基于三维镍结构防热涂层的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近空间飞行器已经成为了各国研究的热点,该飞行器飞行环境的特殊性和飞行特点对新型表面防热技术的需求也迫在眉睫。本论文主要是利用三维光子晶体对光的可控可调的特点,设计出适用于在临近空间运行的飞行器的高辐射涂层。在镍基高温合金表面设计出了底层为三维多孔镍/氧化钇稳定氧化锆(YSZ)复合结构,表层为SiC涂层的防热结构,在本结构中三维镍结构可以对光有高的反射率,将传播到其表面的光向外部反射,来增强表面SiC涂层的发射率。本论文首先利用不同的制备工艺制备出了基于三维镍结构的辐射防热涂层,并通过SEM、XPS、Raman、PL等测试手段分析了涂层的成分、微观组织及表面粗糙度等;利用纳米压痕试验和纳米划痕试验对涂层的力学性能进行了表征;利用光分光光度计对涂层的光学性能进行了表征;利用傅里叶红外光谱仪测试了防热涂层在高温下的发射率,并对影响发射率的因素进行了分析。
     通过垂直沉降法,在镍合金基体上制备了质量较好的聚苯乙烯模板,在大范围内聚苯乙烯球为最稳定的有序密堆六方排列。然后基于模板技术,利用电沉积方法制备三维镍结构。在沉积时间较短(1min)时,得到的为二维镍结构;沉积时间大于3min后得到的为三维镍结构,其中孔按照密堆六方排列,孔径与聚苯乙烯球直径相符,没有收缩。40℃温度下沉积得到的镍薄膜的孔形圆,孔壁光滑。随着沉积温度的升高,孔变形,孔壁变粗糙。不同的电流密度下,镍会沿着不同的晶向生长,其颗粒大小也有相应的变化。通过对电沉积参数的研究得出:在电沉积温度为40℃,电流密度为30mA·cm-2,沉积时间大于3min的条件下,可以制备质量较好的三维镍结构。
     试样拉伸伸长10%后,三维镍结构薄膜没有脱落,说明镍薄膜与基体结合牢固;拉伸后孔的变形量小于10%,说明为弹塑性变形,拉伸卸载后形状有所恢复。通过力学测试和计算得出,未拉伸前的三维镍结构薄膜的平均硬度和弹性模量分别为0.99GPa和23.52GPa;拉伸后的硬度和弹性模量分别是0.88GPa和22.68GPa。通过划痕试验,1000μN的固定载荷下在薄膜表面划6μm,薄膜没有剥落。制备的三维镍结构具有很好的塑性和抗压性能,膜基结合牢固。三维镍结构薄膜的反射率随着波长的增大而增加,高达78%。三维镍结构薄膜的反射率随着沉积电流密度的变化而变化。由30mA·cm~(-2)沉积的三维镍结构薄膜的反射率较高。三维镍结构的反射率不但与其孔的结构有关,还与镍颗粒大小有关。通过溶胶凝胶的方法,将YSZ先驱在600℃下煅烧后2h后在三维镍结构中制备了单一立方相YSZ涂层,YSZ涂层颗粒均匀,涂层致密。
     磁控溅射工艺制备的SiC涂层主要以非晶物质为主,含有大量的Si-C键和C-C键,还有少量的Si-O键和Si-Si键。其中Si-C键主要是非晶碳化硅也含有少量6H-SiC,C-C键是以sp2非晶碳(石墨)形式存在。制备的SiC涂层颗粒均匀,大约在500nm左右,涂层表面平整致密,没有明显的空隙或者缺陷。在300℃、600℃、900℃、1050℃下对制备的SiC涂层进行了真空热处理2h,在热处理过程中富余的C-C键与Si-Si键或者是Si-C键中空键搭联,这样Si-C键增多,C-C键减少,说明热处理有利于提高SiC的结晶程度。600℃温度以下热处理后SiC涂层中的小晶粒逐渐聚合慢慢生长成较大晶粒,晶粒间界面明显,表面更加致密;但温度达到900℃时,晶粒变大,晶粒之间的界面变得模糊;温度达到1050℃时,只能看到连续的大颗粒,并且没有明显的界面。同时,随着热处理温度的升高,涂层的表面粗糙度、硬度和弹性模量都增加。
     在300℃、500℃和700℃温度下测试了SiC涂层的辐射率,其辐射率为整体结构的宏观辐射率,并且其辐射率随着温度的升高而逐渐增大。热处理后的SiC涂层,其辐射率较制备态的有所提高,并且随着热处理温度的升高,辐射率也在升高。在700℃下涂层辐射率达到0.90左右,该结构有很好辐射性能。随着热处理温度的变化,涂层的成分和表面粗糙度等有相应的变化,对涂层的辐射率有一定的影响。
In recent years, many countries have given their attention to explor near space vehiles. In this paper, we designed a high thermal emittance structure based on three dimensional photonic crystal for near space vehile to proctect the equipment inside. In the structure designed, three dimensional nickel structure which was also called three-dimensionally ordered macroporous (3DOM) Ni films was prepared on the nickel alloy substrate, which would reflect the light to the top SiC coating to enhance the thermal emittance of the structure. The phase composite, microstructure,suface roughness were investigated by SEM, AFM, XPS, FTIR, Raman spectroscropy and PL spectroscropy. The mechanical properties were ananlyzed by nano-indentation and nano-scratch. The optical properties were studied by UV-Vis-NIR Spectrophotometers. The emissivity of SiC coating was measured by Fourier tranform infrared spectrometer. The influnce of composition, surface roughness and thickness on the emissivity were analyzed.
