宽窄带雷达目标检测与成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达成像技术作为一种全天时、全天候、远距离的信息获取手段在国防以及民用领域均具有重大的应用价值,它大大提高了雷达信息获取能力,为目标识别创造了前所未有的机会,是雷达发展的一个重要里程碑。逆合成孔径雷达成像技术作为雷达成像技术的一个重要分支,主要应用于对空中或者空间以及舰船等目标的成像。成像的前提是检测到目标,及时、准确地发现目标也是非常重要的一环。本文主要研究宽窄带雷达的目标检测以及成像。论文内容可概括为如下五部分:
     第一部分,首先对目标跟踪所涉及的目标测速问题进行探讨。利用宽带包络对齐的包络移动量与窄带测距的距离之和得到目标的实际距离,并对其进行曲线拟合,从而得到目标的实际速度。相比于传统的窄带测速,利用宽窄带联合包络测速的方法得到的速度估计其估计方差更小,估计也更为精确。同时也考虑了将宽窄带包络和窄带信号的多普勒信息两者联合起来,借助于多普勒分析,可以达到更高的测速精度。
     第二部分,提出了两种窄带环境下的单目标检测方法。通过构造相应的相位补偿函数,实现信号的相干化,从而通过简单的快速傅立叶变换(FFT)来实现信号能量的积累。一种方法是利用稀疏Radon变换的方法进行参数的估计,而另一种方法则是通过修正的Keystone变换的方法来获得目标的运动参数。通过仿真实验可以看出,所提方法可以实现信号能量的有效积累,从而有利于目标的检测。
     第三部分,提出了两种适用于窄带环境下的多目标检测方法。基于信号分离的多目标检测方法和基于Clean技术的多目标检测方法,两者都是实现信号的相干化然后利用FFT检测目标,但是前者需要先对信号进行分离,涉及到调频率的搜索,因此其适用于SNR较高的情况,而后者由于Keystone变换对回波的SNR不敏感,更适用于SNR较低的情况。
     第四部分,对宽带信号环境下的单目标和多目标检测问题进行了系统的研究。首先利用宽带信号的相邻相关可以对回波信号的相位项进行降阶的性质,并结合时间-调频率变化以及二阶Keystone变换完成对信号的弯曲和走动的校正,从而最终实现对单目标信号能量的积累检测。对于多目标的情况,提出了两种方法对目标进行检测,第一种方法是对一个距离频域单元信号进行处理,第二种方法是对相关后的结果进行处理,两种方法都利用了Radon模糊变换,但是由于后者进行了相关处理,各个散射点的能量被集中了,因而更有利于目标的检测。
     第五部分,提出了一种基于多项式傅立叶变换并结合Clean技术的ISAR瞬时成像方法。该方法对机动目标的平动参数进行估计并进行补偿,然后对每一个距离单元的散射点参数利用多项式傅立叶变换进行搜索,并采用Clean技术以实现对多散射点参数的估计,接着利用获得的散射点参数可以得到任一时刻目标的距离多普勒像,并结合熵的概念提出一种选取最优成像时刻的方法。最后利用散射点的多普勒中心频率与调频率变化率之间的确定关系,提出一种估计ISAR转角的方法,从而实现ISAR像的定标。
Due to its all-weather, all day/night and long range, radar imaging technique can enhance radar’s information acquisition capability greatly, thus exhibits great value in both civilian and military applications. It also provides strange change for target identification. At the same time, it is also a landmark for development of radar techniques. Inverse Synthetic Aperture Radar (ISAR) imaging technique is a main part of radar imaging technique. It may be applicated to image for air target, space target and ship target etc. Target detection is the principal problems for Inverse Synthetic Aperture Radar (ISAR) imaging. It is a very important step to detect target timely and exactly in ISAR applications. Target detection and imaging with wideband and narrowband radar are the primary content of this dissertation. It may be summarized as following five parts:
     1. The target velocity estimation for target tracking is firstly discussed. The real range of target from radar is acquired through the addition of the range of narrowband range gate (i.e. reference range for dechirp) and the envelope motion amount retrieving from the envelope alignment of wideband data, then the least square fit is applied to the real range, so that the velocity of the target is retrieved. Compared to the conventional narrowband velocity estimation method, the method which uses the wideband and narrowband data can obtain higher precision and smaller variation. At the same time, the envelopes of the wideband and the narrowband signal and the Doppler information of the narrowband signal are synthetized to obtain a higher precision velocity of the target.
     2. Two methods for the single target detection in the narrowband environment are proposed. By constructing the corresponding phase compensation function, the signal coherence can be achieved, and then the simple FFT operation can be taken to implement the target energy accumulation. The first method using Sparse Radon transform to obtain the target motion parameter, and the second method using the modified Keystone transform to achieve the target motion parameter. Through the simulation it can be seen that the methods can achieve the signal energy accumulation effectively and it is advantage for target detection.
     3. Two different methods are proposed for multi-target detection in the narrowband environment. The one is based on the signal separation and the other is based on the Clean technique. Both the methods can firstly achieve the signal coherence and then by FFT to detect target. But the former one need to separate the signal in the frequency domain, and the frequency modulation rate searching is required, so it may be applied to the high SNR condition. Whereas for the latter one due to the reason that the Keystone transform is not sensitive to SNR, so it may be applied to the lower SNR condition.
     4. The problem for target detection in the wideband environment is systematically studied. The characteristic of adjacent correlation of the wideband signal, i.e. decreasing order of the wideband echo signal, is applied, and then combining the time-chirp rate distribution and the second-order Keystone transform to achieve the correction of the range curve and range migration, and finally realize the signal energy accumulation detection for single target. Following for multi-target detection two methods are proposed. One is processed for a single range frequency cell; the other is processed for the result of adjacent correlation. Both the methods are adopted the Radon Ambiguity Transform (RAT), but due to the reason adjacent correction is applied in the latter one, the scatterer energy can be accumulated, so it is more advantage for target detection.
     5. A method which combines the Polynomial Fourier Transform (PFT) and Clean technique for Range-Instantaneous Doppler imaging Algorithm is proposed. The motion parameters of maneuvering target are firstly estimated and then they can be used for constructing a phase compensation function for target motion compensation, following for every range cell the PFT is applied to search the scatterer parameter, and then the Clean technique is used for multi-scatterer condition, so the RID imaging for every time can be obtained with the parameters estimated, and by introducing the definition of entropy a optimal time for RID imaging is presented. Moreover the relation of Doppler center frequency and the variation of frequency modulation rate is used for ISAR rotation angle estimation, and finally the scale for ISAR imaging can be achieved.
