的应用中,论文指出利用线性的连续波无线测量系统,不仅能够完成振动频率和速度的测量,还能完成振动幅度的测量,甚至可以实现对振动轨迹的测量。在人体心脏运动微波成像的探索性研究中,实验结果显示,待测者屏住呼吸的测量结果,和医学教科书上给出的理论心脏运动模式相符。为分离测量结果中的心跳与呼吸运动,论文还给出了基于多项式拟合技术的分离方法,并比较了从人体不同方向进行心跳运动成像的结果。在模拟量的近场非接触测量及其应用中,论文实现了对恒温箱内的待测电路进行无线供电和监测的技术。在介绍上述内容时,论文多次指出系统的非线性问题对测量结果具有不利影响。为了进一步拓展连续波无线测量系统的应用范围,有必要对系统线性度问题继续展开深入研究。
Nonlinear problems are critical issues in the design of a continuous-wave (CW) wireless mea-surement system. In this dissertation, the source of the nonlinear problems, their impact on the system performance, and corresponding elimination methods have been studied.
     From a system point of view, it is observed that there is an inherent conflict between the system requirement for linearity and the nonlinear system composition. To solve this problem, it is highly desired to precisely model the nonlinear subsystem through theoretical or experimental analysis, and then construct an inverse subsystem to eliminate the nonlinear issues.
     However, it should be aware that the non-ideal issues in the system implementation, such as the quadrature channel imbalance, DC-offsets in the baseband signals, and the phase wrapping caused by codomain restriction of the arctangent functions, will do harm to the construction of the inverse subsystem, and introduce additional nonlinear components. Their bad effects have been eliminated or compensated with appropriate methods, with the aid of these methods, an instruments-based CW radar system has been constructed.
     Then, three promising applications of the CW wireless measurement systems have been in-troduced. In the case of noncontact displacement and vibration detection, it is shown that not only the frequency and velocity, but also the amplitude of vibration can be measured. In addition, the linear CW measurement system is also capable of tracking the displacement trajectory. In an ab-initio investigation of1-D microwave imaging of human cardiac motion, the detected time domain trajectory of cardiac motion fits the theoretical pattern in medical textbooks. A polynomial fitting technique has been proposed to eliminate the respiration motion. And the measurement results from different orientations have been reported. Last but not least, an example of CW measurement system used in near-field analog quantities monitoring has been reported. Not only the data trans-mission through impedance modulation, but also the power transfer via magnetic resonance can be achieved by this system. Be aware that the nonlinear problems will no doubt do harm to the measurement results. In order to extend the application of the CW wireless measurement system, it is essential to maintain its linearity.
引文
[1]S. Kim, C. Nguyen. A displacement measurement technique using millimeter-wave interferometry[J]. IEEE Transactions on Microwave Theory and Techniques,2003,51 (6):1724-1728.
    [2]S. Kim, C. Nguyen. On the development of a multifunction millimeter-wave sensor for displacement sensing and low-velocity measurement[J]. IEEE Transactions on Microwave Theory and Techniques,2004, 52(11):2503-2512.
    [3]X. Liu, W. Clegg, D.F.L. Jenkins, B. Liu. Polarization interferometer for measuring small displacement[J]. IEEE Transactions on Instrumentation and Measurement,2001,50(11):868-871.
    [4]M. Norgia, S. Donati, D. D'Alessandro. Interferometric measurements of displacement on a diffusing target by a speckle tracking technique[J]. IEEE Journal of Quantum Electronics,2001,37(11):800-806.
    [5]M. Alfano, L. Pagnotta. Measurement of the dynamic elastic properties of a thin coating[J]. Review of Scientific Instruments.2006.77(5):1-3.
    [6]J. Musil, F. Zacek. Microwave Measurements of Complex Permittivity by Free Space Methods and Their Application[M]. Elsevier,1986.
    [7]R. Zoughi. Microwave Non-Destructive Testing and Evaluation[M]. Kluwer,2000.
    [8]W.A. Banker, P.R. Nannery, J.W. Tarpey, D.F. Meyer, G.H. Piesinger. Application of high resolution radar to provide non-destructive test techniques for locating urd cable faults and splices[J]. IEEE Transactions on Power Delivery,1994,9(3):1187-1194.