     The polystyrene (PS) colloidal crystals have been formed by self-assembly of PS particles using vertical deposition method, in which the PS particles displayed a hexagonal array which indicated the most stable state of thermodynamics. 2D nickle films were get in the plating time shorter than 1min,and 3DOM nickel films were finally obtained in the time longer than 3min, in whcih the pores possesses a face-centred cubic (fcc) crystal structure and no structure shrinkage relative to PS particles during the fabrication process. The pore wall of 3DOM nickel films was smooth which was deposited at 40℃. When the plating temperature above 50℃, the pore wall became rough. The gain size changed with the different plating current density.
     No abscission and desquamation were observed in the 3DOM Ni films under 10% tensile strains and after nano-scratch test, which suggested that the combination between the nickel PCs and substrate is very stable. And the deformation of the pores less than 10% showed the excellent plasticity. The hardness and Young’s modulus of 3DOM Ni films without strain are 0.99 GPa and 23.52 GPa, respectively. And the hardness (0.88 GPa) and Young’s modulus (22.68 GPa) of 3DOM nickel PCs with 10% strain are also little smaller than that of 3DOM Ni films without strain. These results imply that the 3DOM nickel PCs on nickel alloy substrate have good mechanical properties. The reflectance of 3DOM Ni films increased as the wavelength increased. And it varied with different current density, in which the reflence of the 3DOM Ni films obtained under 30mA·cm-2 was highest 78%.
     Cubic YSZ coating was prepared in the 3DOM Ni skeleton when the YSZ precursor was calcined at 600℃for 2h. And the surface of YSZ coating was smooth and compact, which showed us the sizes of particles was similar.
     SiC coatings were prepared on the Ni alloy substrates by radio frequency magnetron sputtering at low temperature. SiC films were thermal annealed at 300℃,600℃,900℃and 1050℃for 30 min in the vacuum ambient. There were mainly C-Si bonds, C-C bonds, and a small quantity of Si-O bonds, Si-Si bonds on the surfaces of the SiC films. The Si-C bonds were from mainly amorphous SiC and 6H-SiC in small part. And the C-C bonds (sp2) were from amorphous graphite. The surface of SiC coating were smooth and copact. But as the samples were thermal annealed at differernt temperture, the percentages of different bonds were respectively calculated from the peak area and sensitivity factors. The results showed that chemical composition the SiC increased as annealing temperature increased, which suggested the annealing in vacuum was beneficial to the formation of SiC. From the PL spectra, the 6H-SiC were comfired in SiC the films. After annealing, the sizes of particle on the surface SiC coating became larger, and the interface between particles became illegibility. Meanwhile, the surface roughness, hardness and Young’s modulus increased.
     The 3DOM Ni films, YSZ coating and SiC coating was one integrated mass in the thermal protection structure. And the spectral emissivity of SiC films was investigated at 300℃, 500℃, 700℃. The results showed the spectral emissivity of SiC coating increased as the test temperture increased. And at the same test temperture, it increased as the thermal annealing temperture increased. The emissivity of SiC coating were about 0.90 at 700℃. With wavelength, the variations of SiC coatings annealed at the same temperature were different. From all the reasults, The emissivity of the structure was in the relationship of test temperature, chemical composition, surface roughness,and so on.
