光子晶体光纤功能器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤是近年来悄然兴起的一个新的研究领域,由于它独特传输特性和重要的应用价值而引起越来越广泛的关注。本报告是结合国家973计划项目“基于微结构光纤的光电子功能器件的创新与研究”(2003CB314906)、国家自然科学基金项目“新型量子点注入光子晶体光纤激光器研究”(10674074)、中国博士后科学基金资助项目“多芯光子带隙光纤的耦合机制及其在光子器件中的应用的研究”(20060400687)等,对基于光子晶体光纤的重要光电子器件进行分析。本报告首先阐述光子晶体光纤的发展过程、性能特点和重要应用,接着对多芯光子晶体光纤、光子晶体光纤光栅和光子晶体光纤中的非线性效应进行了研究。报告主要内容包括:
     1.理论设计了宽带单偏振单模双芯光子晶体光纤并分析了它的传导和耦合特性,该耦合器可以在超过200nm带宽的波长范围内实现单偏振单模耦合。
     2.对双芯光子带隙光纤的耦合特性进行了理论和实验研究。理论研究了双芯空芯光子带隙光纤和双芯全固光子带隙光纤中的新奇耦合特性(如,耦合长度出现极值、无耦合现象),利用堆砌拉制技术拉制出4种双芯全固光子带隙光纤,并测量了其耦合长度,数值模拟和实验结果基本吻合。
     3.理论设计了基于谐振耦合效应的全固光子带隙光纤耦合器。由纤芯传导的超模和缺陷模式的色散曲线避免相交产生的谐振效应显著降低了耦合长度。这种光纤结构对实现全光纤化的集成通信器件具有重要意义。
     4.利用紫外写入技术在纤芯高掺锗的折射率引导型光子晶体光纤和全固光子带隙光纤中写制了布拉格光纤光栅,利用周期微弯的方法在空芯光子带隙光纤中研制了长周期光纤光栅,并研究了这些光栅中的谐振特性。
     5、开发了基于分步傅立叶变换方法求解非线性薛定谔方程的程序,研究了超短脉冲在液体填充光子带隙光纤中的传输和捕获得特性。为光子带隙光纤在非线性光学中的应用提供了依据。
     6.利用被动调Q的Nd:YAG激光器和无截至单模光子晶体光纤搭建了光谱宽度从500nm到1750nm的紧凑型超连续光源
In recent years, photonic crystal fibers(PCFs) have attracted considerable interest due to their unique properties and potential applications. The work in this report was supported by the National basic research program of China (Innovation and basic research of photoelectron functional devices based on microstructured optical fibers, Grand No. 2003CB314906), the National Science Foundation Project of China (Study on the novel laser based on the photonic crystal fibers infused by quantum dot material, Grand No. 10674074), the China Postdoctoral Science Foundation (Study on coupling mechanism of mulit-core photonic bandgap fibers and its applications in photonic devices,Grand No. 20060400687), and so on. In this report, we firstly review the progress in PCFs. Then we mainly focus on the research of devices based on PCFs, such as the multi-core PCFs coupler, the fiber grating inscribed in PCFs, and nonlinear effect in PCFs. The contents are listed as follows:
     1. A novel Photonic Crystal Fiber (PCF) coupler with single-polarization single-mode (SPSM) feature is theoretically proposed. The SPSM coupling range is over 200nm for a variety of parameters.
     2 . We have theoretically and experimentally investigated the coupling in dual-core photonic bandgap fibers (PBGFs). The novel coupling characteristics in dual-core hollow-core PBGFs and dual-core all-solid PBGFs, such as such as maxima and minima in coupling length, complete decoupling of the cores, are theoretically investigated. The dual-core all-solid PBGFs are fabricated by using a modified stack-and-draw process and their coupling length are measured. The experimental results show good qualitative agreement with the numerical results.
     3. We theoretically propose directional couplers operated by resonant coupling in all-solid photonic bandgap fibers structure. The resonant effect induced by the avoided crossing between core-guided supermodes and defect-guided modes significant decreases the coupling length in this structure. The directional couplers have potential application in realizing integrating all-fiber communication devices.
     4.The fiber Bragg gratings are inscribed in the index-guided PCFs and all-solid PBGFs, and the long-period gratings are induced by periodical microbend. The resonant properties in these gratings are theoretically and experimentally investigated.