    [9]J.Y. Lee, H.S. Kim, H.K. Lee. Detection of multiple faults in single-frequency differential gps measure-ments[J]. IET Radar, Sonar and Navigation,2012,6(8):697-707.
    [10]C.W. Domier, W.A. Peebles, N. C. Luhmann. Millimeter-wave interferometer for measuring plasma elec-tron density[J]. Review of Scientific Instruments,1988,59(8):1588-1590.
    [11]K.K. Poh, R.A. Levine, J. Solis, L. Shen, M. Flaherty, Y.J. Kang, J.L. Guerrero, J. Hung. Assessing aortic valve area in aortic stenosis by continuity equation:a novel approach using real-time three-dimensional echocardiography[J]. European Heart Journal,2008,29(20):2526-2535.
    [12]J.C. Lin. Microwave sensing of physiological movement and volume change:A review[J]. Bioelectromag-netics,1992,13:557-565.
    [13]C. Li, J. Cummings, J. Lam, E. Graves, W. Wu. Radar remote monitoring of vital signs[J]. IEEE Microwave Magazine,2009,10(1):47-56.
    [14]B. Lohman, O. Boric-Lubecke, V.M. Lubecke, P.W. Ong, M.M. Sondhi. A digital signal processor for doppler radar sensing of vital signs. In Proceeding of the 23rd Annual EMBS International Conference. 2001,3359-3362.
    [15]A. Droitcour, V. Lubecke, J. Lin, O. Boric-Lubecke. A microwave radio for doppler radar sensing of vital signs. In IEEE MTT-S International Microwave Symposium Digest.2001,175-178.
    [16]C. Gu, R. Li, C. Li, D.B. Jiang. Doppler radar respiration measurement for gated lung cancer radiotherapy. In IEEE International Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems. 2011,91-94.
    [17]C. Gu, R. Li, D.B. Jiang, C. Li. A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy. In IEEE International Conference on Engineering in Medicine and Biology Society.2011,417-420.
    [18]K.M. Chen, D. Misra, H. Wang, H.R. Chuang, E. Postow. An x-band microwave life-detection system[J]. IEEE Transactions on Biomedical Engineering,1986,33(1):697-702.
    [19]H.R. Chuang, Y.F. Chen, K.M. Chen. Automatic clutter-canceller for microwave life-detection system[J]. IEEE Transactions on Instrumentation and Measurement,1991,40(1):747-750.
    [20]K.M. Chen, Y. Huang, Z. Zhang, A. Norman. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier[J]. IEEE Transactions on Biomedical Engnieering, 2000,27(1):105-114.
    [21]L. Song, C. Yu, Q. H. Liu. Through-wall imaging (twi) by radar:2-d tomographic results and analyses[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(12):2793-2798.
    [22]F. Soldovieri, R. Solimene. Through-wall imaging via a linear inverse scattering algorithm[J]. IEEE Geo-science and Remote Sensing Letter,2007,4(4):513-517.
    [23]L. Song, C. Yu, Q. H. Liu. Through-the-wall surveillance with millimeter-wave lfmcw radars[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(6):1796-1805.
    [24]C. Li, J. Lin. Non-contact measurement of periodic movements by a 22-40 ghz radar sensor using nonlinear phase modulation. In IEEE Microwave Symposium.2007,579-582.
    [25]C. Li, J. Lin. Optimum carrier frequency of non-contact vital sign detectors. In IEEE Radio and Wireless Symposium.2007,281-284.
    [26]Y. Yan, C. Li, J.A. Rice, J. Lin. Wavelength division sensing rf vibrometer. In in 2011 IEEE MTT-S International Microwave Symposium.2011,1-4.
    [27]E. Whittaker. A Treatise on The Analytical Dynamics of Particles and Rigid Bodies:with An Introduction to the Problem of Three Bodies[M]. Cambridge University Press,1917.
    [28]M.W. Hirsch, S. Smale, R.L. Devaney. Differential Equations, Dynamical Systems, and An Introduction to Chaos[M]. Elsevier Academic Press,2007.