引文
1黄伟,陈逖,罗世彬,王振国.临近空间飞行器研究现状分析.飞航导弹. 2007, 10: 28-31
    2翟华,周伯昭.临近空间高超声速飞行GNC技术与前景展望.国防科技. 2007,1: 37-40
    3曹秀云.近空间飞行器成为各国近期研究的热点.中国航天. 2006, 6: 32-35
    4 R. A. Goehlich, U. Rucker. Low-cost Management Aspects for Developing, Producing and Operating Future Space Transportation Systems. Acta Astronautica. 2004, 56: 337-346
    5李湘洲.“哥伦比亚”号坠毁与表面防热材料.金属世界. 2003, 4: 4-8
    6 E. L. Christiansen, L. Friese. Penetration Equations for Thermal Protection Materials. International Journal of Impact Engineering. 1997, 20(1-5): 153-164
    7 A. Resnick, C. Persons, G. Lindquist, Polarized Emissivity and Kirchhoff's Law. Applied Optics. 1999, 38(8): 1384-1387
    8 E. Yablonovich. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters. 1987, 58: 2059–2062
    9 S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters. 1987, 58: 2486–2489
    10林锋,蒋显亮.热障涂层的研究进展.功能材料. 2003, 34(3): 254-257
    11 N. Padture, M. Gell, E. Jordan. Thermal Barrier Coatings for Gas-turbine Engine Ap -plications. Science. 2002, 296: 280-284
    12郭洪波.电子束物理气相沉积梯度热障涂层热疲劳行为及失效机制.北京航空航天大学博士学位论文. 2001: 7-14
    13李美姮,胡望宇,孙晓峰.热障涂层的研究进展与发展趋势.材料导报. 2005, 19(4): 41-45
    14王学兵,张幸红,杜善义.梯度热障涂层的研究现状.中国表面工程. 2004, 3: 5-12
    15 B. A. Movchen, Y. Rudoy. Composition, Structure and Properties of Gradient Thermal Barrier Coatings Produced by EB-PVD. Materials and Design. 1998, 19: 253-258
    16 H. B. Guo, H. B. Xu, X. F. Bi, S. K. Gong. Preparation of Al2O3-YSZ CompositeCoating by EB-PVD. Materials Science and Engineering A. 2002, A 325: 389-393
    17 D. M. Zhu, R.A. Miller. Thermal-Barrier Coatings for Advanced Gas-Turbine Engines. MRS Bulletin. 2000, 25(7): 43-47
    18 D. S, Rickerby, D. K. White, S. R. Bell. Thermal Barrier Coating for a Super-alloy Article. US Pat. 1998, 107: 6-9
    19王爽.等离子喷涂热障涂层的氧化行为.大连理工大学硕士论文. 2006, 2: 13-15
    20郭洪波,宫声凯,徐惠彬.梯度热障涂层的设计.航空学报. 2002, 23(5): 467-472
    21冯志海,余瑞莲,姚承照,李仲平.四种防热材料的烧蚀侵蚀试验研究.宇航材料工艺. 2001,31(6): 10-13
    22国义军.炭化材料烧蚀防热的理论分析与工程应用.空气动力学学报. 1994, 12(1): 94-99
    23 T. L. Zhang, J. C. Zou, B. Yu, Y. H. Wang, H. Zhang. Study on Low Density and Heat-resistant Ablative Coating. Chinese Journal of Aeronautics. 2005, 18(4): 372-377
    24韩鸿硕.国外航天运输系统防热系统、结构和材料的总体分析研究.宇航材料工艺. 1997, 27(4): 1-4
    25张衍,刘育建,王井岗.我国高性能烧蚀防热材料用酚醛树脂研究进展.宇航材料工艺. 2005, 35(2): 1-5
    26 A. D. John, R. D. Braun. An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design. AIAA-2006-780
    27 M. L. Blosser. Thermal Protection Systems for Reusable Launch Vehicles. NASA-2003-tps
    28曾昭焕.可重复使用热防护系统防热结构.宇航材料工艺. 1991, 21(4): 16-20
    29肖国珍,肖武,曹俊清.等离子喷涂氧化物高辐射涂层.稀有金属材料与工程. 1979, 3: 68-72
    30美国航天飞机防热系统简介.中国航天. 2003, 3: 38-39
    31欣荣.航天飞机的“铠甲”.太空探索. 2003, 5: 20-21
    32 M. L. Blosser, W. Brewer. Development of Metallic Thermal Protection Systems. National Space and Missile Materials Symposium U.S. 1998
    33 W. B. Brewer, K. Bird, T. Wallace, S. A. Sankaran. Alloys and Coating Development for Metallic TPS for Reusable Launch Vehicles. NASA-2000-nsmms
    34王思青,张长瑞,周新贵.重复使用运载器陶瓷热防护系统.导弹与航天运载技术. 2004, 3: 37-41
    35 D. Kourtides, C. Carroll, D. Smith. Evaluation of Thermal Control Coatings for Flexible Ceramic Thermal Protection Systems. NASA-1997-TM-112199
    36 M. L. Blosser. Development of Metallic Thermal Protection Systems for Reusable Launch Vehicle. NASA-1996-TM110296
    37 M. L. Blosser, R. R Chen, I. H. Schmidt, J. T. Dorsey, C. C Poteet, R. K. Bird. Advanced Metallic Thermal Protection System Development. AIAA-2002-0504
    38 D. Olynick. Trajectory Based Thermal Protection System Sizing for an X-33 Winged Vehicle Concept. Journal of Spacecraft and Rockets. 1998, 35(3): 249-257