引文
[1]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [2] Gang Li, Xiang-Gen Xia, Ying-Ning Peng. Doppler keystone transform: an approach suitable for parallel implementation of SAR moving target imaging [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 573-577.
    [3] W. M. Brown. Synthetic aperture radar [J]. IEEE Trans. on Aerospace and Electronic Systems, 1967, 3(2): 217-229.
    [4] C. A. Wiley. Synthetic aperture radars-a paradigm for technology evolution [J]. IEEE Trans. on Aerospace and Electronic Systems, 1985, 21(3): 440-443.
    [5]刘永坦.雷达成像技术[M].北京:科学出版社, 1989.
    [6]张直中.微波成像技术[M].北京:科学出版社, 1990.
    [7]张直中.逆合成孔径雷达(ISAR)成像[J].中国电子科学研究院学报, 2006, 1(5): 391-404.
    [8] K. K. Kong, J. A. Edwards. Slant range and cross range correction for polar format distortion in ISAR imaging [J]. IEE Proc.-Radar, Sonar Navig., 2000, 147(1): 2-8.
    [9] K.-T. Kim, D.-K. Seo, H.-T. Kim. Efficient Classification of ISAR Images [J]. IEEE Trans. on Antennas and Propagation, 2005, 53(5): 1611-1621.
    [10] R. M. Nuthalapati. High resolution reconstruction of ISAR images [J]. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28(2): 462-472.
    [11] Yuanxun Wang, Hao Ling. A frequency-aspect extrapolation algorithm for ISAR Image Simulation Based on Two-Dimensional ESPRIT [J]. IEEE Trans. on Geoscience and Remote Sensing, 2000, 38(4): 1743-1748.
    [12] F. Berizzi, M. Diani. Target angular motion effects on ISAR imaging [J]. IEE Proc.-Radar, Sonar Navig, 1997, 144(2): .87-95.
    [13] F. Pérez-Martínez, J. García-Fominaya, J. Calvo-Gallego. A shift-and-convolution technique for high-resolution radar images [J]. IEEE Sensors Journal, 2005, 5(5): 1080-1098.
    [14] M. Martorella, F. Berizzi. Time windowing for highly focused ISAR image reconstruction [J]. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41(3):992-1007.
    [15]王立冬,胡卫东,郁文贤.联合时频技术用于ISAR像综述[J].系统工程与电子技术, 2005, 27(12): 2025-2029.
    [16] Y. Li, R. Wu, M. Xing, Z. Bao. Inverse synthetic aperture radar imaging of ship target with complex motion [J]. IET Radar Sonar Navig., 2008, 2(6): 395-403.
    [17] Z. Li, R. M. Narayanan. Maneuvering target motion parameter estimation for ISAR image fusion [J]. IET Signal Processing, 2008, 2(3): 325-334.
    [18] M. Xing, R. Wu, Y. Li, Z. Bao. New ISAR imaging algorithm based on modified Wigner-Ville distribution [J]. IET Radar Sonar Navig., 2009, 3(1): 70-80.
    [19] G. Zweig. Super-resolution Fourier transforms by optimisation, and ISAR imaging [J]. IEE Proc.-Radar Sonar Navig., 2003, 150(4): 247-252.
    [20] M. Martorella. Novel approach for ISAR image cross-range scaling [J]. IEEE Trans. on Aerospace and Electronic Systems, 2008, 44(1): 281-294.
    [21] A. Farina, F. A. Studer. Detection with High Resolution Radar: Great Promise, Big Challenge [J]. Microwave Journal, 1991.
    [22]陆林根.逆合成孔径(ISAR)雷达目标检测方法[J]. 2000, 28(3): 29-31.
    [23] X. P. Zhang, L. S. Tian, Y. N. Peng. Wavelet detectors for wideband radar signals [C]. CIE International Radar Conference on Radar, 1996: 289-292.
    [24]孙文峰,何松华,郭桂蓉,赵宏钟,何昭青.强杂波背景中高距离分辨率雷达运动目标的积累检测[J].电子学报, 1998, 26(12): 12-15.
    [25]王俊.张守宏.微弱目标积累检测的包络移动补偿方法[J].电子学报, 2000, 28(12): 56-59.
    [26] S. J. Yuan, T. Wu, M. Mao, G. J. Mei, X. Wei. Application research of Keystone transform in weak high-speed target detection in low-PRF narrowband chirp radar [C]. 9th International Conference on Signal Processing, 2008: 2452-2456.
    [27] Y. Li, T. Zeng, T. Long, Z. Wang. Range migration compensation and Doppler ambiguity resolution by Keystone transform [C]. CIE’06 International Conference on Radar, 2006: 1-4.
    [28] S. S. Zhang, W. Zhang, Y. Wang. Multiple targets’detection in terms of Keystone transform at the low SNR lever [C]. IEEE International Conference on Information and Automation, 2008: 1-4.
    [29] R. P. Perry, R. C. Dipietro, R. L. Fante. Coherent integration with range migration using Keystone formatting [C]. IEEE Radar Conference, 2007: 863-868.
    [30]杨建宇,李俊生.高分辨率雷达目标的随机参量脉冲串检测方法[J].电子学报, 2004, 32(6): 1044-1046.
    [31]陆林根.高距离分辨(HRR)雷达单个目标回波信号检测.系统工程与电子技术, 1999, 21(9): 22-25.
    [32]朱永锋,李为民,陈远征,付强. Chirp雷达对高速运动目标有效相参积累的算法研究[J].系统工程与电子技术, 2004, 26(10): 1396-1399+1456.
    [33] D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones. Developments in radar imaging [J]. IEEE Trans. on Aerospace and Electronic Systems, 1984, 20(4): 363-400.
    [34] W. M. Brown, R. J. Fredricks. Range-Doppler imaging with motion through resolution cells [J]. IEEE Trans. on Aerospace and Electronic Systems, 1969, 5(1): 98-102.
    [35] C. C. Chen, H. C. Andrews. Target-motion-induced radar imaging [J]. IEEE Trans. on Aerospace and Electronic Systems, 1980, 16(1): 2-14.
    [36] C. C. Chen, H. C. Andrews. Multifrequency imaging of radar turntable data [J]. IEEE Trans. on Aerospace and Electronic Systems, 1980, 16(1): 15-22.