    [29]E. Whittaker. A Treatise on The Analytical Dynamics of Particles and Rigid Bodies:with An Introduction to the Problem of Three Bodies[M]. Cambridge University Press,1917.
    [30]R. E. Kleinman, R. B. MACK. Scattering by linearly vibrating objects[J]. IEEE Transactions on Antennas and Propagation,1979,27(3):344-352.
    131] J.V. Bladel. D.D. Zutter. Reflections from linearly vibrating objects:plane mirror at normal incidence[J]. IEEE Transactions on Antennas and Propagation,1981,29(3):629-636.
    [32]D.D. Zutter. Reflections from linearly vibrating objects:plane mirror at oblique incidence[J]. IEEE Trans-actions on Antennas and Propagation,1982,30(3):898-903.
    [33]J.V. Bladel. Electromagnetic fields in the presence of rotating bodies[J]. in Proceedings of the IEEE.1976, 64(3):301-318.
    [34]V. C. Chen, F. Li, S. Ho, H. Wechsler. Micro-doppler effect in radar:phenonmenon, model and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(31):2-21.
    [35]D. Censor. Theory of the doppler effect:fact, fiction and approximation[J]. Radio Science.1984, 19(4):1027-1040.
    [36]B. Park, S. Yamada, O. Boric-Lubecke, V. Lubecke. Single-channel receiver limitations in doppler radar measurements of periodic motion. In IEEE Radio and Wireless Symposium.2006,99-102.
    [37]Y. Xiao, J. Lin, O. Boric-Lubecke, V.M. Lubecke. A ka-band low power doppler radar system for remote detection of cardiopulmonary motion. In Proceeding of IEEE Engineering in Medicine and Biology Annual Conference.2005,7151-7154.
    [38]Y. Xiao, J. Lin, O. Boric-Lubecke, V.M. Lubecke. Frequency tuning technique for remote detection of heartbeat and respiration using lowpower double-sideband transmission in ka-band[J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(5):2023-2032.
    [39]A.D. Droitcour, O. Boric-Lubecke, V.M. Lubecke, J. Lin, G.T.A. Kovacs. Range correlation and i/q perfor-mance benefits in single-chip silicon doppler radars for noncontact cardiopulmonary monitoring[J]. IEEE Transactions on Microwave Theory and Techniques,2004,52(3):838-848.
    [40]J. Long, C. Gu, Y. Tao, J. Huangfu, S. Qiao, W.C. Cui, W. Ma, L. Ran. A novel direct-conversion structure for non-contact vital sign detection system. In 8th Internatinal Symposium on Antennas, Propagation and EM Theory.2008,1282-1285.
    [41]W. Pan, J. Wang, J. Huangfu, C. Li, L. Ran. Null point elimination using rf phase shifter in continous-wave doppler radar system[J]. Electronics Letter,2011,47(21):1196-1198.
    [42]R.B. Brent. Fast multiple-precision evaluation of elementary functions[J]. Journal of the Associataon for Computing Machmery,1976,23(2):242-251.
    [43]J.E. Volder. The cordic trigonometric computing technique[J]. IRE Transactions on Electronic Computers, 1959,8:226-230.
    [44]J.K. Cavers, M.W. Liao. Adaptive compensation for imbalance and offset losses in direct conversion transceivers [J]. IEEE Transactions on Vehicular Technology,1993,42(4):581-588.
    [45]P. Garcia, J.S. DeMingo, A. Valdovinos, A. Ortega. An adaptive digital method of imbalances cancellation in linc transmitters[J]. IEEE Transactions on Vehicular Technology,2005,54(3):879-888.
    [46]R. Moraes, D.H. Evans. Compensation for phase and amplitude imbalance in quadrature doppler signals[J]. Ultrasound in Medicine and Biology,1996,22:129-137.
    [47]C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, L. Ran. Instrument-based noncontact doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture[J]. IEEE Transactions on Instrumentation and Measurement,2010,59(6):1580-1588.
    [48]B. Razavi. Design consideration for direct-conversion receivers[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,1997,44(6):428-435.
    [49]B. Razavi.射频微电子(影印版)[M].清华大学出版社,2003.