    39 S. A. Bouslog, B. Moore, R. J. Scanlon, J. W. Sawyer. X-33 Metallic TPS Test in NASA-LARC High Temperature Tunnel. AIAA-1999-TS
    40 W. D. Brewer, K. Brid, T. Wallace, S. A. Sankaran. Alloys and Coating Development for Metallic TPS for Reusable Launch Vechiles. NASA-CA-206537
    41 R. A. Simao, A. K. Costa, C. A. Achete. Magnetron Sputtering SiC Films Investigated by AFM. Thin Solid Films. 2000, 377: 490-494
    42 A. K. Costa, S. S. Camargo. Amorphous SiC Coatings for WC Cutting Tools. Surface and Coatings Technology. 2003, 163-164: 176-180
    43 A. Ordine, C. A. Achete, O. R. Mattosa, I. C. P. Margarit. Magnetron Sputtering SiC Coatings as Corrosion Protection Barriers for Steels. Surface and Coatings Technology. 2000,133-134: 583-588
    44 C. Bartuli, T. Valente, M. Tului. Plasma Spray Deposition and High Temperture Characterization of ZrB2-SiC Protectve Coatings. Surface and Coatings Technology. 2002, 155: 260-273
    45韩茂华,梁新刚,黄勇. SiC薄膜的热辐射特性研究.科学通报. 2005, 50: 588-591
    46 G. Neuer, G. J. Weiland. Spectral and Total Emissivity of High-Temperature Materials. International Journal of Thermophysics. 1998, 19(3): 917-929
    47 Neuer. Spectral and Total Emissivity Measurements of Highly Emitting Materials. International Journal of Thermophysics. 1995, 16(l): 257-265
    48 W. Krenkel, R. Brandt, G. Neuer. Influence of Process Parameters on the Thermophysical Properties of C/C-SiC. The 4th International Conference on High Temperature Ceramic Matrix Composites. 2001: 328-333
    49 F. Gern, R. Kochend?rfer, G. Neuer. High Temperature Behaviour of the Spectral and Total Emissivity of CMC Materials. H. TempH. Press. 1995-1996, (27-28): 183-189
    50吴国庭.哥伦比亚号防热系统概貌.国际太空. 2003, 5(6): 26-29
    51武文明,成来飞,张立同,徐永东,陈杰锋. C /SiC复合材料热辐射性能研究.固体火箭技术. 2005, 28(4): 303-307
    52温熙森.光子/声子晶体理论与技术.北京:科学出版社, 2006: 13-35
    53 J. L. Gall, M. Oliver, J. Greffet. Experimental and Theoretical Study of Reflection and Coherent Thermal Emission by a SiC Grating Supporting a Surface-phonon Polariton. Physical Review B. 1997, 55:10105-10114
    54 M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald. Photonic crystal Enhanced Narrow-band Infrared Emitters. Applied Physics Letters. 2002, 81: 4685-4687
    55 B. J. Lee, Z. M. Zhang, Coherent Thermal Emission From Modified Periodic Multilayer Structures. Journal of Heat Transfer. 2007, 129: 17-26
    56 S. Y. Lin, J. Moreno, J. G. Fleming. Three-dimensional Photonic-crystal Emitter for Thermal Photovoltaic Power Generation. Applied Physics Letters. 2003, 83(2): 380-382
    57 C. Y. Luo, A. Narayanaswamy, G. Chen, J. D. Joannopoulos. Thermal Radiation from Photonic Crystals: A Direct Calculation. Applied Physics Letters. 2004, 93: 213905
    58 L. C. Chan, S. Marin, J. D. Joannopoulos. Thermal Emission and Design in One-dimensional Periodic Metallic Photonic Crystal Slabs. Physical Review E. 2006, 74(1): 016609
    59 F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet. Engineering Infrared Emission Properties of Silicon in the Near Field and the Far Field. Optics Communication. 2004, 237: 379-388
    60 Z. M. Zhang, C. J. Fu, Q. Z. Zhu. Optical and Thermal Radiative Properties of Semiconductors Related to Micro/nanotechnology. Advances in Heat Transfer, 2003, 37: 179-296
    61 B. J. Lee, C. J. Fu, Z. M. Zhang. Coherent Thermal Emission from One- dimensional Photonic Crystals. Applied Physics Letters. 2005, 87:071904
    62 C. J. Fu, Z. M. Zhang, D. B. Tanner. Planar Heterogeneous Structures for Coherent Emission of Radiation. Optics Letters. 2005, 30:1873-1875
    63 A. V. Shchegrov, K. Joulain, R. Carminati. Near-field Spectral Effects due to Electromagnetic Surface Excitations. Physical Review Letters. 2000, 85:1548-1551.