     5.The software for sovling nonlinear Schr?dinger equations are developed based on the split-step Fourier method. The propagation and the pulse trapping process of ultrashort pulse in liquid-filling PBGFs are investigated by using this software.
     6. The compact supercontinuum source are realized by using a passively Q-switched Nd:YAG laser and an endlessly single mode PCF. The supercontinuum spectrum extending from 500 nm to beyond 1750 nm is demonstrated.
引文
[1] Eli Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Physical Review Letters 58, 2059-2062 (1987).
    [2] Sajeev John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Physical Review Letters 58, 2486-2489 (1987).
    [3] P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [4] J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Optics Letters 21, 1547-1549 (1996).
    [5] T.A. Birks, J.C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Optics Letters 22, 961-963 (1997).
    [6] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, "Anomalous dispersion in photonic crystal fiber," Ieee Photonics Technology Letters 12, 807-809 (2000).
    [7] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Optics Letters 25, 790-792 (2000).
    [8] N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, "Nonlinearity in holey optical fibers: measurement and future opportunities," Optics Letters 24, 1395-1397 (1999).
    [9] N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Optics Letters 28, 393-395 (2003).
    [10] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Optics Letters 25, 1325-1327 (2000).
    [11] B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, and A. H. Greenaway, "Experimental study of dual-core photonic crystal fibre," Electronics Letters 36, 1358-1359 (2000).
    [12] J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-mu m pumped supercontinuum generation," Journal of Lightwave Technology 24, 183-190 (2006).
    [13] Y. Yue, G. Y. Kai, Z. Wang, Y. Li, C. S. Zhang, Y. F. Lu, T. T. Sun, L. Jin, H. G. Liu, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, "Phase and group modal birefringence of an index-guiding photonic crystal fibre with helical air holes," Optics Communications 268, 46-50 (2006).
    [14] Yang Yue, Guiyun Kai, Zhi Wang, Tingting Sun, Long Jin, Yunfei Lu, Chunshu Zhang, Jianguo Liu, Yan Li, Yange Liu, Shuzhong Yuan, and Xiaoyi Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Optics Letters 32, 469-471 (2007).
    [15] J.C. Knight, J. Broeng, T.A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
    [16] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [17] C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
    [18] P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Optics Express 13, 236-244 (2005).
    [19] F. Couny, F. Benabid, and P. S. Light, "Large-pitch kagome-structured hollow-core photonic crystal fiber," Optics Letters 31, 3574-3576 (2006).
    [20] F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
    [21] S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Physical Review Letters 94 (2005).
    [22] G. Humbert, J. C. Knight, G. Bouwmans, P. S. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, "Hollow core photonic crystal fibers for beam delivery," Optics Express 12, 1477-1484 (2004).
    [23] D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
    [24] H. Lim and F. W. Wise, "Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber," Optics Express 12, 2231-2235 (2004).
    [25] H. Lim, A. Chong, and F. W. Wise, "Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber," Optics Express 13, 3460-3464 (2005).
    [26] J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Optics Express 11, 3332-3337 (2003).
    [27] C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Physical Review Letters 93 (2004).
    [28] C. J. S. de Matos and J. R. Taylor, "Chirped pulse Raman amplification with compression in air-core photonic bandgap fiber," Optics Express 13, 2828-2834 (2005).
    [29] C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber," Optics Express 11, 2832-2837 (2003).
    [30] L. B. Fu, I. C. M. Littler, J. T. Mok, and B. J. Eggleton, "Matched photonic bandgap fibre and fibre Bragg grating dispersion for all-in-fibre stretch pulse amplification," Electronics Letters 41, 306-307 (2005).
    [31] R. E. Kennedy and J. R. Taylor, "All-fiber integrated chirped pulse amplification at 1.06 mu m using aircore photonic bandgap fiber," Applied Physics Letters 87 (2005).
    [32] A. Shirakawa, M. Tanisho, and K. Ueda, "Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber," Optics Express 14, 12039-12048 (2006).
    [33] G. Imeshev, I. Hartl, and M. E. Fermann, "An optimized Er gain band all-fiber chirped pulse amplification system," Optics Express 12, 6508-6514 (2004).
    [34] T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Optics Express 11, 2589-2596 (2003).
