地面用高性能水泥基自流平砂浆的配制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥基自流平砂浆具有优良的性能,在节能降耗、环保及提高建筑物质量等方面都发挥着重要作用。目前我国水泥基自流平砂浆存在品种少、性能差、缺乏快硬早强地面自流平材料,而且价格昂贵。因此,开发高质量、经济型、快硬性水泥基自流平砂浆具有实际的工程实用价值。此外,目前重庆市在水泥基自流平砂浆的研究应用方面,规模小、技术基础薄弱,本研究对加快水泥基自流平砂浆在本地区的发展及应用具有现实意义。
     本文通过组成材料、温湿度对自流平砂浆性能的影响分析以及配合比优化,得到早强、快硬高性能水泥基自流平砂浆配合比;并通过XRD、SEM测试分析,对自流平砂浆早强、高强、表面泛白等机理进行了研究;最后通过自流平砂浆的试用,总结了水泥基自流平配置时应注意的问题和施工技术措施并评价其经济性。研究结果表明:
     1)胶凝体系中硫铝酸盐水泥在10%~15% (占胶凝材料总量)、粉煤灰和矿渣取代水泥总量在20%~30%并保持矿渣与粉煤灰的比例为1.5左右时;骨料体系中选择山硅石英砂并控制集胶比为1.0左右时;外加剂体系中可分散乳胶粉(RE5011L)、稳定剂(A1、A2)和消泡剂(P808)的掺量范围分别为2.0%~2.5%、0.05%左右和0.5%~1.0%时,配制的自流平砂浆各方面性能及成本较优。
     2)根据正交设计试验结果分析得出:可分散乳胶粉(RE5011L)、稳定剂(A1/A2)和消泡剂(P808)最佳掺量分别为1.5%、0.05%和0.6%。根据最优配合比配制的水泥基自流平砂浆性能指标明显优于JC/T985—2005《地面用水泥基自流平砂浆》标准要求,完全满足课题要求。
     3)当温度<20℃、湿度>70%时,标准试验条件下得出的配方早期强度不能满足配制要求,需对配合比进行调整。调整结果如下:普通硅酸盐水泥由60%~75%调整到75%~80%,硫铝酸盐水泥由10%~15%调整到5%~10%,粉煤灰由5%~10%调整到0~5%,矿渣由15%~20%调整到10~15%,其它组成材料不变。
     4)XRD和SEM分析表明:自流平砂浆在水化硬化过程中,生成了膨胀型钙矾石,并且钙矾石的数量随着龄期增长逐渐增多,结构不断密实。如果自流平砂浆削泡不好就会在砂浆表面形成白色的CaCO3。
     5)根据试验研究,总结了自流平砂浆的施工工艺、技术措施以及配制自流平砂浆应注意的问题,对自流平砂浆的工程应用具有指导作用。自流平砂浆材料成本价格仅为507~657元/吨,具有较好的经济性。
Cement-based self-leveling mortar with excellent performance, it can play an important role in the energy-saving, environmental protection and improving the construction quality, etc. At present, cement-based self-leveling mortar exist less in variety, poor performance, lack of rapid hardening high early strength self-leveling floor materials, and expensive in China.Therefore, it has real practical value in developing the high-quality, economical, fast hard cement-based self-leveling mortar. In addition, the study and application scale of the Cement-based self-leveling mortar was small, technological base was weak in Chongqing city. This study can play an importantly practical significance in accelerating development and application of the cement-based self-leveling mortar in the region.
     In this paper, we get the mortar mix of the early strength, rapid hardening cement-based self-leveling mortar through analysising the effect of composition of materials, temperature and humidity on self-leveling mortar performance; We have been studied the early strength, high strength, surface whitening mechanisms of self-leveling mortar by XRD and SEM test analysis; Finally, we summed up the self-leveling cement-based configuration should pay attention to the problems and construction technology and evaluate its economy by self-leveling mortar trial. The results show that:
     1) In Cement Pastes, Sulfur content accounting for 10 ~ 15% of total cementitious materials, the slag and fly ash to replace 20% ~ 30% cement and slag-fly ash ratio was about 1.5; In the aggregate system, we choice mountain silica sand and controll aggregate-cement ratio at 1.0; In the additive systems, content ranges of dispersible polymer powders (RE5011L), stabilizer (A1, A2) and defoamer (P808) at 2.0%~2.5%, 0.05% and 0.5%~1.0%, the performance and cost of self-leveling mortar is best.