    64 M. Laroche, R. Carminati, J. J. Greffet. Coherent Thermal Antenna Using a Photonic Crystal Slab. Physical Review Letters. 2006, 96: 123903
    65 C. Luo, A. Narayanaswamy, G. Chen, J. D. Joannopoulos. Thermal Radiation fromPhotonic Crystals: A direct calculation. Physical Review Letters. 2004, 93: 213905
    66 K. Joulain, A. Loizeau. Coherent Thermal Emission by Micro-structured Waveguides. Journal of Quantitative Spectroscopy and Radiative Transfer. 2007, 104: 208-216
    67刘广平,宣益民,韩玉阁,李强.一维光子晶体热辐射光谱控制模拟研究.工程热物理学报. 2007, 28: 475-477
    68 X. Liang, M. Han. Coherent Thermal Radiation in Thin Films and its Application in the Emissivity Design of Multilayer Films. Chinese Science Bulletin. 2007, 52: 1426-1431
    69 S. Enoch. J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, G. Albrand. Simple Layer-by-layer Photonic Crystal for the Control of Thermal Emission. Applied Physics Letters. 2005, 86: 261101
    70 J. T. K. Wana. C. T. Chan. Thermal Emission by Metallic Photonic Crystal Slabs. Applied Physics Letters. 2006, 89: 041915
    71 I. Celanovic, D. Perreault, J. Kassakian. Resonant-cavity Enhanced Thermal Emission. Physical Review B. 2005, 72: 075127
    72 C. M. Cornelius, J. P. Dowling. Modification of Planck Blackbody Radiation by Photonic Band-gap Structures. Physical Review A. 1999, 59: 4736
    73 S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg. Enhancement and Suppression of Thermal Emission by a Three-dimensional Photonic Crystal. Physical Review B. 2000, 62: 2243-2246
    74 S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan. Full Three-dimensional Photonic Band Gap Crystals at Near-infrared Wavelengths. Science. 2000, 289: 604-605
    75 L. Chen, Y. Suzuki, G. E. Kohnke. Integrated Platform for Silicon Photonic Crystal Devices at Near-infrared Wavelengths. Applied Physics Letters. 2002, 80(9): 1514-1516
    76 Z. J. Wang, J. Zhang, S. H. Xu. 1D Partially Oxidized Porous Silicon Photonic Crystal Reflector for Mid-infrared Application. Journal of Physics D: Applied Physics. 2007, 40: 4482-4484
    77 W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng. Robust Photonic Band Gap from Tunable Scatterers. Physical Review Letters. 2000, 84: 2853-2856
    78 J. G. Fleming, S. Y. Lin, I. ElKady, R. Biswas, K. M. Ho. All-metallic Three-dimensional Photonic. Crystals with a Large Infrared Bandgap. Nature. 2002, 417(6884): 52-55
    79 C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming. Localized and Delocalized Surface Plasmon Mediated Light Tunneling through Monolayer Hexagonal Close Packed Metallic Nanoshells. Physical Review B. 2009, 80: 165401
    80 E. Ozbay. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science. 2006, 311(5758): 189-193
    81 I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, C. G. Ding. Extraordinary Emission from Two-dimensional Plasmonic Photonic Crystals. Journal of Applied Physics. 2005, 98: 013531
    82 A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos. High Transmission through Sharp Bends in Photonic Crystal Waveguides. Physical Review Letters. 1996, 77: 3787-3790
    83 J. Banhart. Manufacture, Characterization and Application of Cellular Metals and Metal Foams. Materials Science. 2001, 46(6): 559-632
    84 D. R. Smith, P. J. Willie, D. C. Vier. Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters. 2000, 84: 4184-4187
    85 J. B. Pendry. Negative Refraction Makes a Perfect Lens. Physical Review Letters. 2000, 85: 3966-3969
    86 J. A. Kong, B. Wu, Y. Zhang. Lateral Displacement of a Gaussian Beam Reflected from a Grounded Slab with Negative Permittivity and Permeability. Applied Physics Letters. 2002, 80: 2084-2086
    87 Z. M. Zhang, C. J. Fu. Unusual Photon Tunneling in the Presence of a Layer with a Negative Refractive Index. Applied Physics Letters. 2002, 80: 1097-1099
    88 S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, P. Vincent. A Metamaterial for Directive Emission. Physical Review Letters. 2002, 89(21): 213902
    89 G. Freymann, S. John, M. S. Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, G. A. Ozin. Tungsten Inverse Opals: The Influence of Absorption on the Photonic Band Structure in the Visible Spectral Region. Applied Physics Letters. 2004, 84(2): 224-226
