飞行器MDO过程及相关技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行器设计方法在日益激烈的空天竞争中占据重要地位。传统设计方法在应对飞行器设计中存在的复杂耦合交互时效率低下,无法达到“快,好,省”的研制目标。多学科设计优化(Multidisciplinary Design Optimization,MDO)方法研究耦合多学科系统的设计最优化问题,对于提高飞行器设计水平具有非常现实与重要的意义。以提高飞行器设计水平为目的,本文以MDO方法的核心——MDO过程为主要研究对象,在系统研究飞行器设计问题、多种优化过程及相关技术的基础上,对优化过程进行了改进,并结合相关技术,使之适应飞行器设计的计算与工程实际需要,进一步考虑飞行器发展趋势,将其应用于亚声速近空间飞行器、MEMS(Micro Electro-Mechanical System)微梁的设计问题中。
     首先,研究了基于协同优化过程的高超声速飞行器设计问题。在系统研究协同优化过程(Collaborative Optimization, CO)的基础上,完成了高超声速飞行器概念设计CO表述,并结合变复杂度技术进行高超声速飞行器概念设计协同优化,确认了MDO过程的效益与进一步研究方向。
     其次,开展了BLISS过程(Bi-Level Integrated System Synthesis)的研究与改进。系统研究了多种BLISS过程,并在BLISS 2000过程基础上,发展了EBLISS 2000过程,该过程在优化目标、灵敏度分析、约束处理、移动限制等方面均有改进,算例测试表明,EBLISS 2000优化效率明显优于BLISS 2000过程;基于EBLISS 2000过程,还给出了三级系统的ETLISS过程。
     然后,研究了EBLISS 2000过程与飞行器设计计算实际的结合。证明了EBLISS 2000过程分解前后的最优解一致性;研究了确定性全局优化方法,发展了基于广义简约梯度法的填充函数法GRGFF;给出了MDO问题的广义高维拓扑优化本质与可采用的研究模式,并针对其中的“黑箱”模式,给出了基于拉丁超立方取样的多二次径向基序贯近似方法LHS-MQ;基于LHS-MQ与GRGFF方法,发展了伪数论网格序贯优化方法QSNTO;在EBLISS 2000过程的基础上,结合QSNTO,发展了具有全局优化能力的GBLISS 2000过程,该过程更适合于飞行器设计中存在大量计算的实际情况;算例测试表明了该过程的有效性。
     进一步,研究了GBLISS 2000过程与飞行器设计不确定性工程实际需求的结合。系统研究了飞行器设计不确定性;分析了系统不确定性分析方法SUA(System Uncertainty Analysis, SUA),给出了修正的系统不确定性分析方法RSUA;分析并确定了RSUA与MDO过程结合的方式;在GBLISS 2000的基础上,结合RSUA方法,发展了UGBLISS 2000过程,该过程更适应飞行器研制工程实际中存在不确定性的情况,算例测试表明了该过程的有效性。
     最后,利用以上研究的成果,结合飞行器的发展趋势,研究了亚声速近空间飞行器机翼气动弹性设计问题与微机电系统微梁的设计问题。在非线性气动弹性的基本计算方法研究的基础上,建立了基于CFD-GEOM与Python语言和MSC-PATRAN与PCL语言的亚声速近空间飞行器静气动弹性分析数值模型;以航程为目标,完成了该设计问题的GBLISS 2000表述与求解,最优设计的机翼性能相对于初始设计的机翼性能有了大幅度的优化;在系统研究MEMS系统设计与MDO技术结合的基础上,给出了基于MDO的MEMS CAD“top-down”设计流程,建立了基于ANSYS与APDL语言的微梁结构-电磁分析模型,并以微梁某综合性指标为目标,完成了该设计问题的UGBLISS 2000表述与求解,其结果在不确定性方面优于确定性最优设计。
     总之,论文研究以提高飞行器设计水平为目的,发展了性能优良的EBLISS 2000,GBLISS 2000与UGBLISS 2000过程,并应用于先进飞行器设计中。对MDO过程理论与先进飞行器设计应用做了大量探索性的工作,为进一步开展飞行器MDO奠定了良好的基础。
Aerospace vehicle design method plays an important role in increasingly intensive aerospace competition. Traditional design method handles the complex coupled interaction in aerospace vehicle design ineffectively and can not fulfill the target of“fast, good and economical”. The MDO (Multidisciplinary Design Optimization) method handles the optimal design problem of coupled multidisciplinary system. It has very practical and important meaning to increase the aerospace vehicle design level. Aimed at increasing the aerospace vehicle design level, this thesis takes MDO process, the core of MDO, as main research object. Based on the systematic study of aerospace vehicle design problem, several optimization processes and related technologies, improvements are made to some optimization process and adapted to the requirements of computation and engineering practice of aerospace vehicle design with related technologies. According to the further consideration of aerospace vehicle development trend, these research productions are utilized in the subsonic near-space vehicle design and MEMS (Micro Electro-Mechanical System) micro beam design.