    [37] D. R. Wehner. High Resolution radar [M]. Norwood, MA, Artech House, Inc., 1987.
    [38] M. Soumekh, S. Nugroho, S. Jones, R. Rysdyk, S. Tran. ISAR imaging of an airborne DC-9 [C]. Proc. ICASSP. 1993. 465-468.
    [39] R. Goodman, W. Nagy, J. Wilhelm, S. Srippen. A high fidelity ground to air imaging radar system. IEEE National Radar Conference Record, 1994: 29-34.
    [40] P. J. Klass. Inverse synthetic aperture technology aids radar identification of ships. Aviation Week and Space Technology, 1987, 127(10): 88-92.
    [41] R. Voles. Resolving revolutions: imaging and mapping by modern radar [C]. Proc. IEE-F Radar and Signal Processing, 1993, 140(1): 1-11.
    [42] F. E. McFadden, S. A. Musman. Optimizing ship length estimates from ISAR Images [C]. Proc. of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 24-27 July, 2000: 163-168.
    [43] F. Berizzi, M. Diani. Multipath effects on ISAR image reconstruction [J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(2): 645-653.
    [44] F. Berizzi, E. Dalle-Mese. Scattering from a 2D sea fractal surface: fractul analysis of the scattered signal [J]. IEEE Trans. on Antennas and Propagation, 2002, 50(7): 912-925.
    [45] K. K. Eerland. Application of inverse synthetic aperture radar on aircraft [C]. Proc. International Conference on Radar. Paris, 1984: 618-623.
    [46] V. C. Chen, S. Qian. Joint time-frequency transform for radar Range-Dopplerimaging [J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(2): 486-499.
    [47] V. C. Chen. Adaptive time-frequency ISAR processing [C]. SPIE 1996, Denver, Co, USA, 1996: 133-140.
    [48] V. C. Chen. Analysis of radar Micro-Doppler with time-frequency transform [C]. Proc. 10th IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, PA, USA, Aug. 2000: 463-466.
    [49] J. Li, H. Ling. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts [J]. IEE Proc.-Radar Sonar Navig., 2003, 150(4): 284-291.
    [50] V. C. Chen, F. Li, S.-S. Ho, H. Wechsler. Micro-Doppler effect in radar-phenomenon, model and simulation study [J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
    [51] I. J. Gupta. High-resolution radar imaging using 2-D linear prediction [J]. IEEE Trans. on Antennas and Propagation, 1994, 42(1): 31-37.
    [52] K. M. Cuomo, J. E. Piou, J. T. Mayhan. Ultrawide-band coherent processing [J]. IEEE Trans. on Antennas and Propagation, 1999, 47(6): 1094-1107.
    [53] S. Borison, S. Bowling, K. Cuomo. Super-resolution methods for wideband radar [J]. Lincoln Lab. J., 1992, 5(3):441-446.
    [54] H.-J. Li, N. H. Farhat, Y. Shen. A new iterative algorithm for extrapolation of data available in multiple restricted regions with applications to radar imaging [J]. IEEE Trans. on Antennas and Propagation, 1987, 35(5):581-588.
    [55] S. R. DeGraaf. Parametric estimation of complex 2-D sinusoids [J]. Proc. 4th IEEE Annu. ASSP. Workshop on Spectrum Estimation and Modeling, Minneapolis, MN, 1988: 391-396.
    [56] M. W. Tu, I. J. Gupta, E. K. Walton. Application of maximum likelihood estimation to radar imaging [J]. IEEE Trans. on Antennas and Propagation, 1997, 45(1): 20-27.
    [57] J. Li, P. Stoica. Efficient mixed-spectrum estimation with applications to target feature extraction [J]. IEEE Trans. on Signal Processing, 1996, 44(2): 281-295.
    [58] Z. Q. Bi, J. Li, Z. S. Liu. Super resolution SAR imaging via parametric spectral estimation methods [J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(1): 267-281.
    [59] R. B. Wu, J. Li, Z. Q. Bi, P. Stoica. SAR image formation via semiparametric spectral estimation [J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(4):1318-1333.
    [60] S. R. DeGraaf. SAR imaging via modern 2-D spectral estimation methods [J]. IEEE Trans. on Image Processing, 1998, 7(5): 729-761.
    [61] J. W. Odendaal, E. Barnard, C. W. I. Pistorius. Two-dimensional supperresolution radar imaging using the MUSIC algorithm [J]. IEEE Trans. on Antennas and Propagation, 1994, 42(10): 1386-1391.
    [62] J. Li, P. Stoica. An adaptive filtering approach to spectral estimation and SAR imaging [J]. IEEE Trans. on Signal Processing, 1996, 44(6): 1469-1484.
    [63] M. R. Palsetia, J. Li. Using APES for interferometric SAR imaging [J]. IEEE Trans. on Image Processing, 1998, 7(9): 1340-1353.
    [64] T. Sauer, A. Schroth. Robust range alignment algorithm via Hough transform in an ISAR imaging system [J]. IEEE Trans. on Aerospace and Electronic Systems, 1995, 31(3): 1173-1177.
    [65] Daiyin Zhu, Ling Wang, Yusheng Yu, Qingnian Tao, Zhaoda Zhu. Robust ISAR range alignment via minimizing the entropy of the average range profile [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204-208.
    [66]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报, 1998, 26(6): 5-8.
    [67]邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐[J].电子学报, 2001, 29(12A): 1807-1811.
    [68] X. Li, G. S. Liu, J. L. Ni. Autofocusing of ISAR images based on entropy minimization [J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(4): 1240-1251.
    [69] D. E. Wahl, P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, Jr. Phase gradient autofocus-a robust tool for high resolution SAR phase correction [J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30(3): 827-835.
    [70] Wei Ye, T. S. Yeo, Zheng Bao. Weighted least-squares estimation of phase errors for SAR/ISAR autofocus [J]. IEEE Trans. on Geoscience and Remote Sensing, 1999, 37(5): 2487-2494.
    [71]保铮,叶炜. ISAR运动补偿聚焦方法的改进[J].电子学报, 1996, 24(9): 74-79.
    [72] F. Berizzi, G. Pinelli. Maximum-likelihood ISAR image autofocusing technique based on instantaneous frequency estimation [J]. IEE Proc.-Radar Sonar, Navig, 1997, 144(5): 284-292.
    [73] R. Q. Xu, Z. D. Cao, Y. T. Liu. Motion compensation for ISAR and noise effect [J]. IEEE Trans. on Aerospace and Electronic Systems, 1990, 5(6): 20-22.