    [50]B. Park, V.M. Lubecke, O. Boric-Lubecke, A. Host-Madsen. Center tracking quadrature demodulation for a doppler radar motion detector. In IEEE International Microwave Symposium.2007,1323-1326.
    [51]B. Park, O. Boric-Lubecke, V.M. Lubecke. Arctangent demodulation with dc offset compensation in quadrature doppler radar receiver systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2007,55(5):1073-1079.
    [52]T.M. Apostol. Calculus 2nd edition[M]. Waltham, MA:Blaisdell,1967.
    [53]K. Itoh. Analysis of the phase unwrapping algorithm[J]. Applied optics,1982,21(14):2470.
    [54]M. Costantini. A novel phase unwrapping method based on network programming[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):813-821.
    [55]J.H. Tribolet. A new phase unwrapping algorithm[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1977,25(2):170-177.
    [56]S.A. Kingsley. Fiber-optic interferometric signal processor employing a differentiate and crossmultiply frequency discriminator. In Proceedings OFS Conference.1983,205.
    [57]H.M. Kwon, K.B. Lee. A novel digital fm receiver for mobile and personal communications[J]. IEEE Transactions on Communications,1996,44(11):1466-1476.
    [58]F. Schadt, F. Mohr, M. Holzer. Application of kalman filters as a tool for phase and frequency demod-ulation of iq signals. In IEEE Conference on Computational Technologies in Electrical and Electronics Engineering.2008,421-424.
    [59]J.C. Lin. Non-invasive microwave measurement of respiration. In IEEE Proceding.1975, volume 63,1530.
    [60]J.C. Lin. Microwave apexcardiography[J]. IEEE Transactions on Microwave Theory and Techniques,1979, 27:618-620.
    [61]S.S. Stuchly, A. Smith, M. Goldberg, A. Transandote, A. Menard. A microwave device for arterial wall motion analysis. In Proceeding of 33nd Annual Conference on Engineering in Medical and Biology.1980, 22-47.
    [62]X. Yu, C. Li, J. Lin. System level integration of handheld wireless non-contact vital sign detectors. In Radio and Wireless Symposium.2009,514-517.
    [63]C. Li. X. Yu. D. Li. L. Ran. J. Lin. Software configurable 5.8 ghz radar sensor receiver chip in 0.13 um cmos for non-contact vital sign detection. In Radio Frequency Integrated Circuits Symposium.2009,97-100.
    [64]C. Li. X. Yu. C. Lee, D. Li. L. Ran, J. Lin. High-sensitivity software-configurable 5.8-ghz radar sensor receiver chip in 0.13-um cmos for noncontact vital sign detection[J]. IEEE Transactions on Microwave Theory and Techniques,2010,58(5):1410-1419.
    [65]D. Li, M. Shen, J. Huangfu, J. Long, Y. Tao. J. Wang, C. Li, L. Ran. Wireless sensing system-on-chip for near-field monitoring of analog and switch quantities[J]. IEEE Transactions on Industrial Electronics. 2012,59(2):1288-1299.
    [66]C. Li, Y. Xiao, J. Lin. Experiment and spectral analysis of a low-power ka-band heartbeat detector measur-ing from four sides of a human body[J]. IEEE Transactions on Microwave Theory and Techniques,2006, 54(12):4464-4471.
    [67]C. Li, J. Lin. Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection. In IEEE MTT-S International Microwave Symposium Digest.2008,567-570.
    [68]C. Li, J. Lin. Random body movement cancellation in doppler radar vital sign detection[J]. IEEE Transac-tions on Microwave Theory and Techniques,2008,56(12):3143-3152.
    [69]X.Yu, C. Li, J. Lin. Two-dimensional noncontact vital sign detection using doppler radar array approach. In IEEE MTT-S International Microwave Symposium Digest.2011,1-4.
    [70]R.O. Schmidt. Multuple emitter location and signal parameter estimation[J]. IEEE Transactions on Anten-nas and Propagation,1986,34(3):276-280.
    [71]R.H. Roy, A. Paulraj,T. Kailath. Esprit-a subspace rotation approach to estimation of parameters of cissoids in noise[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1986,34(5):1340-1342.