     2) According to orthogonal design test, we obtained that: the best content of dispersible polymer powder (RE5011L), stabilizer (A1, A2) and defoamer (P808) is 1.5%, 0.05% and 0.6%; the dosage of is. The performance of Self-leveling mortar prepared in accordance with the mix proportion is much better than the standard JC/T985-2005《on the ground with cement-based self-leveling mortar》requirements and also fully meet the task requirements.
     3) When the temperature is below 20℃, the humidity is beyond 70%, the mortar mix proportion under standard test conditions does not meet the preparation requirements. We need to adjust the mortar mix. Adjusted as follows: Portland cement from 60% to 75% adjusted to 75% to 80%, sulfur Cement from 10% to 15% adjusted to 5% to 10%, fly ash from 5% to 10% adjusted to 0 ~ 5%, slag from 15% to 20% adjusted to 10 to 15%, others as the same.
     4) XRD and SEM analysis showed that: it generated ettringite in the hydration and hardening of self-leveling mortar. With age growth the number of ettringite increase, and the structure of self-leveling mortar continuously dense. If there exists lots of foam in the mortar, it would forme white CaCO3 on the surface of self-leveing mortar.
     5) According to experimental research, we summarized the following aspects: the self-leveling mortar construction technology, technical measures and the question of the preparation of self-leveling mortar. These guide the engineering application of self-leveling mortar. The price self-leveling mortar is only 507 ~ 657 yuan / ton, so the economy is great.
引文
[1]苑金生.地面自流平材料的开发应用[J].中国建材. 1997:46-48.
    [2] Bob arris. Proper application of semi self-leveling micro-toppings[J]. Concrete concepts, 2005, 5 (7): 10.
    [3] Jeongyun Do. Yangseob Soh. Performance of polymer-modified self-leveling mortars with high polymer-cement ratio for floor finishing. [J] Cement and Concrete Research. 2003. 33. 1497-1505.
    [4]苑金生.地面自流平材料的开发应用. [J]房材与建材. 1998. 2.
    [5]地坪材料分会《水泥基自流平砂浆学术交流会》[J]. 2009. 5
    [6]王栋民等,混凝土与水泥制品[J]. 1989(2).
    [7]贺奎,王万金,王二坡,夏义兵,李海峰.一种新型自流平砂浆的研究. [J]混凝土. (2006)08- 0092-05.
    [8] TangMing. ChenHui. Studuy on the performance of the self-leveling mortar with high-volum fly ash. Building [J] Technology Development. 2004. 6.
    [9]李战国,刘娟红,刘全胜.新型地面水泥基自流平材料的研究. [J]石家庄铁道学院学报. 2005(03).
    [10]李玉海,王娟.石膏种类及添加量变化对自流平砂浆强度影响的研究. [J]化学建材. 2008(01).
    [11]杜建光,叶枝荣. YD型高效自流平砂浆流化剂的研制. [J]建筑材料学报. 2000. 3(01).
    [12]李玉海,找锐球.粉煤灰对自流平砂浆的性能影响. [J]新型建筑材料. 2006(10).
    [13]杨新亚,王锦华.硬石膏基地面自流平材料研究. [J]国外建材科技. 2006(01).
    [14]周晓群. JD单组分地面自流平材料研制与应用[J].北京建材, 1997, (4):1-5.
    [15]张杰.可分散乳胶粉在自流平地坪材料中的应用[J].新型建筑材料, 2003, (6):28-30.
    [16]罗庚望.水泥系自流平材料研究应用进展. [J]化学建材. 1995. 5.
    [17]孙正平,蒋正武,金慧忠等,我国混凝土高效减水剂生产应用现状与发展方向[M]聚羧酸高性能减水剂及应用技术.北京:机械工业出版社, 2005.
    [18]李崇志,王栋民,王金才.聚羧酸系减水剂的分子结构模型与作用机理探讨[M].聚羧酸高性能减水剂及应用技术.北京:机械工业出版社, 2005.