    [74] G. Y. Lu, Z. Bao. Compensation of scatterer migration through resolution cell ininverse synthetic aperture radar imaging [J]. IEE Proc.-Radar, Sonar Navig., 2000, 147(2): 80-85.
    [75] Yuanxun Wang, Hao Ling, V. C. Chen. ISAR motion compensation via adaptive joint time-frequency technique [J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(2): 670-677.
    [76] T. Thayaparan, L. Stankovic, C. Wernik, M. Dakovic. Real-time motion compensation, image formation and image enhancement of moving targets in ISAR and SAR using S-method based approach [J]. IET Signal Processing, 2008, 2(3): 247-264.
    [77] Xiang-Gen Xia. A quantitative analysis of SNR in the short-time Fourier transform domain for multicomponent signals [J]. IEEE Trans. on Signal Processing, 1998, 46(1): 200-203.
    [78] Xiang-Gen Xia, V. C. Chen. A quantitative SNR analysis for the pseudo Wigner-Ville distribution [J]. IEEE Trans. on Signal Processing, 1999, 47(10): 2891-2894.
    [79] Xiang-Gen Xia, Gen-Yuan Wang, V. C. Chen. Quantitative SNR analysis for ISAR imaging using joint time-frequency analysis-short time Fourier transform [J]. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(2): 649-659.
    [80] A. Jain. SAR/ISAR imaging of a nonuniformly rotating target [J]. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28(1): 317-321.
    [81] Xueru Bai, Mengdao Xing, Feng Zhou, Guangyue Lu, Zheng Bao. Imaging of micromotion targets with rotating parts based on empirical-mode decomposition [J]. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46(11): 3514-3523.
    [82] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. High-Resolution three-dimensional radar imaging for rapidly spinning targets [J]. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46(1): 22-30.
    [83]保铮,王根原,罗琳.逆合成孔径雷达的距离-瞬时多普勒成像方法[J].电子学报, 1998, 26(12): 79-83.
    [84]王根原,保铮.一种基于自适应Chirplet分解的逆合成孔径雷达成像方法[J].电子学报. 1999, 27(3): 29-31.
    [1]周峰,李亚超,邢孟道,保铮.一种单通道SAR地面运动目标成像和运动参数估计方法[J].电子学报, 2007, 35(3): 543-548.
    [2]黄小红,陈曾平,庄钊文,姜卫东.空间目标高分辨距离像运动参数估计[J].宇航学报, 2004, 25(3): 269-272.
    [3]刘峥,张守宏.步进频率雷达目标的运动参数估计[J].电子学报, 2000, 28(3): 43-46.
    [4]冯德军,王雪松,肖顺平,王国玉.基于单个宽带脉冲的空间目标测距和测速方法[J].信号处理, 2006, 22(1): 73-77.
    [5]关贞珍,杨润泽,舒鑫,张治.高速运动目标速度测量系统[J].国外电子测量技术, 2006, 25(10): 14-16.
    [6]刘铮,张守宏.调频脉冲雷达目标的运动参数估计[J].电子科学学刊, 2000, 22(4): 591-596.
    [7]李文臣,丹梅,王雪松,王国玉.单个线性调频脉冲信号测速方法之研究[J].雷达科学与技术, 2004, 2(1): 11-16.
    [8]康丽艳,苏涛,牛亚莉.基于正负斜率线性调频脉冲信号的一种新的测速方法[J].火控雷达技术, 2006, 35(3): 14-18.
    [9]肖云,夏哲仁.利用相位率和多普勒确定载体速度的比较[J].武汉大学学报, 2003, 28(5): 581-584.
    [10]叶桦,陈海峰,陈维南.基于遗传寻优的刚体运动参数估计方法[J].东南大学学报, 1999, 29(3): 101-105.
    [11]张卫娥,赵永波,杨莉.基于短时谱分析的SISAR运动参数估计及侧影像定标[J].航空计算技术, 2007, 37(4): 77-81.
    [12]王胜华,曹运合,张守宏.高精度多目标运动参数估计[J].系统工程与电子技术, 2004, 26(8): 1049-1052.
    [13]张旭东,付强,庄钊文.高分辨距离像的运动参数估计[J].电子学报, 2002, 30(3): 386-389.
    [14]张飞鹏,黄珹,张忠平.精密测距测速系统的研究与应用[J].天文学进展, 1999, 17(1): 33-43.
    [15]刘昌文,刘杰,孙其超,王仕康.二维计数跟踪型激光多普勒测速研究[J].中国激光, 1999, 26(12): 1118-1122.
    [16]魏崇毓,徐善驾,王东进.多基地雷达最大似然估计法目标定位与测速[J].应用科学学报, 2000, 18(2): 117-121.
    [17]徐敏.单脉冲测量雷达测速技术研究[J].现代雷达, 2005, 27(1): 58-61.
    [18]刘玉娟,徐佳龙,何蕾,陈泳.高加速度下单脉冲测量雷达测速[J].现代雷达, 2006, 28(1): 13-15+22.
    [19]田坦,张殿伦,卢逢春,陈国忠,张咏霞.相控阵多普勒测速技术研究[J].哈尔滨工程大学学报, 2002, 23(1): 80-85.
    [20]吕孝雷,张守宏,李锘.双基地前向散射栅栏雷达的目标运动参数估计[J].西安电子科技大学学报, 2007, 34(1): 54-58+91.
    [21]宋军杰.机载多卜勒雷达测速精度分析[J].空军工程大学学报, 2000, 1(5): 12-15.
    [22]王黎明,赵英亮,韩焱.高速运动目标测试数据处理精度的方法研究[J].华北工学院学报, 2005, 26(1): 53-57..
    [23] C. C. Chen, H. C. Andrews. Target-motion-induced radar Imaging [J]. IEEE Trans. on Aerospace and Electronic systems, 1980, 16(1): 2-14.
    [24] G. Y. Delisle, H. Wu. Moving target imaging and trajectory computation using ISAR [J]. IEEE Trans. on Aerospace and Electronic systems, 1994, 30(3): 887-899.
    [25]王琨,罗琳. ISAR成像中包络对齐的幅度相关全局最优法[J].电子科学学刊, 1998, 20(3): 369-373.
    [26]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报, 1998, 26(6): 5-8.
    [27]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法[J].西安电子科技大学学报, 2000, 27(1): 93-96.