     At first, the hypersonic vehicle design problem is studied based on collaborative optimization. On the basis of systematic study of collaborative optimization, the hypersonic vehicle preliminary design collaborative optimization is brought forward and performed with variable complexity model. The effectiveness of MDO process and further study direction are confirmed.
     Secondly, the BLISS 2000 process is studied and improved. Several BLISS process are studied, and EBLISS 2000 is developed based on BLISS 2000, which is improved on the aspects of object functions, sensitivity analysis, constraints handling and moving limit. The test case shows the efficiency of EBLISS 2000 is much higher than BLISS 2000. The ETLISS process is also proposed for the three level system based on EBLISS 2000
     Thirdly, the combination of EBLISS 2000 and aerospace vehicle design computation is studied. The consistency of EBLISS 2000 optimal before and after decomposition is proved. The deterministic global optimization is studied and the GRGFF (Generalized Reduced Gradient Method based Filled Function) method is developed. The general high dimensional topology optimization nature of MDO problem is pointed out with several research modes. For the“black box”mode, the sequential approximation method LHS-MQ based on Latin hyper cubic sampling and multiquadric radial basis function is provided. Quasi sequential number-theoretic optimization method QSNTO is developed based on LHS-MQ and GRGFF. Combined with QSNTO, GBLISS 2000(Global Bi-Level Integrated System Synthesis 2000) is developed, which fits the existence of much computation in aerospace vehicle design better. The test case shows the effectiveness of GBLISS 2000.
     Fourthly, the combination of GBLISS 2000 and aerospace vehicle design uncertainty engineering practical demands is studied. A systematic research of aerospace vehicle design uncertainty is done. The system uncertainty analysis method SUA is analyzed and the revised system uncertainty analysis method RSUA is given. The combination method of RSUA and MDO process is analyzed and the UGBLISS 2000 (Uncertainty based Global Bi-Level Integrated System Synthesis 2000) process is developed based on the combination of RSUA and GBLISS 2000. The UGBLISS 2000 fits the existence of uncertainty in the aerospace vehicle design better. Test case shows the effectiveness of UGBLISS 2000.
     Finally, applied these research results and combined with the development trend of aerospace vehicle, the design problems of subsonic near space vehicle wing and MEMS micro beam are studied. Based on the nonlinear aeroelastic computation, the static aeroelastic numerical analysis model of subsonic near space vehicle is built with CFD-FASTRAN, Python, MSC-PATRAN and PCL. The GBLISS 2000 formulation of this design problem is given and solved with the object of range. The optimal wing performance is much better than the original wing performance. Based on the systematic MEMS system and MDO technology, the MEMS CAD“top-down”design process based on MDO is provided. The micro beam electromechanical model is built on ANSYS and APDL. The UGBLISS 2000 formulation of this problem is given and solved with some comprehensive indicator object. The result is better than deterministic optimal design.
     To sum up, the thesis aims at improving aerospace vehicle design level, develops excellent EBLISS 2000, GBLISS 2000 and UGBLISS 2000 processes and applies them in advanced aerospace design. Much exploring work of MDO process theory and advanced aerospace design application are done, which establishes a good base for aerospace vehicle MDO.
引文
[1] Evin J. Cramer J E D, Jr., Paul D. Frank, Robert Michael Lewis, Gregory R. Shubin. Problem Formulation for Multidisciplinary Optimization [R].CRPC-TR93334. AIAA.1993.
    [2] Balling R J, Wilkinson C A. Execution of multidisciplinary design optimization approaches on common test [C]. In: AIAA, NASA, and ISSMO, Symposium on Multidisciplinary Analysis and Optimization. 1996.
    [3] Jaroslaw.Sobiezanski.Sobieski. Aerospace engineering design by systimitic decomposition and multi-level optimization [C]. 1984.
    [4] Sobieszczanski-Sobieski J, James B B, Riley M F. Structural optimization by generalized, multilevel optimization [R].AIAA 1985-697. 1985.
    [5] Kumar V, Acikgoz M, Cakal H, et al. Multilevel optimization with multiple objectives and mixed design variables [R].AIAA 92-4757. AIAA.1992.
    [6] Yates K, Gurdal Z, Thangjitham S. Multilevel optimization using a continuum model for structures [R].AIAA 92-4786. 1992.
    [7] Balling R J, Sobieszczanski-Sobieski J. An algorithm for solving the system-level problem in multilevel optimization [R].AIAA 94-4333. AIAA.1994.
    [8] Mirvis Y, Abdi F, Lajevardi B. A hierarchical multi-level optimization solution for massive parallel simulation of composite system.[R].AIAA 95-1436. AIAA.1995.
    [9] Sobieszczanski-Sobieski.J. A Linear Decomposition Method for Large Optimization Problems– Blueprint for Development [R].NASA TM 83248. NASA.1982.
    [10] J.Sobieszczanski-Sobieski. Optimization by Decomposition: A Step from Hierarchic to Non-Hierarchic Systems. [R].NASA-TM-101494. NASA. 1989.