    [35] C. S. Zhang, G. Y. Kai, Z. Wang, T. T. Sun, C. Wang, Y. G. Liu, W. G. Zhang, J. F. Liu, S. Z. Yuan, and X. Y. Dong, "Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal," Optics Letters 30, 2372-2374 (2005).
    [36] C. S. Zhang, G. Y. Kai, Z. Wang, Y. G. Liu, T. T. Sun, S. Z. Yuan, and X. Y. Dong, "Tunable highly birefringent photonic bandgap fibers," Optics Letters 30, 2703-2705 (2005).
    [37] J. Laegsgaard, "Modeling of a biased liquid-crystal capillary waveguide," Journal of the Optical Society of America B-Optical Physics 23, 1843-1851 (2006).
    [38] C. S. Zhang, G. Y. Kai, Z. Wang, T. T. Sun, C. Wang, Y. G. Liu, J. F. Liu, W. G. Zhang, S. Z. Yuan, and X. Y. Dong, "Design of tunable bandgap guidance in high-index filled microstructure fibers," Journal of the Optical Society of America B-Optical Physics 23, 782-786 (2006).
    [39] P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, "Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre," Electronics Letters 41, 463-464 (2005).
    [40] P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Optics Letters 31, 2103-2105 (2006).
    [41] J. Laegsgaard and T. T. Alkeskjold, "Designing a photonic bandgap fiber for thermo-optic switching," Journal of the Optical Society of America B-Optical Physics 23, 951-957 (2006).
    [42] F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, "All-solid photonic bandgap fiber," Optics Letters 29, 2369-2371 (2004).
    [43] A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. S. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Optics Express 13, 2503-2511 (2005).
    [44] A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, "Photonic bandgap with an index step of one percent," Optics Express 13, 309-314 (2005).
    [45] G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Optics Express 13, 8452-8459 (2005).
    [46] T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Optics Express 14, 5688-5698 (2006).
    [47] J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, "An improved photonic bandgap fiber based on an array of rings," Optics Express 14, 6291-6296 (2006).
    [48] A. Wang, G. J. Pearce, F. Luan, D. M. Bird, T. A. Birks, and J. C. Knight, "All solid photonic bandgap fiber based on an array of oriented rectangular high index rods," Optics Express 14, 10844-10850 (2006).
    [49] G. B. Ren, P. Shum, L. R. Zhang, X. Yu, W. J. Tong, and J. Luo, "Low-loss all-solid photonic bandgap fiber," Optics Letters 32, 1023-1025 (2007).
    [50] Z. Wang, T. Taru, T. A. Birks, and J. C. Knight, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Optics Express 15, 4795-4803 (2007).
    [51] A. Isomaki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Optics Express 14, 9238-9243 (2006).
    [52] A. Isomaki and O. G. Okhotnikov, "All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber," Optics Express 14, 4368-4373 (2006).
    [53] C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1 mu m using photonic bandgap fibers for dispersion control and pulse compression," Optics Express 14, 6063-6068 (2006).
    [54] A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Optics Letters 31, 1388-1390 (2006).
    [55] S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Optics Express 9, 748-779 (2001).
    [56] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Optics Letters 24, 1460-1462 (1999).
    [57] B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," Journal of Lightwave Technology 18, 1084-1100 (2000).
    [58] P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," Ieee Photonics Technology Letters 12, 495-497 (2000).
    [59] G. Kakarantzas, T. A. Birks, and P. S. Russell, "Structural long-period gratings in photonic crystal fibers," Optics Letters 27, 1013-1015 (2002).
    [60] Y. N. Zhu, P. Shum, H. J. Chong, M. K. Rao, and C. Lu, "Strong resonance and a highly compact long-period grating in a large-mode-area photonic crystal fiber," Optics Express 11, 1900-1905 (2003).
    [61] Y. N. Zhu, P. Shum, J. H. Chong, M. K. Rao, and C. Lu, "Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber," Optics Letters 28, 2467-2469 (2003).
    [62] Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, "Highly sensitivelong-period fiber-grating strain sensor with low temperature sensitivity," Optics Letters 31, 3414-3416 (2006).
    [63] J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Optics Letters 29, 331-333 (2004).
    [64] J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Optics Letters 29, 346-348 (2004).
    [65] P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Optics Express 14, 3007-3014 (2006).