    [28]卢光跃,保铮. ISAR成像中具有游动部件目标的包络对齐[J].系统工程与电子技术, 2000, 22(6): 12-14+86.
    [29] G. Wang, Z. Bao. The minimum entropy criterion of range alignment in ISAR motion compensation [C]. Proceeding Conference Radar’97, Edinburgh UK, 1997: 14-16.
    [30]廖海山,向家彬,胡国旗.基于最小熵准则的ISAR成像快速包络对齐方法[J].空军雷达学院学报, 2006, 20(3): 177-179.
    [31] J. Wang, D. Kasilingam. Global range alignment for ISAR [J]. IEEE trans. on Aerospace and Electronic systems, 2003, 39(1): 351-357.
    [32]邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐[J].电子学报, 2001, 29(12A): 1807-1811.
    [33]黄小红,邱兆坤,陈曾平.逆合成孔径雷达运动补偿中一种包络对齐新方法[J].信号处理, 2006, 22(2): 230-232.
    [1] Shunsheng Zhang, Tao Zeng, Teng Long, Haipeng Yuan. Dim target detection based on keystone transform [C]. Proc. of IEEE Int. Radar Conf. Crystal Gateway Marriott Arlington, VA , USA, 2005: 889-894.
    [2] Jun Wang, Shouhong Zhang, Zheng Bao. On motion compensation for weak radar reflected signal detection [C]. Proc. Int. Conf. Signal Processing, Beijing, China, 2002: 1445-1448.
    [3] Jianjun Chen, Juan Chen, Shengli Wang. Detection of ultra-high speed moving target based on matched Fourier transform [C]. Proc. Int. Radar Conf., Shanghai, China, 2006: 1-4.
    [4] H. C. So, W. K. Ma, Y. T. Chan. Detection of narrowband random signals via spectrum matching [C]. Proc. of Midwest Symposium Circuits and Systems, Notre Dame, IN, USA, 1998: 238-241.
    [5] J. Tsao, W. J. Shyu, J. Mar. Detection of narrowband signals by Gabor's expansion of spectrum [C]. Proc. of IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Toronto. Ont., Canada, 1991: 3201-3204.
    [6] P. Willett, Z. Wang, R. Streit. Wavelets in the frequency domain for narrowband process detection [C]. Proc. of IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2001: 3193-3196.
    [7] B. M. Sadler, G. B. Giannakis, K.-S. Lii. Estimation and detection in nongaussian noise using higher order statistics [J]. IEEE Trans. on Signal Processing, 1994, 42(10): 2729-2741.
    [8] K. M. Hock. Narrowband weak signal detection by higher order spectrum [J]. IEEE Trans. on Signal Processing, 1996, 44(4): 874-879.
    [9] L. M. Garth, Y. Bresler. The degradation of higher order spectral detection using narrowband processing [J]. IEEE Trans. on Signal Processing, 1997, 45(7): 1770-1784.
    [10] W. S. Burdic. Detection of narrowband signals using time-domain adaptive filters [J]. IEEE Trans. on Aerospace and Electronic Systems, 1978, 14(4): 578-591.
    [11]孙泓波,顾红,苏卫民,刘国岁.基于互Wigner-Ville分布的SAR运动目标检测[J].电子学报, 2002, 30(3): 347-350.
    [12]杜鹏飞,王永良,皇甫堪.基于平滑WVD的动目标检测[J].系统工程与电子技术, 2002, 24(3): 4-6+72.
    [13]曲长文,黄勇,苏峰,何友.基于随机Hough变换的匀加速运动目标检测算法及性能分析[J].电子学报, 2005, 33(9): 1403-1406.
    [14]曲长文,黄勇,苏峰,何友.基于坐标变换与随机Hough变换的抛物线运动目标检测算法[J].电子与信息学报, 2005, 27(10): 1573-1575.
    [15]周林,刘先省.基于新定义信息熵的目标检测算法[J].信息与控制, 2005, 34(1): 119-122.
    [16] I. J. Kim, S. R. Park, I. Song, J. Lee, H. Kwon, S. Yoon. Detection Schemes for weak signals in first-order moving average of impulsive noise [J]. IEEE Trans. on Vehicular Technology, 2007, 56(1): 126-133.
    [17] J. W. Modestino, A. Y. Ningo. Detection of weak signals in narrowband non-gaussian noise [J]. IEEE Trans. on Information Theory, 1979, 25(5): 592-600.
    [18] D. W. Tufts, I. Kirsteins, R. Kumaresan. Data-adaptive detection of a weak signal [J]. IEEE Trans. on Aerospace and Electronic Systems, 1983, 19(2): 313-316.
    [19] Ning Hsing Lu, B. A. Eisenstein. Weak signal detection in non-gaussian noise of unknown level [J]. IEEE Trans. on Aerospace and Electronic Systems, 1984, 20(6): 830-834.
    [20] A. J. Rainal. Detecting a weak sine wave and measuring its parameters [J]. IEEE Trans. on Instrumentation and Measurement, 1968, 17(2): 127-133.
    [21]王俊,张守宏,杨克虎.利用自适应子波变换提高对微弱运动目标的检测性能[J].电子学报, 1999, 27(12): 80-83.
    [22]王俊,张守宏.微弱目标积累检测的包络移动补偿方法[J].电子学报, 2000, 28(12): 56-59+55.
    [23]李海,吴嗣亮,莫力.微弱信号长时间积累的检测方法[J].北京理工大学学报, 2001, 21(5): 614-617.
    [24]刘志刚,卢焕章,陈辉煌.一种低信噪比下点目标检测新算法[J].系统工程与电子技术, 2004, 26(11): 1688-1691.
    [25]强勇,焦李成,保铮一种有效的用于雷达弱目标检测的算法[J].电子学报, 2003, 31(3): 440-443.
    [26]吴宏刚,李晓峰,李在铭.自适应强杂波抑制与点状动目标检测[J].航空学报, 2006, 27(5): 908-912.
    [27]艾斯卡尔,李在铭.最优分布变换与微弱点状动目标检测技术[J].系统工程与电子技术, 2003, 25(1): 103-106.
    [28]张顺生,曾涛.基于keystone变换的微弱目标检测[J].电子学报, 2005, 33(9): 1675-1678.
    [29] Z. Wang, P. Willett, R. Streit. Detection of long-duration narrowband processes [J]. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(1): 211-227.
    [30]王俊,张守宏,刘宏伟.步进频率信号长相参积累实现方法[J].西安电子科技大学学报, 2001, 28(3): 373-377.