    [11] Renaud J E, and Gabriele,G.A. Improved Coordination in Nonhierarchic System Opimization. [R].AIAA 92-2497. 1992.
    [12] Renaud J E, Gabriele,G.A. Approximation in Non-Hierarchic System Optimization. [R].AIAA-92-2826. 1992.
    [13] Sella R S, Batill,S.M., and Renaud,J.E. . Response Surface Based,Concurrent Subspace Optimization for Multidisciplinary Design. [R].AIAA 96-0714. AIAA. 1996.
    [14] Sella R S, Stelmack,M., Batill,S.M., and Renaud,J.E. Response Surface Approximations for Discipline Coordination in Multidisciplinary Design Optimization. [R].AIAA 96-1383. AIAA. 1996.
    [15] Yu X Q, Stelmack,M.A., and Batill,S.M. . An Application of the Concurrent Subspace Design (CSD) to the Preliminary Design of a Low-Reynolds Number UAV. [R].AIAA 98-4917. AIAA. 1998.
    [16] Wujek B A, Renaud J E, Batill S M, et al. Design flow management and multidisciplinary design optimization in application to aircraft concert sizing. [R].AIAA 96-0713. AIAA. 1996.
    [17] Chi H W, Bloebaum C L. Concurrent subspace optimization for mixed-variable coupled engineering [R].A96-38735. AIAA. 1996.
    [18] Lokanathan A N, Brockman J B, Renaud J E. Concurrent design of manufacturable integrated circuits [R].AIAA 96-4094. AIAA. 1996.
    [19] Stelmack M A, Batill S M. Concurrent subspace optimization of mixed continuous/discrete systems [R].AIAA 97-1229. AIAA. 1997.
    [20] Arslan M A, Hajela P. Enhancements to decomposition based multidisciplinary design through the use of intelligent agents. [R].AIAA 98-4918. AIAA. 1998.
    [21] Rodriguez J F, Perez V. Sequential approximate optimization using variable fidelity response surface [R].AIAA 2000-1391. AIAA. 2000.
    [22] Lee J, Park C. Role of automatic differentiation in concurrent subspace optimization method [R].AIAA 2000-1825. AIAA. 2000.
    [23] Lin W, Renaud J E. A comparative study of trust region managed approximate optimization [R].AIAA 2001-1499. AIAA. 2001.
    [24] Huang C-H, Bloebaum C L, New York State Center f. Multi-objective Pareto concurrent subspace optimization for multidisciplinary design. [R].AIAA 2004-0278. AIAA. 2004.
    [25] Huang C-H, Boebaum C L, New York S U S C f. Visualization as a solution aid for multi-objective concurrent subspace optimization in a multidisciplinary design environment. [R].AIAA 2004_4464. AIAA. 2004.
    [26] Huang C-H, Bloebaum C L, New York S U S C f. Incorporation of preferences in multi-objective concurrent subspace optimization for multidisciplinary design. [R].AIAA 2004_4548. AIAA. 2004.
    [27] Tedford N P, Martins J R R A, University of Toronto T. Comparison of MDO Architectures within a Universal Framework [R].AIAA 2006-1617. AIAA. 2006.
    [28] Parashar S, Bloebaum C L, Department of Mechanical and A. Multi-Objective Genetic Algorithm Concurrent Subspace Optimization (MOGACSSO) [R].AIAA 2006-2047. AIAA. 2006.
    [29] Parashar S, Bloebaum C L, Department of Mechanical and A. Robust Multi-Objective Genetic Algorithm Concurrent Subspace Optimization [R].AIAA 2006-6907. AIAA. 2006.
    [30] Kroo I, Altus S, Braun R, et al. Multidisciplinary optimization methods for aircraft preliminary design [R].AIAA 94-4325. AIAA. 1994.
    [31] Sobieski I, Kroo I. Aircraft design using collaborative optimization [R].AIAA 96-0715. AIAA. 1996.
    [32] Braun R, Gage P, Kroo I, et al. Implementation and performance issues in collaborative optimization [R].A96-38732. AIAA. 1996.
    [33] Moore A A, Braun R D, Powell R W. Determination of optimal launch vehicle technology investment strategies [R].AIAA 96-4091. AIAA. 1996.
    [34] Nagendra S, Plybon R C. Performance based preliminary design of airframe propulsion systems in a collaborative optimization environment. [R].AIAA 97-1147. AIAA. 1997.
    [35] Sobieski I P, Kroo I M. Collaborative optimization using response surface estimation [R].AIAA 98-0915. AIAA. 1998.
    [36] Butuk N, Huque Z, Lynch D. Optimization of an integrated inlet/ejector of an RBCC engine using collaborative optimization. [R].A9835370. AIAA. 1998.
    [37] Wakayama S, Kroo I. The challenge and promise of blended-wing-body optimization [R].AIAA 98-4736. AIAA. 1998.