    [19]毛建,王均,杨小利,等.聚羧酸系高性能减水剂研究现状与发展[J].国外建材科技. 2005, 26(1): 4-6.
    [20] Hirohshi Uchikawa, Daisuki Sawaki, Shunsuke Hanehara. Influence of kind and added timing of organic admixture on the composition, structure and property of fresh cement paste[J].Cement and Concrete Research. 1995, 25(2):353-364.
    [21]刘彤,王冬梅,柳勇臻. PLS低坍落度损失缓凝高效减水剂的研制[J].化学建材, 1999(2): 73-74.
    [22] Vickers Jr, Thomas M, Packe-Wirth Rainer, etal. Derivatized polycarboxylate dispersants[P]. United States Patent 6310143. 2001-2.
    [23]向建南,徐广宇,张伟强.羧酸类共聚物AE减水剂的合成与分散性能研究[J].湖南大学学报. 1999, 26(4): 303.
    [24]张冠伦,张云理.混凝土外加剂原理及应用技术[M].上海:上海科学技术文献出版社, 1985.
    [25]唐明,陈辉.高掺量粉煤灰自流平砂浆性能的研究. [J]建筑技术开发. 2004. 31(6):53-54.
    [26]王学森,朱双华,申春淼,赵康.低热超级自流平砂浆研究. [J]建筑技术开发. 2002. 4.
    [27]王学森,朱双华,杜保旗,赵康.单掺硅灰自流平砂浆性能的改型. [J]新型建筑材料. 2002. 6.
    [28]钟世云,马英.聚合物改性自流平水泥砂浆的力学性能. [J]建筑材料学报. 2005. 1.
    [29] A. De Gasparo1, J. Kighelman2, R. Zurbriggen3, K. Scrivener2, M. Herwegh1.自流平地面砂浆的性能机理及应用. [J]新型建筑材料. 2006. (9).
    [30] Amathieu L. , &Valdelièvre B. Calcium Aluminate Cement:a ver-satile binder for various applications in the dry mortar industry. Proceedings of the 2004 China [J]International Dry Mortar Pro-duction&Application Techniques Seminar: Beijing, China, 2004:63-70.
    [31] L. Zhang, F. P. Glasser, New concretes based on calcium sulfoaluminate cement, in: R. K. Dhir, D. Dyer, T. Telford (Eds. ), Proceedings of the International Conference on Modern Concrete Materials: Binders, [J] Additions and Admixtures, 1999, pp. 261–274.
    [32] A. K. Chatterjee, Special cements, in: J. Bensted, P. Barnes (Eds. ), [J] Structure and Performance of Cements, E & FN Spon, London &New York, 2002, pp. 226–231.
    [33] M. Su, Y. Wang, L. Zhang, D. Li, Preliminary study on the durabilityof sulfo/ferro-aluminate cements, in: H. Justnes (Ed. ), Proceedings of the 10th International Congress on the Chemistry of Cement, AmarkaiAB and Congrex, [J] Gothenburg, Sweden, June 2–6, 1997, vol. IV, p. 4iv029, 12 pp.
    [34] I. Odler, Cements containing calcium sulfoaluminate, [J] in: A. Bentur, S. Mindess (Eds. ), Special Inorganic Cements, E & FN Spon, Lon-don & New York, 2000, pp. 69–87.
    [35] P. K. Mehta, Mechanism of expansion associated with ettringite for-mation, [J] Cem. Concr. Res. 3 (1973) 1–6.
    [36] M. Su, W. Kurdowski, F. Sorrentino, Development in non-Portlandcements, Proceedings of the 9th International Congress on the Chem-istry of Cement, [J]. New Delhi, India, vol. 1,1992, pp 317–354.
    [37] J. Beretka, N. Sherman, M. Marroccoli, A. Pompo, G. L. Valenti, Effectof composition on the hydration properties of rapid-hardening sulfoa-luminate cements, in: H. Justnes, Proceedings of the 10th InternationalCongress on the Chemistry of Cement, [J] Amarkai AB and Congrex, Gothenburg, Sweden, June 2–6, 1997, vol. II, p. 2ii029, 8pp.