    [72]P. Stoica, K.C. Sharman. Maximum likelihood methods for direction-of-arrival estimation[J]. IEEE Trans-actions on Acoustics, Speech and Signal Processing,1990,38(7):1132-1143.
    [73]A. Lin, H. Ling. Doppler and direction-of-arrival (ddoa) radar for multiple-mover sensing[J]. IEEE Trans-actions on Aerospace and Electronic Systems,2007,43(4):1496-1508.
    [74]H. Zangl, A. Fuchs, T. Bretterklieber, M.J. Moser, G. Holler. Wireless communication and power supply strategy for sensor applications within closed metal walls[J]. IEEE Transactions on Instrumentation and Measurement,2010,59(6):1686-1692.
    [75]K.F. Warnick, R.B. Gottula, S. Shrestha, J. Smith. Optimizing power transfer efficiency and bandwidth for near field communication systems[J]. IEEE Transactions on Antennas and Propagation,2013,61(2):927-933.
    [76]S. Morris, A. Lefley. A 90 nm cmos 13.56 mhz nfc transceiver. In Proceeding of International Conference on Sensor Technologies and Applications.2008,586-591.
    [77]M. Sallinen, E. Strommer, A. Ylosaukko-oja. Application scenario for nfc:mobile tool for industrial worker. In Proceeding of International Conference on Sensor Technologies and Applications.2008,586-591.
    [78]A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljacic. Wireless power transfer via strongly coupled magnetic resonances[J]. Science,2007,317:83-86.
    [79]L. Peng, J. Wang, L. Ran, O. Breinbjerg, N.A. Mortensen. Performance analysis and experimental ver-ification of mid-range wireless energy transfer through non-resonant magnetic coupling[J]. Journal of Electromagnetic Waves and Applications,2011,25(5):845-855.
    [80]B.L. Cannon, J.F. Hoburg, D.D. Stancil, S.C. Goldstein. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers[J]. IEEE Transactions on Power Electronics,2009, 24(7):1819-1825.
    [81]A. L. Oppenheim, A. S. Willsky, S. H. Nawab. Signal and System[M]. Prentice Hall,1997.
    [82]陈抗生.电磁场与电磁波(第二版)[M].北京:高等教育出版社,2007.
    [83]Support of ADI. Datasheet of AD8347. Analog Device Inc.,2005.
    [84]J.H. Reed. Software radio:a modern approach to radio engineering[M]. Upper Saddle River, HJ:Prentice Hall,2002.
    [85]樊昌信,张甫翊,徐炳祥,吴成柯.通信原理(第5版)[M].北京:国防T业出版社,2006.
    [86]顾昌展.基于微波多普勒方法的非接触生命信号探测[D].[硕士学位论文],浙江大学,2008.
    [87]J. Eargle. Loudspeaker Handbook (Second edition)[M]. Norwell, MA:Kluwer Academic Publishers,2003.
    [88]Agilent advantage services. Agilent 33210A 10MHz Function/Arbitrary Waveform Generator Data Sheet. Agilent Technologies, Inc.,2011.
    [89]李坤成.临床医学影像学[M].北京:人民军医出版社,2001.
    [90]A. C. Guyton, J. E. Hall. Textbook of Medical Physiology [M]. Elsevier Saunders,2006.
    [91]S. Zhang, M. Uecker, D. Voit, K. D. Merboldt, J. Frahm. Real-time cardiovascular megnetic resonance at high temporal resolution:radial flash with nonliner inverse reconstruction[J]. Journal of cardiovascular magnetic resonance,2010,12(39):1-7.
    [92]K. Mcleish, D. L. G. Hill, D. Atkinson, K. D. Merboldt, J. M. Blackall, R. Razavi. A study of the motion and deformation of the heart due to respiration [J]. IEEE Transactions on Medical Imaging,2002,21(9):1142-1150.
    [93]张肃文,陆兆熊.高频电子线路(第三版)[M].高等教育出版社,1993.
    [94]邱关源.电路(第四版)[M].高等教育出版社,2006.
    [95]Klaus Finkenzeller.射频识别技术(第三版)[M].电子工业出版社,2006.
    [96]B. Razavi.模拟CMOS集成电路设计(影印版)[M].清华大学出版社,2005.