    90 P. N. Bartlett, M. A. Ghanem, I. S. ElHallag, P. Groot, A. Zhukov. Electrochemical Deposition of Macroporous Magnetic Networks Useing Colloidal Templates. Journal of Materials Chemistry. 2003, 13: 2596-2602
    91 B. H. Juarez, C. Lopez, C. Alonso, Formation of Zinc Inverted Opals on Indium Tin Oxide and Silicon Substrates by Electrochemical Deposition. Journal of Physical Chemistry B. 2004, 108(43): 16708–16712
    92 P. N. Bartlett, J. J. Baumberg, S. Coyle, M. Abdelsalem. Optical Properties of Nanostructured Metal Films. Faraday Discussions. 2004, 125: 117-132
    93 P. N. Bartlett, P. R. Birkin, M. A. Ghanem. Electrochemical Deposition of Macroporous Platinum, Palladium and Cobalt Films Using Polystyrene Latex Sphere Templates. Journal of the Chemical Society, Chemical Communications. 2000,1: 1671-1672
    94 X. Yu, Y. Lee, R. Furstenberg, J. O. White, P. V. Braun. Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals. Advanced Materials. 2007, 19: 1689–1692
    95丙贻.热喷涂技术的过去、现在和将来.国外金属热处理. 1994; 15(3): 8-13
    96 T. N. R. Jones. The Use of Thermally Spraying Coatings for Compressor and Turbine Application in Aero Engines. Surface and Coatings Technology. 1990, 42: 1-11
    97陈丽梅,李强.等离子喷涂技术现状及发展.热处理技术与装备. 2006, 27(1): 1-5
    98 J. B. William, A. L.Todd. Metallugraphic Techniques for Evaluation of Thermal Barrier Coatings. Materials Characterization. 1990, 24: 93-101
    99 M. G. Hocking, V. Vasantasree, P. S. Sidky. Metallic and Ceramic Coatings: Production. High Temperature Properties and Application. Wiley, New York. 1989: 252-267
    100 R. A. Miller. Thermal Coatings for Aircraft Engines: History and Directions. Journal of Thermal Spray Technology. 1997, 6(1): 35-42
    101关春龙,李垚,赫晓东.电子束物理气相沉积技术及其应用现状.航空制造技术. 2003, 11: 35-37
    102 B. A. Movchen. EB-PVD Technology in the Gas Turbine Industry: Present and Future. Journal of the Minerals Metals and Materials Society. 1996, 11: 40-45
    103 B. A. Movchan, G.S. Marinski. Gradient Protective Coatings of Different Application Produced by EB-PVD. Surface and Coatings Technology. 1998, 100-101: 309-315
    104滕敏. EB-PVD制备SiC/ZrO2防热涂层的微观组织结构与性能.哈尔滨工业大学博士论文. 2009: 16-20
    105 J. H. Du, Z. X. Li, G. J. Liu, H. Zhou, C. L. Huang. Surface Characterization of CVD Tungsten Coating on Molybdenum Substrate. Surface and Coatings Technology. 2005, 198: 169-172
    106 M. Fonrodona, D. Soler, J. Escarre. Low Temperature Amorphous and Nanocrystalline Silicon Thin Film Transistors Deposited by Hot-Wire CVD on glass Substrate. Thin Solid Films. 2006, 501: 303-306
    107曾庆冰,李效东,陆逸.溶胶-凝胶法基本原理及其在陶瓷材料中的应用.高分子材料科学与工程. 1998, 14(2): 138-143
    108章天金,张端明,王世敏. YSZ薄膜的溶胶凝胶法制备及其电导性能.硅酸盐学报. 1997, 25(4): 440-446
    109李海滨,梁开明,顾守仁.溶胶-凝胶法制备定向排开的纳米结构二氧化锆薄膜.清华大学学报(自然科学版). 2001, 41(4): 48-50
    110张勤俭,吴春丽.溶胶-凝胶工艺制备Al2O3涂层对工程陶瓷表面改性的研究.工具技术. 2001, 35(7): 19-25
    111奚红霞,黄仲涛.氧化锆膜的制备与表征.无机材料学报. 1996, 11(4): 627-633
    112 J. Masklski, J. Gluszek, J. Zabrzeski. Improvement in Corrosion Resistance of the 3161 Stainless Steel by Means of Al2O3 Coatings Deposited by the Sol-gel Method. Thin Solid Films. 1999, 4(9): 86-190
    113 M. Hobai, L. B. Reynolds, M. S. Donley. A Comparative Evaluation of Corrosion Protection of Sol-gel Based Coatings Systems. Surface and Coatings Technology. 2001, 140(1): 16-23
    114 K. E. Cooke, J. Hampshire, W. Southall, D. G. Teer. Industrial Application of Pulsed DC Bias Power Supplies in Closed Field Unbalanced Magnetron Sputter Ion Plating. Surface Engineering. 2004, 20(3): 189-195
    115 B. Angleraud. Improved Film Deposition of Carbon and Carbon Nitride Materials on Patterned Substrates by Ionized Magnetron Sputtering. Surface and Coatings Technology. 2004, 180-181: 59-65
    116 E. S. Thian, J. Huang, S. M. Best, Z. H. Barber, W. Bonfield. Magnetron Co-Sputtered Silicon-Containing Hydroxyapatite Thin Films an in Vitro Study. Biomaterials. 2005, 26: 2947-2956
    117 D. R. Sahu, J. L. Huang. High Quality Transparent Conductive ZnO/Ag/ZnO Multilayer Films Deposited at Room Temperature. Thin Solid Films. 2006, 515: 876-879
    118 W. D. Munz. Properties of Niobium-based Wear and Corrosion Resistant Hard PVD Coating Deposition on Various Steels. Ia Metallurgia Italiana. 2002, 94(11-12):25-27
    119 H. Biederman. R. F. Sputtering of Polymers and Its Potential Application. Vacuum. 2000, 59: 594-599