    [38] Sobieski I P, Manning V M, Kroo I M. Response surface estimation and refinement in collaborative optimization [R].AIAA 98-4753. AIAA. 1998.
    [39] Cormier T A, Sott A, Ledsinger L A, et al. Comparison of ollaborativeoptimization to onventional design tehniques for a conceptual RLV. [R].AIAA 2000-4885. AIAA. 2000.
    [40] Kroo I, Manning V. Collaborative optimization - Status and diretions [R].AIAA 2000-4721. AIAA. 2000.
    [41] Alexandrov N M, Lewis. Analytial and computational properties of distributed approahes to MDO [R].AIAA 2000-4718. AIAA. 2000.
    [42] Gu X, Renaud J E. Implementation study of implicit uncertainty propagation (IUP) in decomposition-based optimization [R].AIAA 2002-5416. AIAA.2002.
    [43] Perez R, Liu H, Behdinan K, et al. Flight dynamics and control multidisciplinary integration in aircraft conceptual design optimization. [R].AIAA 2004_4435. AIAA. 2004.
    [44] LeGresley P A, Alonso J J, Stanford Univ C A. Improving the performance of design decomposition methods with POD [R].AIAA 2004_4465. AIAA. 2004.
    [45] McAllister C, Simpson T, Lewis K, et al. Robust multiobjective optimization through collaborative optimization and linear physical programming. [R].AIAA 2004_4549. AIAA. 2004.
    [46] Zadeh P M, Toropov V V, Wood A S, et al. Use of global approximations in the collaborative optimization framework [C]. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2004.
    [47] Orr S A, Hajela P, Boeing Co P P A. Genetic Algorithm Based Collaborative Optimization of a Tiltrotor [R].AIAA 2005-2285. 2005.
    [48] Brown N F, Olds J R, Northrop Grumman Corporation F. Evaluation of Multidisciplinary Optimization (MDO) Techniques Applied to a reusable launch vehicle. [R].AIAA 2005-707. AIAA. 2005.
    [49] Zadeh P M, Toropov V V, Wood A S, et al. Collaborative Optimization Framework Based on the Interaction of Low -and High-Fidelity Models and the Moving Least Squares Method [R].AIAA 2006-1711. AIAA. 2006.
    [50] Allison J, Roth B, Kokkolaras M, et al. Aircraft Family Design Using Decomposition-based Methods [R].AIAA 2006-6950. AIAA. 2006.
    [51] Sobieszczanski-Sobieski J. Bi-level integrated system synthesis (BLISS) [R].AIAA 98-4916. AIAA. 1998.
    [52] Kodiyalam S. Bi-level integrated system synthesis with response surfaces [C]. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials. 1999.
    [53] Sobieszczanski-Sobieski J. BLISS/S - A new method for two-level structural optimization [R].AIAA 99-1345. AIAA. 1999.
    [54] Sobieszczanski-Sobieski J. Advancement of Bi-Level Integrated System Synthesis (BLISS) [R].AIAA 2000-0421. AIAA. 2000.
    [55] Sobieszczanski-Sobieski J. Bi-Level Integrated System Synthesis (BLISS) for concurrent and distributed processing aircraft design example [R].AIAA 2002-5409. AIAA. 2002.
    [56] Jaroslaw Sobieszczanski-Sobieski, T D A, Matthew Phillips, and Robert Sandusky. Bi-Level Integrated System Synthesis (BLISS) For Concurrent and Distributed Processing. [R].AIAA 2002-5409. AIAA. 2002.
    [57] Kim H, Malone B, Sobieszczanski-Sobieski J, et al. A Distributed, Parallel, and Collaborative Environment for Design of Complex Systems [C]. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials. 2004.
    [58] De Baets P, Mavris D, Sobieszczanski-Sobieski J, et al. Aeroelastic design by combining conventional practice with Bi-Level [R].AIAA 2004_4431. AIAA. 2004.
    [59] Kim H, Ragon S, Soremekun G, et al. Flexible approximation model approach for bi-level integrated system [R].AIAA 2004_4545. AIAA. 2004.
    [60] Sobieszczanski-Sobieski J, Nasa Langley Research Center H. Integrated System-of-Systems Synthesis (ISSS) [R].AIAA 2006-7064. AIAA. 2006.
    [61] Michelena N, Kim, H., and Papalambros, P. A System Partitioning and Optimization Approach to Target Cascading [C]. Proceedings of the 12th International Conference on Engineering Design. Munich, Germany, 1999.
    [62] Kim H, Michelena, N., Papalambros, P., and Jiang, T. Target Cascading in Optimal System Design [J]. Journal of Mechanical Design, 2003, 125:474.
    [63] James Allison D W, Michael Kokkolaras, Panos Y. Papalambros, and Matthew Cartmell. Analytical Target Cascading in Aircraft Design [R].AIAA 2006-1325. AIAA.2006.
    [64] Dapeng Wang G G W, and Greg F. Naterer. Collaboration Pursuing Method for MDO Problems [R].AIAA-2005-2204. AIAA.2005.
