沉积物中重金属的形态分析及生物有效性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以BCR连续分级提取法为基础,以沉积物标准样GBW07310和南水北调东线沿线南四湖、东平湖和梁济运河沉积物样品为研究对象,验证了可将有机结合态重金属和硫化物结合态重金属分级提取的四级五步连续分级提取法对实际沉积物样品的普适性,得出沉积物样品中不同形态重金属的含量;以模拟小麦、玉米、苹果、百羽扇豆、肥田萝卜、高麦草等六种植物根系分泌的低分子量有机混酸为提取剂,对沉积物样品分别进行单级提取及多级连续提取,将提取结果与沉积物样品中不同形态重金属的含量进行对比,以此来研究沉积物样品中重金属元素的生物有效性。
     实验所采用的四级五步连续分级提取法对南水北调东线沿线南四湖、东平湖和梁济运河九个采样点沉积物样品进行连续提取的结果表明,四级五步连续分级提取法的提取步骤合理,能够将沉积物样品中化学特性和毒理特点不同的有机结合态和硫化物结合态完全分离,而且四级五步连续分级提取法在改变了提取剂和提取步骤的情况下并没有引用较大的分析误差,对实际沉积物样品具有普适性。
     实验模拟植物根系分泌的有机混酸对沉积物样品进行提取的结果表明,一步提取能够提取沉积物中的可交换态、可还原态和有机结合态重金属,是最全面、最能反映植物分析分泌的有机酸对沉积物中重金属元素的活化吸收情况的提取步骤,因此其提取量能代表与该植物相关的重金属生物可利用量。
     在模拟植物根系分泌的有机混酸对沉积物样品中不同形态的重金属进行提取时,对可交换态的提取比例最大,对有机结合态的提取比例为其次,对可还原态的提取比例为最小,说明重金属可交换态是最易被生物活化的形态,有机结合态在其次,可还原态为最小。
     实验所模拟的六种植物根系分泌的有机混酸中,对同种重金属元素,以高麦草根系分泌的有机混酸的提取结果相对较大,以肥田萝卜根系分泌的有机混酸的提取结果相对较小。
In this paper, GBW07310 and nine sediment samples were treated with BCR procedure and four-grade-five-step procedure with the intention to indicate the high accuracy of the four-grade-five-step procedure. And the concentrations of heavy metal of different fractions were got. At the same time, six mixed organic acids of low molecular weight which produced by plant roots were used to extract heavy metal in sediment samples with different extract procedures.
    The chemical and toxicological characteristic of heavy metals, which association with the organic matter and sulphide, is different. The two different speciations of heavy metals have different influences on the migration, conversion and toxicity of metals.The extract results that treated with GBW07301 and sediment samples indicated that the fraction of different biological availability could be separated; the pre-extraction of the fraction bound to the organic matter was eliminated. And so, the four-grade-five-step procedure could distinguish the metal speciation bound to organic matter from that to the sulphide completely on different sediment samples, showing the good adaptability on different locations.
    The extract results of mixed organic acids showed that the concentration of heavy metal extracted in one step contained exchengeable fraction, reducible fraction and oxidable fraction. Extracting in one step is the best extract procedure which could totally and exactly show the activate concentration and extract concentration of heavy metal in sediments by mixed organic acids. The concentration of heavy metal extracted by mixed organic acids in one step equals to the concentration of heavy metal that could be absorbed by plants.
    In the three fractions of heavy metal in sediment samples that extracted by mixed organic acids, the most extract percentage of heavy metal is exchengeable fraction , the second is oxidable fraction, and the least is reducible fraction. So we could conclude that the exchengeable fraction of heavy metal is the most easily activate and extract fraction absorbed by plants, oxidable fraction is the second, and reducible fraction is the least.
    In the six kinds of mixed organic acids simulated in the experiment, for the same heavy metal, the concentration extracted by mixed organic acids of grass'root is the largest, and the concentration extracted by mixed organic acids of radish's root is the lowest.
引文
[1] Vallbe B. L, Ulmer D. D. Biochemical effects of mercury, cadmium and lead [J]. Annu.Rev.Biochem, I972, (4): 92-108.
    [2] 王菊英,张曼平.重金属的存在形态与生态毒性[J].海洋与湖沼,1992,23(2):84-89.
    [3] 刘俊华,王文华,彭安.土壤中汞生物有效性的研究[J].农业环境保护,2000,19(4):216-220.
    [4] Hart, T. [J]. Hydrobiologia, 1982, (91): 299-313.
    [5] Chao, T. T, [J]. Geochem. Explor, 1984, (20): 101-135.