    120李成功,傅恒志,于翘.航空航天材料.国防出版社. 2002: 64-120
    121糜正瑜,楮治德.红外辐射加热干燥原理与应用.机械工业出版社. 1996: 9-14
    122 A. H. Heuer, R. Chaim. Review: Phase Transformation and Microstructural Characterization of Alloy in the Y2O3-ZrO2 System. Advances in Ceramics. 1988, 24: 3-20
    123王健. SiC薄膜的制备以及光电发射性质.苏州大学硕士学位论文. 2007: 5-6
    124 A. K. Costa, S. S. Camargo. Amorphous SiC Coatings for WC Cutting Tools. Surface and Coatings Technology. 2003, 163-164: 176-180
    125 O. K. Porada, V. I. Ivashchenko, L. A. Ivashchenko, G. V. Rusakov. a-SiC Films As Perspective Wear-Resistant Coatigns. Surface and Coatings Technology. 2004, 180-181: 122-126
    126祝元坤.磁控溅射制备SiC薄膜及其性能研究.哈尔滨工业大学硕士学位论文. 2009: 3-19
    127 HAYNES 214 alloy. Haynes International, Inc. 1996: 2-15
    128 M. H. Kim, S. H. Im. O. O. Park. Rapid Fabrication of Two and Three Dimensional Colloidal Crystal Films Confined Convective Assembly. Advanced Functional Materials. 2005, 15: 1329-1335
    129 Miguez. Evidence of FCC Crystallization of SiO2 Nanospheres. Langmuir. 1997, 13(23): 6009-6011
    130 Trau. Assembly of Colloidal Crystals at Electrode Interfaces. Langmuir. 1997, 13(24): 6375-6381
    131 S. L. M. Call. Microwave Propagation in Two-dimensional Dielectric Lattices. Physical Review Letters. 1991, 67(15): 2017-2020
    132王桂峰.金属电沉积过程中枝晶生长过程研究.南京航空航天大学硕士学位论文. 2007: 28-30
    133 G. Duan, W. Cai, Y. Luo, Z. Li, and Y. Lei. Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition. Journal of Physical Chemistry B. 2006, 110: 15729-15733
    134 K. S. Napolskii, A. Sinitskiia, S. V. Grigorievb, N. A. Grigorievac, H. Eckerlebed. Topology Constrained Magnetic Structure of Ni Photonic Crystals. Physica B. 2007, 397(1-2): 23-26
    135 D. N. Lee. Texture and Related Phenomena of Copper Electrodeposits. Materials Research Society Symposium Proceedings. 1996, 427: 167-178
    136 D. N. Lee, S. Kang, J. Yang. Relationship between Initial & Recrystallization Textures of Copper Electrodeposits. Plating and Surface Finishing. 1995, 82(3): 76-79
    137 B. D. Cullity. Elements of X-ray Diffractions, Addition-Wesley, Reading, MA, 1978:102
    138 G. Duan, W. Cai, Y. Luo, Z. Li, Y. Lei. Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition. Journal of Physical Chemistry B. 2006, 110 (32): 15729–15733
    139 G. Duan, W. Cai, Y. Li, Z. Li, B. Cao, Y. Luo. Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer. Journal of Physical Chemistry B. 2006, 110(14): 7184–7188
    140 Y. Toivola, A. Stein, F. R Cook. Depth-Sensing Indentation Response of Ordered Silica Foam. Journal of Materials Research. 2004, 19: 260-271
    141 Z. Wang, F. Li, N. S. Ergang, A. Stein. Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon-Carbon Nanocomposites. Chemistry of Materials. 2006, 18: 5543-5553
    142 R. Mayoral, J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado, A. Blanco. 3D Long-range ordering in ein SiO2 Submicrometer-sphere Sintered Superstructure. Advanced Materials. 1997, 9: 257-260
    143 D. W. McComb, B. M. Treble, C. J. Smith, R. M. Rueb, N. P. Johnsonb. Synthesis and Characterisation of Photonic Crystals. Journal of Materials Chemistry. 2001, 11: 142-148
    144 X. Yu, Y. Lee, R. Furstenberg, J. O. White, P. V. Braun. Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals. Advanced Materials. 2007, 19: 1689–1692
    145 P. Egger, G. D. Soraru, S. Dire. Sol-gel Synthesis of Polymer-YSZ Hybrid Materials for SOFC Technology. Journal of the European Ceramic Society. 2004, 24: 1371–1374
    146冯长根,张昭.铽掺杂铈锆固溶体的合成及结构表征.功能材料. 2007, 5(38): 767-770
    147 S. G. Neophytides, S. Zafeiratos, S. Kennou. XPS Characterization of the Electrochemically Generated O species on a Au Electrode Evaporated on Y2O3-stabilized ZrO2 (100). Solid State Ionics. 2000, 136-137: 801-806
    148 F. Parmiguani, L. E.Depero, L. Sangaletti, G. Samoggia. An XPS study of yttria-stabilised zirconia single crystals. Journal of Electron Spectroscopy and Related Phenomena. 1993, 63(1): 1-10
    149 K. Schierbaum. Ordered Ultra-thin Cerium Oxide Overlayers on Pt(111) Single Crystal Surfaces Studied by LEED and XPS. Surface Science. 1998, 399(1): 29-38
    150 A. E. C. Palmqvist, M. Wirde, U. Gelius, M. Muhammed Surfaces of Doped Nanophase Cerium Oxide Catalysts. Nanostructured Materials. 1999, 11(8): 995-1007