    [65] Chiam T W, Bloebaum C L. Development of a pseudo-gradient augmented heuristic optimization method [R]. AIAA. 2004.
    [66] Chung H-S, Alonsoy J J, Korean Air Force A. Multiobjective optimization using approximation model-based genetic algorithms. [R].AIAA 2004_4325. AIAA. 2004.
    [67] Shan S, Wang G G. Space exploration and global optimization for computationally intensive design problems: A rough set based approach [J]. Structural and Multidisciplinary Optimization, 2004, 28 (6):427.
    [68] Yoshimura M, Murase Y, Yamauchi M, et al. Development of an integrated design environment for space satellite structures[C] Albany, NY, United states: 2004: 2836
    [69] E Silva V V R, Khatib W, Fleming P J. Control system design for a gas turbine engine using evolutionary computing for multidisciplinary optimization [J]. Controle y Automacao, 2007, 18 (4):471.
    [70] Gomes A A, Suleman A. Efficient level set algorithm for topology optimization [R].02734508. AIAA. 2007.
    [71] Giunta A A, Sobieszczanski-Sobieski J. Progress toward using sensitivity derivatives in a high-fidelity aeroelastic analysis of a supersonic transport. [R].AIAA 98-4763. AIAA.1998.
    [72] Reed S A, Moon Y I, Bhungalia A A, et al. Aerodynamics-structures interaction in MDO [R].AIAA 98-4780. AIAA. 1998.
    [73] Sundaram P, Agrawal S, Hager J O. Aerospae vehile MDO shape optimization using ADIFOR 3.0 gradients [R].AIAA 2000-4733. AIAA. 2000.
    [74] Herrmann U. Preparing for SCT MDO design work supersonic commercial transports [R].AIAA 2003-0101. AIAA. 2003.
    [75] Hur J, Beran P, Huttsell L, et al. Parametric mesh deformation for sensitivity analysis and design of a joined-wing aircraft [C]. 42nd AIAA Aerospace Sciences Meeting and Exhibit; Reno, NV; Jan. 5-8, 2004. 2004.
    [76] Sues R H, Cesare M A, Pageau S S, et al. Approahes fpr reliability-based shape optimization onsidering manufaturing [R].AIAA 2000-4804. AIAA. 2000.
    [77] Du X, Wang Y, Chen W. Methods for robust multidisciplinary design [R].AIAA2000-1785. AIAA. 2000.
    [78] Du X, Chen W. Conurrent subsystem unertainty analysis in multidisiplinary design [C]. AIAA/USAF/NASA/ISSMO Symposium on Multidisiplinary Analysis and Optimization. 2000.
    [79] Sues R H, Oakley D R, Rhodes G S. MDO of aeropropulsion components considering uncertainty [R].AIAA 96-4062. AIAA. 1996.
    [80] Koh P N, Wujek B, Golovidov O. A multi-stage, parallel implementation of probabilisti design optimization in [R].AIAA 2000-4805. AIAA. 2000.
    [81] Padmanabhan D, Batill S M. Reliability based optimization using approximations with applications to multidisciplinary system design. [R].AIAA 2002-0449. AIAA. 2002.
    [82] Peoples R, Willcox K, Mit C M A. A value-based MDO approach to assess business risk for commercial aircraft [R].AIAA 2004-4438. AIAA.2004.
    [83] Ahn J, Lee J, Kim S, et al. Sequential reliability analysis framework for multidisciplinary systems [R].AIAA 2004-4517. AIAA. 2004.
    [84] Ogot M, Kelly B, Penn State University U P P A. Simulated Annealing Computational Requirements Reduction for Reliability-Based High-Fidelity Aerodynamic Shape Design. [R].AIAA 2006-0339. AIAA.2006.
    [85] Sun J, Zhang G, Vlahopoulos N, et al. Multi-Disciplinary Design Optimization under Uncertainty for Thermal Protection System Application. [R].AIAA 2006-7002. AIAA. 2006.
    [86] Unal R, Lepsch R A, Engelund. Approximation model building and multidisciplinary design optimization using response surface methods. [R].AIAA 96-4044. AIAA. 1996.
    [87] Crisafulli P, Kaufman M, Giunta A A, et al. Response surface approximations for pitching moment including pitch-up in the MDO design of an HSCT. [R].AIAA 96-4136. AIAA. 1996.
    [88] Liaw L D, DeVries R I, Cronin. An MDO-compatible method for robust design of vehicles, systems, and components. [R].AIAA 98-4786. AIAA. 1998.
    [89] Alexandrov N M. On managing the use of surrogates in general nonlinear optimization and MDO [R].AIAA 98-4798. AIAA. 1998.
    [90] Rodriguez J F, Renaud J E, Watson L T. Convergence using variable fidelity approximation data in a trust region [R].AIAA 98-4801. AIAA. 1998.
    [91] Stettner M. Multi-site coordinated aeroservoelastic subtask optimization [C]. In: AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and. 1998.