    [6] Lund, W, Fresenius. [J]. Anal. Chem, 1990, (337): 557-564.
    [7] Van Loon, J. C, Barefoot, R R. [J]. Analyst, 1992, (117): 563-570.
    [8] Kersting A. B, Efurd D. W, Finnegan D. L. Migration of plutonium in ground water at the Nevada Test Site [J]. Nature, 1999, (397): 56-59.
    [9] Kennedy V H, Sanchez A L, Oughton D H. Use of single and sequential chemical extraction to assess radionuclide and heavy metal availability from soils for root uptakes[J]. Analyst, 1997,(122): 89-100.
    [10] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the specification of particulate trace metals[J]. Anal. Chem, 1979, (51): 844-850.
    [11] Forsmer U, Kernsten M. Chemistry and Biology of Solid Waste[M]. Berlin: Springer-Verleg, 1988:219-237.
    [12] Quevauviller Ph, Rauret G, Griepink B. Single and sequential extraction in sediments and soils, Intern [J]. Environ. Anal. Chem, 1993, (51):231-235.
    [13] 方涛,徐小清.水体沉积物中酸挥发性硫化物的研究进展[J].水生生物学报,2001,25(5):509-512.
    [14] 梁亮,硕士学位论文.河流沉积物重金属形态分类法的研究[D].山东大学,2006:92-93.
    [15] Benson W H, Alberts J J, Allen H E. Synopsis of Discussion Session on the Bioavailability of Inorganic Contaminants[M]. Boca Raton: Lewis Publishers, 1994: 63-71.
    [16] 余相灿.沉积物污染化学[M].中国环境科学出版社,1992.
    [17] 王飞越,陈静生.中国东部河流沉积物样品表面性质的初步研究[J].环境科学学报,2000,20(6):682-687.
    [18] 文湘华,李莉莉.天然水体沉积物的表面特征[J].环境化学,1996,15(2):97-106.
    [19] 赵杏媛,张有瑜.粘土矿物与粘土矿物分析北京[M].海洋出版社,1990.
    [20] 吴大清,彭金莲,刁桂仪.沉积CaCO_3与金属离子界面反应动力学研究[J].地球化学,2000b,29(1):56-61.
    [21] 冯素萍,高连存,艾子萍.小清河底泥沉积物的形态分析(Ⅰ)—主成份及次要成份分析方法研究[J].山东大学学报(自然科学版),2001,36(3):319-325.
    [22] 周天泽.[J].中草药,1990,21(10):37.
    [23] Kot A, Namiesnik. The role of speciation in analytical chemistry, trends[J]. Anal. Chem, 2000, 19(2):70-79.
    [24] Pelletier, E. Metal Speciation and Bioavailability in Aquatic System[M]. Chichester: John Wiley&Sons, 1995:103-105.
    [25] Lippard S J, Berg J M. University Science Books[M]. CA:Mill Valey, 1999:120-145.
    [26] Forstner, U. Metal pollution in aquatic environment [M]. Berlin: Springer-Verleg, 1981:126-145.
    [27] Davidson C M, Wilson L E, Ure A M. Effect of sample preparation on the operational speciation of cadmium and lead in a freshwater sediment, Fresenius [J]. Anal. Chem, 1999,(363): 134-136.
    [28] Viets Jr F G. [J]. Agricul Food Chem, 1962,(10):174-178.
    [29] Houba V J G, Lexmond Th M, Novozamsky I. State of the art and future development in soil analysis for bioavailability assessment[J]. Total Environ, 1996, (178):21-28.
    [30] Novozamsky I, Lexmond Th M, Houba V J G. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants[J]. Intern Environ Anal Chem, 1993, (51): 47-58.
    [31] Gupta S K, Aten C J. Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils[J]. Intern Environ Anal Chem, 1993, (51): 26-46.
    [32] Zhang S Z,Shan X Q,Li F L. [J].Intern Environ Anal Chem, 2000, (76):283-294.
    [33] 王仲文,博士学位论文.土壤中重金属及稀土元素形态分析和生物可给性研究[D].中国科学院:生态环境研究中心,2002:19-21.
    [34] 王维生,博士学位论文.土壤中重金属和稀土元素生物可利用性的研究[D].中国科学院:生态环境研究中心,2003:79-85.
    [35] Sauerbeck D R, Hein A. The nickel uptake from different soils and its prediction by chemical extraction[J]. Water Air Soil Pollut, 1991,(57): 861-871.
    [36] Haq A U, Bates T E, Soon Y K. Comparison of extractants for plant-available Zinc, Cadmium, Nickle, and Copper in contaminated soils[J]: Soil Sci Soc, 1980,(44):772-777.