    151 L. Wang, Z. J. Liang, Z. B. Wang, F. L. Zhao, Z. H. He, D. Chen. Preparation and Photoluminescence of SiC/Si/SiO2 Multi-layer Structure. Journal of Luminescence. 2007, 122-123: 179-181
    152 Z. D. Sha, X. M. Wu, L. J. Zhuge. The Structure and Optical Properties of SiC Film on Si (111) Substrate with a ZnO Buffer Layer by RF-magnetron Sputtering Technique. Physics Letters A. 2006, 355(3): 228-232
    153 X. L. Wu, S. J. Xiong, G. G. Siu, G. S. Huang, Y. F. Mei, Z. Y. Zhang, S. S. Deng, C. Tan. Optical Emission from Excess Si Defect Centers in Si Nanostructures. Physical Review Letters. 2003, 91: 157402
    154程光煦.拉曼布里渊散射.科学出版社. 2007: 155-164
    155王玫.β-SiC薄膜的低温沉积及特征研究.北京工业大学博士学位论文. 2002: 12
    156 M. A. Tamor, W. C. Vassell. Raman Fingerprinting of Amorphous Carbon Flim. Journal of Applied Physics. 1994, 76: 3823-3830
    157 W. J. Lu. Graphitic Features on SiC Surface Following Oxidation and Etching Using Surface Enhanced Raman Spetroscopy. Applied Physics Letters. 2004, 85: 3495-3497
    158 H. Tsai, W. Lin, J. Wen, S. Lee. The Characteristics of Amorphous Silicon Carbide Hydrogen Alloys. Journal of Applied Physics. 1988, 64(4): 1910-1915
    159 F. Neri, S. Trusso, C. Vasi, F. Barreca. Raman Microscopy Study of Pulsed Laser Ablation Deposited Silicon Carbide Flims. Thin Solid Flims. 1998, 332: 290-294
    160 J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S. R. P. Silva. Raman pectroscopy on Amorphous Carbon Films. Journal of Applied Physics. 1996, 80(1): 440-447
    161潘承璜,赵良仲.电子能谱基础.科学出版社. 1981: 164-170
    162 J. Yi, X. D. He, Y. Sun, Y. Li. Electron Beam Physical Vapor Deposition of SiC/SiO2 High Emissivity Thin Film. Applied Surface Science. 2007, 253: 4361-4366
    163 F. Sette, G. K. Wertheim, Y. Ma, G. Meigs. S. Modesti, C. T. Chen. Lifetime andScreening of the C1s Photoemission in Graphite. Physical Review B. 1990, 41(14): 9766-9770
    164 Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, C. W. Wilmsen. The C KLL First-derivative x-ray Photoelectron Spectroscopy Spectra as a Fingerprint of the Carbon State and the Characterization of Diamondlike Carbon Films. Journal of Vacuum Science and Technology A: 1987, 5(5): 2819-2822
    165 B. P. Swain. The Analysis of Carbon Bonding Environment in HWCVD Depositited a-SiC: H Films by XPS and Raman Spetroscopy. Surface and Coatings Technology, 2006, 201: 1589-1593
    166 M. Gadzira, G. Gnesin, O. Mykhaylyk, O. Andreyev. Synthesis and Structural Peculiarrities of Nonstoichiometricβ-SiC. Diamond and Related Materals. 1998, 7: 1466-1470
    167 M. Gadzira, G. Gnesin, O. Mykhaylyk, V. Britun, O. Andreyev. Solid Solution of Carbon inβ-SiC. Materials Letters. 1998, 35: 277-282
    168 T. Takeshita, Y. Kurata, S. Hasegawa. Bonding Properties of Glow-discharge Polycrystalline and Amorphous Si-C Flims Studied by X-ray Diffraction and X-ray Photoelectron Spectroscopy. Journal of Applied Physis. 1992, 71: 5395-5400
    169张志熄,崔作林.纳米技术与纳米材料.国防工业出版社. 2000: 76-95
    170王新北,萧鹏,戴景民.基于傅里叶红外光谱仪的光谱发射率测量装置的研制.红外与毫米波学报. 2007, 26(2): 149-152
    171谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输的数值计算.哈尔滨工业大学出版社. 2006: 1-15
    172沈德久,王玉林,于金库等. Ni-SiC复合镀膜粒子与基体的高温反应.机械工程学报. 1995, 31(4): 75-77
    173杨世铭,陶文铨.传热学.高等教育出版社. 2002: 239-259
    174余其铮.辐射热交换原理.哈尔滨工业大学出版社. 2000: 10-35
    175 M. H. Han, X. G. Liang, Y. Huang. Thermal Radiation Characteristics of Plane-parallel SiC Wafer. Chinese Science Bulletin. 2005, 4(50): 295-298
    176易剑. EB-PVD制备Si-C纳米涂层及其性能研究.哈尔滨工业大学博士学位论文. 2008: 81-92
    177 J. L. Gall, M. Oliver, J. J. Greffet. Experimental and Theoretical Study of Reflection and Coherent Thermal Emission by a SiC Grating Supporting a Surface-phonon Polariton. Physical Review B. 1997, 55: 10105-10114
    178秦丹丹. SiC陶瓷电容器研究.郑州大学硕士学位论文. 2007: 34-48
    179 P. L. A. Chr. Meer, L. J. Giling, S. G. Kroon. The Emission Coefficient of Silicon Coated with Si3N4 or SiO2 Layers. Journal of Applied Physics. 1976, 47: 652-655
    180 P. Y. Wong, I. N. Miaouiis, P. Zavracky. Microscale Heat Transfer Phenomena in Multilayer Thin Film Processing with a Radiant Heat Source. Sensors and Actuators. 1990, 19: 175-187
    181 X. D. He, Y. B. Li, L. D. Wang, Y. Sun, S. Zhang. High Emissivity Coatings for High Temperture Application: Progress and Prospect. Thin Solid Films. 2009, 517: 5120-5129