    [31]王远模,马君国,付强,庄钊文.高速运动目标的积累检测研究[J].现代雷达, 2006, 28(3): 24-27.
    [32]陈远征,朱永锋,赵宏钟,付强.基于包络插值移位补偿的高速运动目标的积累检测算法研究[J].信号处理, 2004, 20(4): 387-390.
    [33]方学立,梁甸农,董臻.目标检测性能的定量评估方法[J].系统工程与电子技术, 2005, 27(12): 1991-1993+2106.
    [34]夏桂芬,赵保军,韩月秋.激光雷达的目标检测性能分析[J].系统工程与电子技术, 2005, 27(12): 1994-1996.
    [35] E. J. Kelly, R. P. Wishner. Matched-Filter theory for high-velocity, accelerating targets [J]. IEEE Trans. on Military Electronics, 1965, 9(1): 56-69.
    [36] M. R. Sharif, S. S. Abeysekera. Efficient wideband signal parameter estimation using a Radon-Ambiguity transform slice [J]. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43(2): 673-688.
    [37] M. R. Sharif, S. S. Abeysekera. Efficient wideband sonar parameter estimation using a single slice of Radon-Ambiguity transform [C]. IEEE ICASSP, 2005: 605-608.
    [38] F. Berizzi, G. Corsini. Autofocusing of inverse synthetic radar images using contrast optimization [J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32(3): 1185-1191.
    [39] J. C. Wood, D. T. Barry. Radon transformation of time-frequency distributions for analysis of multicomponent signals [J]. IEEE Trans. on Signal Processing, 1994, 42(11): 3166-3177.
    [40] J. C. Wood, D. T. Barry. Radon transformation of time-frequency distributions for analysis of multicomponent signals [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1992: 257-260.
    [41]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像[J].西安电子科技大学学报, 2003, 30(2): 155-159.
    [42]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [1]季艳.国外临近空间飞行器技术发展概述[J].国际航空杂志, 2006, 84-85.
    [2] J. T. Rickard, G. M. Dillard. Adaptive detection algorithms for multiple-target spectral data [C]. IEEE Conference on Decision and Control, 1977: 515-518.
    [3] J. T. Rickard, G. M. Dillard. Adaptive detection algorithms for multiple-target situations [J]. IEEE Trans. on Aerospace and Electronic Systems, 1977, 13(4):338-343.
    [4] R. J. Polge, B. R. Mahafza, J. G. Kim. Multiple target detection through DFT processing in a sequential mode operation of real or synthetic arrays [C]. Proceedings of Twenty-First Southeastern Symposium on Systems Theory, 1989: 264-267.
    [5] A. Abo-Zena, E. L. Church. Multiple target detection– optimum resolution [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1986: 583-586.
    [6] M.B. El Mashade. M-Sweeps detection analysis of cell-averaging CFAR processors in multiple-target situations [J]. IEE Proc.-Radar, Sonar Navig., 1994, 141(2): 104-108.
    [7] Yinfang Mao, Guoan Chen, Junfeng Wang. SAR/ISAR imaging of multiple moving targets based on combination of WVD and HT [C]. Proceedings CIE International Conference of Radar, 1996: 342-345.
    [8] A. Jafargholi, M. R. Mousavi, M. M. Nayebi. High Accurate Multiple Target Detection in PCL Radar Systems [C]. CIE International Conference on Radar, 2006: 1-4.
    [9] Jianqiang Xin, N. M. BiIgutay. Detection and resolution of multiple targets using time-frequency techniques [C]. IEEE Proceedings of Ultrasonics Symposium, 1994: 1133-1137.
    [10] H. M. Shertukde, Y. Bar-Shalom. Detection and estimation for multiple targets with two omnidirectional sensors in the presence of false measurements [J]. IEEE Trans. on Acoustics Speech and Signal Processing, 1990, 38(5): 749-763.
    [11] M. Barkat, S. D. Himonas, P. K. Varshney. CFAR detection for multiple target situations [J]. IEE Proceedings Radar and Signal Processing, 1989, 136(5): 193-209.
    [12] M. R. Morelande, C. M. Kreucher, K. Kastella. A Bayesian approach to multiple target detection and tracking [J]. IEEE Trans. on Signal Processing, 2007, 55(5): 1589-1604.
    [13] R.-J. Liou, M. R. Azimi-Sadjadi. Multiple target detection using modified high order correlations [J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(2): 553-568.
    [14] R.-J. Liou, M. R. Azimi-Sadjadi. Multiple target detection and track identification using modified high order correlations [C]. IEEE International Conference on Neural Networks, 1994: 3277-3282.
    [15] Qi Tian, N. M. Bilgutay, Xing Li. An iterative spectral method for multiple target detection [C]. IEEE Proceedings of Ultrasonics Symposium, 1995: 721-724.
    [16]杜利平,苏广川.毫米波雷达多运动目标检测算法研究[J].系统工程与电子技术, 2005, 27(9): 1523-1527.
    [17]王明宇,袁汉雄.多目标环境下的雷达CFAR检测[J].空军工程大学学报, 2000, 1(5): 57-60.
    [18]曲长文,黄勇,苏峰.基于动态规划的多目标检测前跟踪算法[J].电子学报, 2006, 34(12): 2138-2141.
    [19]宋慧波,高梅国,田黎育,毛二可,顾文彬.一种基于动态规划法的雷达微弱多目标检测方法[J].电子学报, 2006, 34(12): 2142-2145.
    [20] Qi Tian, N. M. Bilgutay. Statistical analysis of split spectrum processing for multiple target detection [J]. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 1998, 45(1): 251-256.
    [21] Qi Tian, Xing Li, N. M. Bilgutay. Multiple target detection using split spectrum processing and group delay moving entropy [J]. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 1995, 42(6): 1076-1086.
    [22] T. Laroussi, M. Barkat. Performance analysis of ML-CFAR detection for partially correlated chi-square targets in Rayleigh correlated clutter and multiple-target situations [J]. IEE Proc.-Radar Sonar Navig., 2006, 153(1): 44-52.
    [23] M. Moretti, E. Nostrato, S. Piagneri, G. J. M. Janssen. Performance analysis of a narrowband two-signal receiver based on joint detection [C]. IEEE VTS-Fall VTC, 2000: 2312-2316.
    [24]王蕾,张群飞.空间有色噪声背景下多目标检测性能研究[J].微处理机, 2007, 28(1): 89-91+98.