    [37] Mehlich A, Mehlich. Soil test extractant: a modification of Mehlich extractant, Commun[J]. Soil Sci Plant Anal, 1984, (15): 1409-1416.
    [38] Alva A K. [J].Commun Soil Sci Plant Anal, 1986,(23):2493-2510.
    [39] 刘肃,李酋开.[J].土壤学报,1995,(32):132-141.
    [40] Wendt J W. [J].Commun Soil Sci Plant Anal, 1995, (26): 687-702.
    [41] Michaelson G J, Ping C L. [J]. Commun Soil Sci Plant Anal, 1986, (17): 275-297.
    [42] Tran T S. [J]. Commun Soil Sci Plant Anal, 1990, (21): 1091-1101.
    [43] Jones Jr J B. [J].Commun Soil Sci Plant Anal, 1990, (21): 1-28.
    [44] Alva A K. [J].Commun Soil Sci Plant Anal, 1993, (24): 603-612.
    [45] Beegle B, Oravec T C. [J]. Commun Soil Sci Plant Anal, 1990, (21): 1025-1036.
    [46] Mozaffari M, Alva A K, Chen E Q. [J].Soil Sci, 1996, (161): 786-792.
    [47] Harrison R M, Lexen D P H, Wilson S J. [J].Environ Sci Technol, 1981,(15): 1378-1383.
    [48] Hickey M G, Kittrick J A. [J]. Environ Qual, 1984, (13): 372-376.
    [49] Xian X. [J]. Environ Pollut, 1989,(12): 127-137.
    [50] Qian J, Wang Z J, Shan X Q. [J]. Environ Pollut, 1996, (91): 309-315.
    [51] Dudka S, Chlopecka A. [J]. Water Air Soil Pollut, 1990, (51): 153-160.
    [52] Tack F M G, Vossius H A H, Verloo M G [J].Intern J Environ Anal Chem, 1996, (63): 61-66.
    [53] Tessier A,Campbell P G C. [J]. Hydrobiologia, 1987, (149): 43-52.
    [54] Tack F M G, Verloo M G [J]. Intern Environ Anal Chem, 1996, (64): 171-177.
    [55] Chlopecka A. [J]. Sci Total Environ, 1996, (188): 253-262.
    [56] J. Usero, M. Gamero, J. Morillo. Comparative Study of Three Sequential Extraction Procedures for Metals in Marine Sediments[J]. Environ Intern,1998,24(4): 487-496.
    [57] J DODD, D J LARGE, N J FORTEY. Petrographic Investigation of two Sequential Extraction Techniques applied to Anaerobic canal bed Mud[J]. Commun Soil Sci Plant Anal, 1998,(127):367-375.
    [58] Astrid Barona, Itziar Aranguiz, Ana Elias. Assessment of Metal Extraction Distuributton and Contamination in Surface Soils By a 3-setp Sequential Extraction Procedure[J]. Chemosphere, 1999, 39(11): 1911-1922.
    [59] Eric D van Hullebusch, Sudarno Utomo, Marcel H. Comparison of three sequential extraction procedures to describe metal fractionation in anaerobic granular sludges[J]. Talanta, 2005,(65): 549-558.
    [60] E Margu, V Salvado, Queralt. Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes[J]. Analytica Chirnica Acta, 2004,(524): 151-159.
    [61] Z Mester, C Cremisini, E Ghiara. Comparison of two sequential extraction procedures for metal fractionation in sediment samples[J]. Analytica Chimica Acta, 1998, (359):133-142.
    [62] Simon W Poulton,Donald E Canfield.Development of a sequential extraction procedure for iron, implications for iron partitioning in continentally derived particulates[J]. Chemical Geology,2005, (214): 209-221.
    [63] Jeffrey R Bacon, Irene J Hewitt, Patricia Cooper. Reproducibility of the BCR sequential extraction procedure in a long-term study of the association of heavy metals with soil components in an upland catchment in Scotland[J]. Science of the Total Environment,2005, (337): 191-205.
    [64] Kartal.Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data[J]. Journal of Hazardous Materials,2006,132(1): 80-89.
    [65] Poulton, Simon W; Donald E. Development of a sequential extraction procedure for iron, implications for iron partitioning in continentally derived particulates [J]. Chemical Geology, 2005,(24): 209-221.
    [66] Davidson, Christine M; Urquhart. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure[J]. Analytica Chimica Acta, 2006, 565(1):63-72.
    [67] Arunachalam J, Emons H, Krasnodebska B. Sequential Extraction Studies on Homogenized Forest Soil Sample[J]. Sequential Total Environment, 1996,(181): 147-159.