    [38] Ohama Y. Polymer-based admixtures. [J] Cement and Concrete Composites. 1998. 20.
    [39]乔渊,李运北,李春亮.可再分散聚合物乳胶粉对水泥砂浆微结构性能作用的研究[J].新型建筑材料, 2006(7):4-8.
    [40] JakobW,张量.用于干拌砂浆产品的添加剂和可再分散聚合物粉末的作用[J].广东建材, 2005(4): 9-12.
    [41]科博尔.可再分散乳胶粉与干混砂浆[J].新型建筑材料, 1999(1): 11-14.
    [42]王冲,蒲心诚.超细矿物掺合料对新拌混凝土的增塑减水机理分析. [J].混凝土.2001. 8
    [43] Frank Collins, J. G. Sanjayan. Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder. [J] Cement and Concrete Research. 1999 . 29.
    [44] Martin Cyr, Claude Legrand, Michel Mouret. Study of the shear thickening effect of superplasticizers on the rheologicalbehaviour of cement pastes containing or not mineral additives. [J] Cement and Concrete Research . 2000. 30.
    [45]王雨利,管学茂,潘启东,等.粗骨料颗粒级配对混凝土强度的影响[J].焦作工学院学报, 2004, 23(3):213-215.
    [46]郭晔,朱宝林,黄新,等.浆体中连续粒径粉体的堆积密度计算方法[J],混凝土, 2006, (2):3-5
    [47]黄新,朱宝林,郭晔,等.连续粒径粉在体浆体中的堆积密度[J],北京航空航天大学学报, 2006, 32(4):461-465.
    [48]苑金生.地面自流平材料的发展动向. [J]建筑技术. 1998. 3. 29 (7). 483-484.
    [49]美国专利. [J] US-4394175. Jue, 19. 198.
    [50]中国专利. [J]公开号CN 1587180A..
    [51]中国专利. [J]公开号CN 1546416A..
    [52]陈娟,李北星,卢亦焱.硅酸盐-硫铝酸盐水泥混合体系的试验研究[J]。重庆建筑大学学报, 2007, 4(29)121-124.
    [53]李迁.硫铝酸盐与硅酸盐复合水泥研究,[J].辽宁大学学报:自然科学版, 2007, 33(6)158-162. ).
    [54] Mabaoguo. Lixiangguo. Liangwenquan. Etc. Experimental study on the properties of OPC-SAC Mixed Cement[J]. Cement, 2004, 2:1-4.
    [55] D. W. Hobbs. " The Effect of Pulverized - fuel Ash upon the workability of cement and concrete" [ J ]. In: Magazine of Concrete Research, Vol . 32, mcc. 1980.
    [56]李政,张德思.粉煤灰对自密实混凝土流变性能的影响[J].粉煤灰综合利用, 2005(5): 3-5.
    [57]沈旦申.粉煤灰混凝土[M].北京: :中国铁道出版社. 1989.
    [58]蒋家奋.矿渣细粉在水泥混凝土中应用的概述[J].混凝土于水泥制品, 2002, (3). 3-6.
    [59]王新民,薛国龙,俞锡贤,何唯平,何俊高.干粉砂浆添加剂选用[J].中国建筑工业出版社, 2007.
    [60]朱晓鲲.可分散聚合物粉末在干混砂浆中的应用. [J]山西建筑, 2007, 1. 33(1). 172-173.
    [61]马保国,李相国,梁文泉等.粉煤灰矿渣复合水泥强度协同效应的研究[J].水泥, 2004, 2:1-4.
    [62] Hezhen. Liangwenquan. Libeixing. Etc. Prepation of super composite cement w ith a lower clinker content and larger amount of industrial wastes[J]. Journal of wuhan university of technology, 2002, 17(4):78-81.
    [63] GUANxuemao. LUOshuqiong. Study on influences of cellulose ether on performances of plaster for aerated concrete[J]. Concrete, 2006, (10):35-37.
    [64]黄宪章,黄登宇.有机硅消泡剂消泡机理、特性及用途研究. [J]科技情报开发与经济. , 2003 13(1): 161-161, 163.