    [92] Golovidov O, Kodiyalam S, Marineau P. Flexible implementation of approximation concepts in an MDO framework [R].AIAA 98-4959. AIAA. 1998.
    [93] Perez V M, Renaud J E, Gano S E. Construting variable fidelity response surfae approximations in the usable feasible region. [R].AIAA 2000-4888. AIAA. 2000.
    [94] Unal R, Morris W D, White N. Approximation model building for reliability and maintainability harateristis [R].AIAA 2000-4712. AIAA. 2000.
    [95] Perez V M, Renaud J E, Watson L T. Adaptive experimental design for construction of response surface [R].AIAA 2001-1622. AIAA. 2001.
    [96] Jeon K S, Lee J W, Choi J H. Efficient system optimization techniques through subspace decomposition and response surface refinement. [R].AIAA 2002-0321.AIAA. 2002.
    [97] Kodiyalam S. High performance computing and rapid visualization for design steering in MDO [R].AIAA 2003-1528. AIAA. 2003.
    [98] Chandila P, Renaud J, Perez V, et al. Post-optimality analysis for multidisciplinary systems using a cumulative response surface approximation. [R]. AIAA 2004-0114. AIAA.2004.
    [99] Ray T, Smith W, University of New South Wales A. Surrogate Assisted Evolutionary Algorithm for Multiobjective Optimization [R].AIAA 2006-2050. AIAA. 2006.
    [100]余雄庆.多学科设计优化算法及其在飞行器设计中的应用研究[D].南京:南京航空航天大学, 1999.
    [101]韩明红.复杂工程系统多学科设计优化方法与技术研究[D].北京:北京航空航天大学, 2004.
    [102]胡峪.飞机多学科设计优化及其应用研究[D].西安:西北工业大学, 2001.
    [103]吴宝贵.基于仿真分析的复杂机械产品多学科设计优化方法研究[D].大连:大连理工大学, 2008.
    [104]陈柏鸿.机械产品多学科综合优化设计中的建模、规划及求解策略[D].武汉:华中理工大学, 2001.
    [105]陈小前.飞行器总体优化设计理论与应用研究[D].长沙:国防科学技术大学, 2001.
    [106]陈琪锋.飞行器分布式协同进化多学科设计优化方法研究[D].长沙:国防科学技术大学, 2003.
    [107]颜力.飞行器多学科设计优化若干关键技术的研究与应用[D].长沙:国防科学技术大学, 2006.
    [108]赵勇.卫星总体多学科设计优化理论与应用研究[D].长沙:国防科学技术大学, 2006.
    [109] GIMMESTAD D. An aeroelastic optimization procedure for composite high aspect ratio wings [C]. 20th Structures, Structural Dynamics, and Materials Conference. St. Louis, Mo, United States, 1979.
    [110] C.A. Baxevanoua P K C, S.G. Voutsinasc and N.S. Vlachos. Evaluation study of a Navier–Stokes CFD aeroelasticnext term model of wind previous termturbinenext term airfoils in classical flutter [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96 (8-9):1425.
    [111] D. Dessi F M. A nonlinear analysis of stability and gust response of aeroelastic systems [J]. Journal of Fluids and Structures, 2008, 24 (3):436.
    [112] Liviu Librescu S N, Zhanming Qin, Bokhee Lee. Active aeroelastic control of aircraft composite wings impacted by explosive blasts [J]. Journal of Sound and Vibration, 2008, 318 (1-2):74.
    [113] Yan S, Striz A G. Comparative evaluation of two MDO codes in aircraft wing analysis and optimization. [R].AIAA-96-4032. AIAA. 1996.
    [114] Allwright S. Technical data management for collaborative multi-discipline optimisation [R].AIAA 96-4160. AIAA. 1996.
    [115] Chen P C, Sarhaddi D, Liu D D. A unified aerodynamic-influence-coefficient approach for aeroelastic/aeroservoelastic and MDO applications. [R].AIAA 97-1181. AIAA.1997.
    [116] Hoenlinger H G. MDO technology needs in aeroelastic structural design[R].AIAA 98-4731. AIAA. 1998.
    [117] Radovcich N, Layton D. The F-22 structural/aeroelastic design process with MDO examples [R].AIAA 98-4732. AIAA.1998.
    [118] Schweiger J, Krammer J, Coetzee E. MDO application for active flexible aircraft design [R].AIAA 98-4835. AIAA. 1998.
    [119] Garcelon J H, Balabanov V. Multidisciplinary optimization of a transport aircraft wing using visualDOC [R].AIAA 99-1349. AIAA. 1999.
    [120] Schuhmacher G, Murra I. Multidisciplinary Design Optimization of a regional aircraft wing box [R].AIAA 2002-5406. AIAA. 2002.
    [121] Mastroddi F, Bernardini G, Roma I U R I. MDO and Preliminary Design of Innovative Configurations [R].AIAA 2004_1544. AIAA. 2004.