    [68] 王海,王春霞,王子健.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):430-435.
    [69] J F Lopez-sanchez, R Rubio, G. Rauret. Comparison of Two Sequential Extraction Procedures for Trace Metal Partitioning in Sediments[J]. Intern Environ Anal Chem, 2005,(51): 113-121.
    [70] Shuman. [J]. Soil Sci, 1985, (140):11-22.
    [71] Gupta, S K, Chen K Y. [J]. Environ Lett, 1975, (10):121-129.
    [72] LeClaire J P, Chang A C, Levesque C S. Trace metal chemistry in arid field soil amended with sewage sludge, Ⅳ Correlations between zinc uptake and extracted zinc fractions[J]. Soil Sci Soc,1984,(48):509-513.
    [73] Chlopecka A, Adriano D C. Mimicked in-situ stabilization of metals in a cropped soil Bioavailability and chemical forms of zinc[J]. Environ Sci Technol, 1996, (30):3294-3303.
    [74] Davidson C M, Wilson L E, Ure A M. Effect of sample preparation on the operational speciation of cadmium and lead in a freshwater sediment[J]. Anal Chem, 1999, (363): 134-136.
    [75] Flaig, Beutelspacher, Rietz. Chemical composition and physical properties of humic substances[M]. Berlin: Springer, 1975:214-235.
    [76] Ortiz De Seerra, M I, Schnitzer. Chemistry of humic and fulvie acids extracted from Argentine soils[J]. Soil Boil Biochem, 1972, (5):281-292.
    [77] Schnitzer M, Khan, S L. Humic substances in the environment[M]. New York: Dekker Inc, 1972:164-179.
    [78] Neyroud, Schnitzer. The chemistry of high molecular weigh fulvic acid fractiongs[J]. Can Chem, 1974,(52): 16-24.
    [79] 江桂斌.有机金属化合物形态分析[J].环境科学进展,1999,7(2):7-10.
    [80] 江桂斌.国内外有机锡污染研究现状[J].卫生研究,2001,30(1):12-18.
    [81] 周群芳,江桂斌.气相色谱法在有机锡化合物形态分离与测定中的应用[J].分析化学学报,2002,18(3):240-246.
    [82] 刘稷燕,江桂斌.金属和非金属元素的甲基化行为及其在环境化学研究中的意义[J].化学进展,2002,14(3):231-235.
    [83] 陈淑梅,王菊英.酸溶硫化物与沉积物中重金属化学特性的关系[J].海洋环境化学,1999,18(3):17-20.
    [84] Scow K M, Hutson J. Effect of diffusion and sorption on the kinetics of biodegradation, theoretical considerations[J]. Soil Sci Soc, 1992, (56):119-127.
    [85] Scow, K M, Alexander M. Effect of diffusion on the kinetics of biodegradation, experimental results with synthetic aggregates[j]. Soil Sci Soc, 1992, (56):128-134.
    [86] Orram A V, Jessup R E. Effects of sorption on biological degradation rates of (2,4-Dichlorophenoxy) acetic acid in soils[J]. Appl Environ, 1985,(49):582-593.
    [87] Luthy R G, Dzombak D A, Roy S B. Remediating Tar-Contaminated Soils at Manufactured Gas Plant Sites[J]. Environ Sci Technol, 1994, (28):266-276.
    [88] Peijnenburg W, Baerselman R, Leenders D. Quantification of Metal Bioavailability for Lettuce in Field Soils[J]. Arch Environ Contam Toxicol, 2000, (39):420-430.
    [89]Mckenna I M, Chaney R L, Williams F M. The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach[J]. Environ Pollut,1993, 79(2):113-120.
    [90]Obrador A, Rico M I, Mingot J I. Metal mobility and potential bioavailability in organic matter-rich soil-sludge mixture, effect of soil type and contact time[JJ. Sci Total Environ, 1997,(206): 117-126.
    [91]Li F L, Shan X Q, Zhang T H. Evaluation of plant availability of rare earth elements in soil by chemical fractionation and multiple regression analysis[J]. Environ Pollut, 1998, (102):269-277.
    [92]Chlopecka, Adriano D C. Mimicked in-situ stabilization of metals in a cropped soil Bioavailability and chemical forms of zinc[J]. Environ Sci Techinol, 1996, (30):3294-3303.
    [93]LeClaire J P, Chang A C, Levesqe C S. Trace metal chemistry in arid field soil amended with sewage sludge[J]. Soil Sci Soc, 1984, (48):509-513.