    [25]冯维婷,刘峥,戴奉周.连续波雷达的多目标检测与参数估计[J].雷达科学与技术, 2005, 3(3): 144-147.
    [26]张容权,李政,杨建宇,熊金涛. LFMCW雷达多目标加速度和速度估计方法[J].电讯技术, 2005, 45(6): 17-20.
    [27]邢孟道,保铮,冯大政.基于瞬时幅度和调频率估计的机动目标成像方法[J].西安电子科技大学学报, 2001, 28(1): 22-26.
    [28] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. SRMF-CLEAN imaging algorithm for space debris [J]. IEEE Trans. on Antennas and Propagation, 2007, 55(12): 3524-3533.
    [29] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. High-Resolution three-dimensional radar imaging for rapidly spinning targets [J]. IEEE Trans. onGeoscience and Remote Sensing, 2008, 46(1): 22-30.
    [30]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像[J].西安电子科技大学学报, 2003, 30(2): 155-159.
    [31]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [32] M. Xing, Z. Bao.The imaging algorithm for steadily flying and maneuvering big targets [C]. Proceedings of SPIE, 2001: 182-190.
    [1] C. C. Chen, H. C. Andrews. Target-motion-induced radar imaging [J]. IEEE Trans. on Aerospace and Electronic Systems, 1980, 16(1), 2-14.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [3]张澄波,综合孔径雷达[M].北京:科学出版社, 1989.
    [4]张直中,微波成像技术[M].北京:科学出版社, 1990.
    [5]黄巍.相关检测在宽带雷达信号处理中的应用[J].现代雷达, 2005, 27(2): 36-39.
    [6]陆林根.高距离分辨(HRR)雷达单个目标回波信号检测[J].系统工程与电子技术, 1999, 21(9): 22-25.
    [7]陆林根.逆合成孔径(ISAR)雷达目标检测方法[J].电子学报, 2000, 28(3): 29-31.
    [8] P. K. Hughes. A high-resolution radar detection strategy [J]. IEEE Trans. on Aerospace and Electronic Systems, 1983, 19(5): 663-667.
    [9] A. Farina, F. A. Studer, R. Vitiello. High resolution radar for enhanced target detection [C]. International Conference on Radar, 1992: 163-166.
    [10] A. Farina, F. A. Studer. Detection with High Resolution Radar: Great Promise, BigChallenge [J]. Microwave Journal, 1991, 34(1): 263-273.
    [11] Yongzhen Li, Xuesong Wang, Shunping Xiao, Zhaowen Zhuang. A novel high-resolution polarization target detection method based on intense scatterer integration [C]. CIE International Conference on Radar, 2001: 1039-1043.
    [12]李永祯,王雪松,肖顺平,庄钊文.基于非线性积累的高分辨极化目标检测[J].红外与毫米波学报, 2000, 19(4): 307-312.
    [13]刘刚,王春阳,师剑军,戴国宪.一种超宽带运动目标检测雷达[J].现代雷达, 2000, 22(5): 1-4+17.
    [14]黎海涛,徐继麟.一种超宽带雷达信号检测方法[J].无线电工程, 2000, 30(1): 5-6.
    [15]陈希信,刘刚.宽带雷达信号检测技术研究[J].现代雷达, 2005, 27(8): 28-31.
    [16]黎海涛,徐继麟.基于广义似然比的高分辨率雷达目标检测[J].系统工程与电子技术, 2000, 22(11): 5-7.
    [17] Jin Tang, Zongkai Yang, Ying Cai. Wideband passive radar target detection and parameters estimation using wavelets [C]. IEEE International Radar Conference, 2000: 815-818.
    [18] B. F. Beidas, C. L. Weber. Statistical analysis of the Wigner-Ville distribution with applications to wideband detection [C]. IEEE Conference Record on Military Communications, 1990: 825-829.
    [19] S. Nag, M. Barnes. A moving target detection filter for an ultra-wideband radar [C]. IEEE Radar Conference, 2003: 147-153.
    [20] Jianqiang Xin, N. M. BiIgutay. Detection and resolution of multiple targets using time-frequency techniques [C]. IEEE Ultraonics Symposium, 1994: 1133-1137.
    [21] Ying Wang, R. Chellappa, Qinfen Zheng. Detection of point targets in high resolution synthetic aperture radar images [C]. IEEE Conference on Acoustics, Speech, and Signal Processing, 1994: 9-12.
    [22] J. E. Ross, E. J. Rothwell, D. P. Nyquist, K. M. Chen. Multiple target discrimination using E-pulse techniques [C]. Antennas and Propagation Society International Symposium, 1990: 1342-1345.
    [23] V. M. Orlenko, Y. D. Shirman. Non-coherent integration losses of wideband target detection [C]. European Radar Conference, 2004: 225-228.
    [24] R. H. Khan. Target detection and tracking with HF radar using ISAR techniques [C]. IEEE National Radar Conference, 1996: 94-99.
    [25]黄巍,贺知明,向敬成.宽带雷达能量积累与信号检测方法研究[J].系统工程与电子技术, 2004, 26(7): 889-892.
    [26]闫冯军.宽带雷达信号检测方法研究[D].合肥:合肥工业大学计算机与信息学院, 2006.
    [27]郭汉伟.合成孔径雷达地面运动目标检测与成像技术研究[D].长沙:国防科学技术大学电子科学与工程学院, 2003.
    [28] R. P. Perry, R. C. Dipietro, R. L. Fante. SAR imaging of moving targets [J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(1): 188-200.
    [29]盛蔚,毛士艺.基于Keystone变换的地面运动目标检测研究[J].系统工程与电子技术. 2002, 24(11): 1-4.
    [30]李亚超,苏军海,邢孟道,保铮.利用时间-调频率分布特性的复杂目标ISAR成像研究[J].西安电子科技大学学报, 2008, 35(1): 1-7.
    [31]李强,张守宏,张焕颖,王俊.基于差波束逆合成孔径雷达成像的角运动参数估计方法[J].西安交通大学学报, 2006, 40(12): 1414-1418.
    [32] B. K. Jennison. Detection of polyphase pulse compression waveforms using the Radon-ambiguity transform [J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(1): 335-343.
    [33] M. R. Sharif, S. S. Abeysekera. Efficient wideband signal parameter estimation using a Radon-ambiguity transform slice [J]. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43(2): 673-688.
    [34] M. R. Sharif, S. S. Abeysekera. Efficient wideband sonar parameter estimation using a single slice of Radon-ambiguity transform [C]. IEEE ICASSP, 2005: 605-608.