    [122] Ricci S, Terraneo M, Dipartimento di Ingegneria Aerospaziale P. Application of MDO techniques to the preliminary design of morphed aircraft [R].AIAA 2006-7018. AIAA. 2006.
    [123] K.L. Williams K J, J. K?hler, M. Boman. Electrothermal characterization of tungsten-coated carbon microcoils for micropropulsion systems [J]. Carbon, 2007, 45 (3):484.
    [124] Lurdes I.B. Silva T A P R-S, A.C. Duarte. Remote optical fibre microsensor for monitoring BTEX in confined industrial atmospheres [J]. Talanta, 2009, 78 (2):548.
    [125] Marco Gregnanin R M, Francesco Guarducci, Andrea Bolle, Michele Bonerba, Pietro Berardino. Mapping lunar mascons on the hidden side of the Moon: Gravitational field measurement through a micro-satellite mission [J]. Acta Astronautica, 2009, 65 (3-4):572.
    [126] Grasmeyer J M K, M T. Development of the Black Widow micro air vehicle [C]. Conference on Fixed, Flapping and Rotary Wing Aerodynamics at Very Low Reynolds Numbers. Notre Dame, IN, June 5-7,2000.
    [127] Hyung-Chul Lim H B. Adaptive control for satellite formation flying under thrust misalignment [J]. Acta Astronautica, 2009, 65 (1-2):112.
    [128] Kajiwara I, Haftka R T. Simultaneous optimum design of shape and control system for micro air vehicles [J]. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1999, 3:1612.
    [129] Kajiwara I, Haftka R T. Integrated design of aerodynamics and control system for micro air vehicles [J]. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 2000, 43 (3):684.
    [130] Cosyn P, Vierendeels J. Design of fixed wing micro air vehicles [J]. Aeronautical Journal, 2007, 111 (1119):315.
    [131] Benjamin Potsaid Y B a J T-Y W. A multidisciplinary design and optimization methodology for the Adaptive Scanning Optical Microscope (ASOM) [J]. 2006, 6289
    [132]方开泰王元.数论方法在统计中的应用[M].北京:科学出版社,1996.
    [133] Kroo,J. A, S., Braun, R., Gage, P., Sobieski, J. Multidisciplinary Optimization Methods for Aircraft Preliminary Design [R].AIAA-94-4325. AIAA.1994.
    [134] Braun R D. Collaborative Optimization: An Architecture for Large-Scale Distributed Design [D]. Stanford:Stanford University, 1996.
    [135] Kroo. I S a I. Collaborative optimization applied to an aircraft design problem [R].AIAA 96-0715. AIAA.1996.
    [136] R. Braun I K, and A. Moore. Use of the collaborative optimization architecture for launch vehicle design [R].AIAA 96-4018. AIAA.1996.
    [137] Erich Elsen P L, Eric Darve. Large calculation of the flow over a hypersonic vehicle using a GPU [J]. Journal of Computational Physics, 2008, 227 (24):10148.
    [138] Randall T. Voland L D H, Charles R. McClinton. X-43A Hypersonic vehicle technology development [J]. Acta Astronautica, 2006, 59 (1-5):181.
    [139] Charles R. McClinton V L R, Robert J. Shaw, Unmeel Metha, Chris Naftel. Hyper-X: Foundation for future hypersonic launch vehicles [J]. Acta Astronautica, 2005, 57 (2-8):614.
    [140]罗世彬.高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究[D].长沙:国防科学技术大学, 2004.
    [141] Alexandrov N M e. Optimization with variable fidelity models applied to wing design [R]. AIAA. 1999.
    [142] Haftka R T. Combining global and local approximations [J]. AIAA Journal, 1991, 9 (2):1523
    [143] Sobieski J S. Sensitivity of Complex, Internally Coupled Systems [J]. AIAA Journal, 1990, 28 (1):153.
    [144] Haftka R T a G, Z. Elements of Structural Optimization [M]. Kluwer Publishing, 1992.
    [145] Joaquim R. R. A. Martins N M K P. On Structural Optimization Using Constraint Aggregation [C]. 6th World Congress on Structural and Multidisciplinary Optimization. Rio de Janeiro, Brazil, 30 May - 03 June, 2005.
    [146] Broyden C G. The Convergence of a Class of Double-rank Minimization Algorithms [J]. Journal of the Institute of Mathematics and Its Applications, 1970, 6:76.
    [147] Fletcher R. A New Approach to Variable Metric Algorithms [J]. Computer Journal 1970, 13:317.
    [148] Goldfarb D. A Family of Variable Metric Updates Derived by Variational Means [J]. Mathematics of Computation, 1970, 24:23.
    [149] Shanno D F. Conditioning of Quasi-Newton Methods for Function Minimization [J]. Mathematics of Computation, 1970, 24:647.
    [150] JoséF. Rodríguez J E R, Brett A. Wujek, Ravindra V. Tappeta. Trust region model management in multidisciplinary design optimization [J]. Journal of Computational and Applied Mathematics, 2000, 124 (1-2):139.