    [94]Campbell P G C. Interactions between trace metals and aquatic organisms, a critique of the free-ion activity model, Metal Speciation and Bioavailability in Aquatic System [M]. Chichester: John Wileysons, 1995: 45-102.
    [95]Chen B, Shan X Q, Qian J. Bioavailability index for quantitative evaluation of plant availability of extractable soil trace elements[J]. Plant Soil, 1996, (186): 275-283.
    [96]Brown S L, Chaney R L, Lloyd Cheryl A. Relative Uptake of Cadmium by Garden Vegetables and Fruits Grown on Long-Tern Biosolid-Amended Soils[J]. Environ. Sci. Technol., 1996, 30 (12): 3508-3511.
    [97]Edwards S C, Macleod C L, Lester J N. The bioavailability of copper and mercury and their uptake by the common nettle (urtica dioica) and the earthworm (eisenia fetida) from contaminated dredge spoil[J]. Water Air Soil Pollut., 1998, (102): 75-90.
    [98]St-cyr L, Campbell L. Bioavailability of sediment-bound metals for VaNisneria americana Michx a submerged aquatic plant in the St. Lawrence River Can[J]. Fish Aquat. Sci., 2000, 57(7): 1330-1341.
    [99] Schulin R, Geiger G, Furrer G. Heavy metal retention by soil organic matter under changing environmental conditions in Salomons W Stigliani W M Biogeodynarnics of Pollutants in soils and sediments Risk Assessment of Delayed and Nonlinear Response[M]. Berlin: Springer, 1995: 53-85.
    [100] Mckenzie R H, Dormaar J F, Schaaije G. B. Chemical and biochemical changes in the rhizospheres of wheat and canola[J]. Soil Sci., 1995, (75): 439-447.
    [101] 陈能场,陈怀满.土壤植物系统中的重金属污染[M].北京:科学出版社,1994:309-311.
    [102] 张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):241-249.
    [103] Jones D L. Organic acids in the rhizosphere a critical review[J]. Plant Soil, 1998, (205): 25-44.
    [104] Mench M, Martin E. Mobiization of cadmium and other metals from two soils by foot exudates of Zea mays L Nicotiana tabacum L and Nicotinana rustica L[J]. Plkt Soil, 1991, (132): 187,197.
    [105] Krishnamurti G S R, Cieslinski G. Kinetic of cadmium release from soils as influenced by organic acids implication in cadmium availability[J]. Environ. Qual., 1997, (26): 271-277.
    [106] Andrew E J. Influence of low molecular weight organic acids on zinc distribution within micronutrient pools and zinc uptake by wheat[J]. Plant Nutr., 1991, 14(12): 1307-1318.
    [107] 林琦,陈怀满,陈英旭.根际环境中铅的形态转化[J].应用生态学报,2002,13(9):1145-1149.
    [108] 杨仁斌,曾清如,周细红.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护,2000,19(3):152-155.
    [109] 陈凯,马敬,曹一平.磷亏缺下不同植物根系有机酸的分泌[J].中国农业大学学报,1999,4(3):58-62.
    [110] 文湘华.水体沉积物重金属质量基准研究[J].环境化学,1993,12(5):334-34.
    [111] 何孟常.水体沉积物重金属生物有效性及评价方法[J].环境科学进展,1998,6(5):9-19.
    [112] Muller G. Schwermetalle in den Sedimenten des Rheins[J]. VeraEnderungen seit 1971, 1979, (79): 778-783.
    [113] Hakanson L. An ecological risk index for aquatic pollution control A sedimentological approach[J]. Water Research, 1980, (14): 975-1001.
    [114] Angulo E. The Tomlinson Pollution Load Index applied to heavy metal Mussel-Watch data: a useful index to assess coastal pollution[J]. Science of the Total Environment, 1996, 187(1): 19-56.
    [115] Hilton J, Davison W, Ochsenbein U. A mathematical model for analysis of sediment core data implications for enrichment factor calculation and trace metal transport mechanisms[J]. Chemical Geology, 1985, (48): 281-291.
    [116] 赵智杰,贾振邦,张宝权.应用脸谱图与地累积指数法综合评价沉积物中重金属污染的研究[J].环境科学,1994,14(4):48-52.
    [117] 陈静生.铜在沉积物各相中分配的实验模拟与数值模拟研究 以鄱阳湖为例[J].环境科学学报,1987,7(2):140-149.
    [118] 霍文毅.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997,17(1):81-86.
    [119] Kralik M. A rapid procedure for environmental sampling and evaluation of polluted sediments[J]. Applied Geochemistry, 1999, 14(6): 807-816.