    [35] Minsheng Wang, A. K. Chan, C. K. Chui. Linear frequency-modulated signal detection using Radon-ambiguity transform [J]. IEEE Trans. on Signal Processing, 1998, 46(3): 571-586.
    [36] B. R. Mahafza. Radar systems analysis and design using Matlab [M]. USA: Chapman & Hall/CRC, 2000, 146-149.
    [37] M. Welss. Analysis of some modified cell-averaging CFAR processors in multiple-target situations [J]. IEEE Trans. on Aerospace and Electronic Systems, 1982, 18(1): 102-104.
    [38] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. SRMF-CLEAN imaging algorithm for space debris [J]. IEEE Trans. on Antennas and Propagation, 2007, 55(12): 3524-3533.
    [39] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. High-Resolution three-dimensional radar imaging for rapidly spinning targets [J]. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46(1): 22-30.
    [40] F. Hjouj, D. W. Kammler. Identification of reflected, scaled, translated, and rotated objects from their Radon projections [J]. IEEE Trans. on Image Processing, 2008, 17(3): 301-310.
    [41] Qiaoping Zhang, I. Couloigner. Accurate centerline detection and line width estimation of thick lines using the Radon transform [J]. IEEE Trans. on Image Processing, 2007, 16(2): 310-316.
    [1] Liping Du, Guangchuan Su. Adaptive inverse synthetic aperture radar imaging for nonuniformly moving targets [J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3): 247-249.
    [2] M. Xing, R. Wu, Z. Bao. High resolution ISAR imaging of high speed moving targets [J]. IEE Proc. Radar Sonar Navig, 2005, 152(2): 58-67.
    [3] Qun Zhang, Tat Soon Yeo, G. Du. ISAR imaging in strong ground clutter using a new stepped-frequency signal format [J]. IEEE Trans. on Geoscience and Remote Sensing, 2003, 41(5): 948-952.
    [4]邢孟道,保铮. ISAR机动目标的平动补偿和瞬时成像研究[J].电子学报, 2001, 29(6): 733-737.
    [5]卢光跃,保铮.机动目标ISAR距离瞬时多普勒成像实现方法[J].系统工程与电子技术, 1999, 21(7): 30-32.
    [6]郑义明,邢孟道,保铮.基于多分量多项式信号参数估计的机动目标成像[J].西安电子科技大学学报, 2000, 27(4): 471-475.
    [7]王立冬,胡卫东,郁文贤.联合时频技术用于ISAR像综述[J].系统工程与电子技术, 2005, 27(12): 2025-2029.
    [8]王根原,保铮.一种基于自适应Chirplet分解的逆合成孔径雷达成像方法[J].电子学报, 1999, 27(3): 29-31+36.
    [9]邢孟道,保铮,郑义明,冯大政.适合于大型平稳和机动目标的成像算法[J].信号处理, 2001, 17(1): 47-55.
    [10]王勇,姜义成.两种线性时频分布在机动目标ISAR成像中的应用[J].哈尔滨工业大学学报, 2006, 38(5): 702-704.
    [11]卢光跃,保铮.基于瞬时谱估计的ISAR距离瞬时多普勒成像算法[J].西安电子科技大学学报, 1998, 25(5): 593-597.
    [12]邢孟道,保铮,冯大政.基于瞬时幅度和调频率估计的机动目标成像方法[J].西安电子科技大学学报, 2001, 28(1): 22-26.
    [13]王勇,姜义成.自适应Chirplet分解的ISAR成像方法[J].哈尔滨工业大学学报, 2008, 40(9): 1397-1399+1407.
    [14]高昭昭,邢孟道,张守宏,张焕颖.基于线性调频步进信号的高速目标ISAR成像[J].电子与信息学报, 2008, 30(12): 2813-2817.
    [15]李亚超,梁毅,邢孟道,保铮.基于线性调频步进ISAR参数估计和成像算法研究[J].电子学报, 2008, 36(12): 2464-2472.
    [16] G. Zweig. Super-resolution Fourier transforms by optimization and ISAR imaging [J]. IEE Proc.-Radar Sonar Navig., 2003, 150(4): 247-252.
    [17] M. Y. Abdul Gaffar, W. A. J. Nel, M. R. Inggs. Quaternion-based transformation for extraction of image-generating Doppler for ISAR [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 560-563.
    [18] M. Xing, R. Wu, Y. Li, Z. Bao. New ISAR imaging algorithm based on modified Wigner-Ville distribution [J]. IET Radar Sonar Navig., 2009, 3(1): 70-80.
    [19] Y. Li, R. Wu, M. Xing, Z. Bao. Inverse synthetic aperture radar imaging of ship target with complex motion [J]. IET Radar Sonar Navig., 2008, 2(6): 395-403.
    [20]佘志舜,朱兆达.逆合成孔径雷达横向距离定标[J].电子学报, 1997, 25(3): 45-48.
    [21]李玺,顾红,刘国岁. ISAR成像中转角估计的新方法[J].电子学报, 2000, 28(6): 44-47.
    [22]王勇,姜义成.一种估计ISAR成像转角的新方法[J].电子与信息学报, 2007, 29(3): 521-523.
    [23]马长征,张守宏.匀加速旋转目标ISAR成像的横向分辨率[J].西安电子科技大学学报, 1999, 26(2): 254-256.
    [24]邱晓辉,朱兆达.一种用于ISAR成像的转角采样不均匀补偿方法[J].现代雷达, 1996, 18(3): 1-6.
    [25] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. SRMF-CLEAN imaging algorithm for space debris [J]. IEEE Trans. on Antennas and Propagation, 2007, 55(12): 3524-3533.
    [26] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. High-Resolution three-dimensional radar imaging for rapidly spinning targets [J]. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46(1): 22-30.
    [27] Jian Li, Petre Stoica. Efficient mixed-spectrum estimation with applications to target feature extraction [J]. IEEE Trans. on Signal Processing, 1996, 44(2): 281-295.
    [28]邹虹.多分量线性调频信号的时频分析[D].西安:西安电子科技大学电子工程学院, 2000.
    [29]李亚超,苏军海,邢孟道,保铮.利用时间-调频率分布特性的复杂目标ISAR成像研究[J].西安电子科技大学学报, 2008, 35(1):1-7.
    [30]保铮,邢孟道,王彤编著.雷达成像技术[M].北京:电子工业出版社, 2005.