    [151] R. Horst N V T. DC Programming: Overview [J]. Journal of Optimization Theory and Applications, 1999, 103 (1):1.
    [152] D Li X S, MP Biswal, F Gao Convexification, Concavification and Monotonization in Global Optimization [J]. Annals of operations Research, 2001, 105 (1-4):213.
    [153] E. L. Lawler D E W. Branch-And-Bound Methods: A Survey [J]. Operations Research, 1966, 14 (4):699.
    [154] Renpu G. A filled function method for finding a global minimizer of a function of several variables [J]. Mathematical Programming, 1990, 46 (1-3):p191.
    [155] PJF Groenen W H. The tunneling method for global optimization in multidimensional scaling [J]. Psychometrika, 1996, 61 (3):529.
    [156] T Wei-wen W D-h, Z Lian-sheng, L Shan-liang. MODIFIED INTEGRAL-LEVEL SET METHOD FOR THE CONSTRAINED SOLVINGGLOBAL OPTIMIZATION [J]. APPLIED MATHEMATICS AND MECHANICS, 2004, 25 (2):202.
    [157] R. P. G. The Theory of Filled Function Methods for Finding Global Minimizers of Nonlinearly Constrained Minimization Problems [J]. Journal of Computational Mathematics, 1987, 5 (1):1.
    [158] Ge R.P. and Qin Y F. The Globally convexized Filled Functions for Global Optimization [J]. Applied Mathematics and Computation, 1990, 35:131.
    [159] Han Q M a H, J.Y. Revised Filled Function Methosds for Global Optimization [J]. Applied Mathematics and Computation, 2001, 119:217.
    [160] Yang Y J, Shang, Y.L. A New Filled Function Method for Unconstrained Global Optimization [J]. Applied Mathematics and computation, 2006, 173:501.
    [161] Zhang L.S. N C K, Li D. and Tian W.W. A New Filled Function Method for Global Optimization [J]. Journal of Global Optimization, 2004, 28:17.
    [162] Y.M.Liang L S Z, M.M.Li, B.S.Han. A filled function method for global optimization [J]. Journal of Computational and Applied Mathematics 2007, 205 (1):16.
    [163] LS Lasdon A W, A Jain, M Ratner. Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming [J]. ACM Transactions on Mathematical Software, 1978, 4 (1):34
    [164]吴宗敏.散乱数据拟合的模型、方法和理论[M].北京:科学出版社, 2007.
    [165] R. F. Scattered data interpolation: tests of some methods [J]. Math Comp, 1982, 38:191.
    [166] R. H. Multiquadric equations of topography and other irregular surfaces [J]. J Geophysical Research, 1971, 76:1905.
    [167] Stein M. Large sample properties of simulations using latin hypercube sampling [J]. Technometrics, 1987, 29 (2):143
    [168] Tomas A. Zang M J H, Mark W. Hilburger, Sean P. Kenny, et al. Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles [R].NASA/TM-2002-211462. NASA. 2002.
    [169]姚雯.不确定性MDO理论及其在卫星总体设计中的应用研究[D].长沙:国防科技大学, 2007.
    [170] Law A.M. K W D. Simulation Modeling and Analysis [M]. New York:McGraw Hill Company,1982.
    [171] Marcel M J B, J. Interdisciplinary design of a near space vehicle [C]. SoutheastCon, 2007. Proceedings. IEEE. Richmond, VA, 22-25 March,2007.
    [172]陈桂彬,邹丛青,杨超.气动弹性设计基础[M].北京:北京航空航天大学出版社, 2004.
    [173] Martins J R R A. A Coupled-Adjoint Method for High-Fidelity Aero-Structural Optimization [D]. Stanford:Stanford University, 2002.
    [174]穆雪峰.多学科设计优化代理模型技术的研究和应用[D].南京:南京航空航天大学, 2004.
    [175]张洪武关,李云鹏,顾元宪有限元分析与CAE技术基础[M].北京:清华大学出版社, 2004.
    [176] Madni A M W, L.A. Microelectromechanical systems (MEMS): an overview of currentstate-of-the-art [C]. Aerospace Conference, 1998. Proceedings., IEEE. Snowmass at Aspen, CO, USA, 21-28 Mar 1998.
    [177]徐泰然. MEMS和微系统——设计与制造[M].北京:机械工业出版社, 2004.
    [178] Gilbert J R. Integrating CAD tools for MEMS design [J]. Computer, 1998, 31 (4):99.
    [179] Kwak J S H a B M. Robust optimization using a gradient index: MEMS applications [J]. Structural and Multidisciplinary Optimization, 2004, 27 (6):469.
    [180] A. Fargas Marques R C C, and A. M. Shkel. Modeling the Electrostatic Actuation of MEMS: State of the Art 2005 [R].IOC-DT-P-2005-18. Institut d'Organitzacio i Control de Sistemes Industrials.2005.
    [181]王振国陈小前,罗文彩等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社, 2006.