    [66] A. Ozcan and U. Demirci, "Rewritable self-assembled long-period gratings in photonic bandgap fibers using microparticles," Optics Communications 270, 225-228 (2007).
    [67] J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Optics Letters 25, 25-27 (2000).
    [68] A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Physical Review Letters 8720 (2001).
    [69] S. Coen, A. H. L. Chan, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Optics Letters 26, 1356-1358 (2001).
    [70] L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fibre," Electronics Letters 37, 558-560 (2001).
    [71] A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, in Raman continuum generation holey fibers," Optics Letters 28, 1353-1355 (2003).
    [72] W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Optics Express 12, 299-309 (2004).
    [73] A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Optics Express 14, 5715-5722 (2006).
    [74] L. Zhang and C. X. Yang, "A novel polarization sputter based on the photonic crystal fiber with nonidentical dual cores," Ieee Photonics Technology Letters 16, 1670-1672 (2004).
    [75] L. Zhang and C. X. Yang, "Polarization-dependent coupling in twin-core photonic crystal fibers," Journal of Lightwave Technology 22, 1367-1373 (2004).
    [76] L. Zhang and C. X. Yang, "Polarization splitter based on photonic crystal fibers," Optics Express 11, 1015-1020 (2003).
    [77] J. Laesgaard, O. Bang, and A. Bjarklev, "Photonic crystal fiber design forbroadband directional coupling," Optics Letters 29, 2473-2475 (2004).
    [78] Y. Yue, G. Y. Kai, Z. Wang, C. S. Zhang, Y. F. Lu, Y. Li, T. T. Sun, L. Jin, J. G. Liu, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, "Broadband single-polarization single-mode photonic crystal fiber coupler," Ieee Photonics Technology Letters 18, 2032-2034 (2006).
    [79] M. Skorobogatiy, "Transverse lightwave circuits in microstructured optical fibers: waveguides," Optics Express 13, 7506-7515 (2005).
    [80] M. Skorobogatiy, K. Saitoh, and M. Koshiba, "Transverse light guides in microstructured optical fibers," Optics Letters 31, 314-316 (2006).
    [81] M. Skorobogatiy, K. Saitoh, and M. Koshiba, "Transverse lightwave circuits in microstructured optical fibers: resonator arrays," Optics Express 14, 1439-1450 (2006).
    [82] W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Electronics Letters 36, 1452-1454 (2000).
    [83] P. Glas and D. Fischer, "Cladding pumped large-mode-area Nd-doped holey fiber laser," Optics Express 10, 286-290 (2002).
    [84] K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, "Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding," Optics Express 9, 714-720 (2001).
    [85] W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, and P. S. J. Russel, "High power air-clad photonic crystal fibre laser," Optics Express 11, 48-53 (2003).
    [86] J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Optics Express 11, 818-823 (2003).
    [87] J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tunnermann, "Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation," Optics Express 11, 2982-2990 (2003).
    [88] T. Schreiber, C. K. Nielsen, B. Ortac, and J. Limpert, "Microjoule-level all-polarization-maintaining femtosecond fiber source," Optics Letters 31, 574-576 (2006).
    [89] Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Optics Letters 27, 424-426 (2002).
    [90] N. Nishizawa, Y. Ito, and T. Goto, "0.78-0.90-mu m wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber," Ieee Photonics Technology Letters 14, 986-988 (2002).
    [91] K. S. Abedin, T. Miyazaki, and F. Kubota, "Wavelength-conversion of pseudorandom pulses at 10 Gb/s by using soliton self-frequency shift in a photonic crystal fiber," Ieee Photonics Technology Letters 16, 1119-1121 (2004).
    [92] J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," Ieee Journal of Selected Topics in Quantum Electronics 8, 506-520 (2002).
    [93] R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar,"Microstructure-fibre-based optical parametric amplifier with gain slope of similar to 200 dB/W/km in the telecom range," Electronics Letters 39, 195-196 (2003).
    [94] K. S. Abedin and F. Kubota, "Wavelength tunable high-repetition-rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber," Ieee Journal of Selected Topics in Quantum Electronics 10, 1203-1210 (2004).
    [95] J.T. Manassah, "Ultrafast solitary waves sustained through induced phase modulation by a copropagating pump," Optics Letters 15, 670-672 (1990).