β-二酮配体镧系配合物杂化发光材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镧系配合物由于具有非常完美的发光行为,如发射谱带窄、色纯度高、荧光寿命长、量子产率高以及发射光谱范围覆盖可见和近红外光区等特点,在发光材料领域独树一帜。然而,纯的配合物往往具有光稳定性及热稳定性差的缺点,限制了其在很多领域的应用。将镧系配合物引入到基质中可以改善它们的稳定性及机械加工性能。根据基质材料的不同,杂化材料可分为无机基质、有机基质及无机/有机复合基质的杂化材料。这些杂化材料往往既具有主体基质良好的稳定性和机械加工性能,又具有镧系配合物独特的发光性能,在光学器件领域(LED照明、光纤维、光学放大器及激光等)及生命分析领域(细胞及组织成像、生命金属离子的追踪和检测等)等方面具有重要的应用价值。
     本课题组一直致力于镧系配合物杂化发光材料的设计、组装及性能研究。为了发展镧系配合物杂化发光材料组装的新途径以及探讨材料主客体相互作用对其光物理性质和稳定性的影响,在课题组已有工作基础上,我们设计了一系列β-二酮配体镧系配合物,并通过次键力(氢键、静电作用或范德华力)或化学键合作用(共价接枝或配位作用)将其负载到无机基质、无机/有机复合基质或有机基质中,组装出有望应用于生物细胞成像、LED白光器件、光学放大器和气相荧光传感器等领域的新型镧系配合物杂化发光材料。研究表明,主体基质与客体配合物分子之间的相互作用对其光物理性质和稳定性均有明显的调制作用。取得的研究成果为新型镧系配合物发光材料的设计组装提供了新思路和新途径,对稀土功能材料的设计应用具有重要的理论意义及一定的应用价值。
     本论文共分为四部分:
     第一章:简要概述了镧系配合物杂化发光材料的研究进展。
     第二章:镧系配合物@无机基质杂化发光材料的组装。
     以江苏盱眙产凹凸棒石粘土(Atta)和二氧化硅颗粒为基质,分别以3-氨基丙基-三乙氧基硅烷(APTES)和3-氨丙基-甲基-二乙氧基硅烷(ATMDES)为偶联剂,通过配体交换反应将镧系配合物共价接枝于无机基质表面,组装出镧系配合物@粘土基质的杂化发光材料。通过对发光材料的组成及光物理性质分析,筛选出了最优化的组合Atta-APTES-cpa-Eu(DBM)3,该材料表现出更长的荧光寿命及更高的相对荧光强度。值得一提的是,通过材料的组装,获得了能够被可见光(398nm)激发的镧系杂化发光材料Atta-APTES-cpa-Eu(DBM)3。细胞成像和细胞毒性实验研究表明,该材料有望应用于医疗诊断。
     将一系列带有不同末端基的酰胺型β-二酮配体镧系配合物共价接枝于溶胶凝胶体系中,制备出一系列发射绿色和红色荧光的镧系配合物溶胶凝胶杂化材料。光物理性研究表明,配体以苯环为末端基的杂化材料体系中存在更加有效的分子内能量传递效率、更长的荧光寿命以及更高的量子产率,推测一个稳定的共轭体系的存在为能量转移过程提供了有利的条件。
     第三章:镧系配合物@无机/有机复合基质杂化发光材料的组装。
     无机基质的杂化材料具有良好的稳定性,但机械加工性能差,在无机基质中引入廉价的有机高分子基质,得到混合基质的杂化材料可以有效改善材料的机械加工性能。以凹凸棒石粘土为基质、3-氯丙基-三乙氧基硅烷为偶联剂,通过加入1-甲基咪唑形成离子液型凹凸棒石,进而通过离子交换反应引入β-二酮镧系配合物,组装出新型镧系配合物[C4mim][Ln(TTA)4]@凹凸棒石的离子液型杂化材料,并通过加入高分子PMMA形成无机/有机复合基质的发光薄膜,进一步探讨主客体相互作用对杂化材料光物理性质的影响,为实现材料器件化应用提供理论依据。
     通过溶胶凝胶法,将β-二酮配体的镧系配合物引入到Si02凝胶及Si02/有机聚合物的复合基质中。通过对杂化材料光物理性质的研究发现,有机聚合物的配位作用及主客体间相互作用对镧系配合物的能量传递产生了一定的影响。
     第四章:镧系配合物@有机基质杂化发光材料的组装。
     以一个质子敏感的酰胺型β-二酮作为光敏化剂,通过添加固定含量的铽盐及铕盐以及高分子PVP形成一个杂化前驱体,并首次通过改变前驱体中碱的浓度以及激发波长,得到了一系列包含白光发射在内的全发光荧光薄膜材料。传统的多色发光材料的荧光调控是通过改变配体以及镧系离子的含量来实现的。这种薄膜对酸碱气体有荧光发射响应。由于其具有良好的稳定性、可循环性以及快响应性,有望应用于酸碱气体的荧光传感器。
The lanthanide complexes have excellent photoluminescent properties, such as sharp emission spectra for high color purity, broad emission bands covering the visible to near infrared region, a wide range of lifetimes, and high luminescence quantum efficiencies. However, the factors such as poor stabilities under high temperature or moisture conditions and low mechanical strength limit their practical use. In order to circumvent these drawbacks, lanthanide complexes have been incorporated into the matrices to constitute hybrid materials. The solid matrices could be divided into inorganic, organic and mixed matrices. The potential of these hybrid materials relies on exploiting the synergy between the intrinsic characteristics of host matrices (versatile shaping and patterning, excellent optical quality, high stabilities under high temperature or moisture conditions photosensitivity) and the luminescence features of trivalent lanthanide ions. These properties have attracted much attention for a wide variety of applications in the fields of lighting devices (light-emitting diodes (LED), optical fibers, optical amplifiers, lasers), and biomedical analysis (medical diagnosis and cell imaging).
     Our group is dedicated to the design and assembly of functional lanthanide-based hybrid materials. In order to assemble novel lanthanide-based materials and elucidate the effect of interactions between host and guest on the photophysical behaviors and stabilities of the materials, we designed and synthesized a series of β-diketonated lanthanide complex based materials on the basic of the previous studies. The lanthanide complexes were incorporated into inorganic matrix, inorganic-organic mixed matrix or organic matrix by weak interactions (such as hydrogen bonding, van der Waals forces, or weak static effects) or strong interactions (such as covalent or coordinate bond). The assembly of these materials would be applied to cell imaging white-light light-emitting diodes (LED), optical amplifiers and vapoluminescent sensor. It is found that the host-guest interactions have distinctive modulation effects on the photophysical behaviors and stabilities of the hybrid materials. The research results of this dissertation might have theoretical and practical significance for the design of functional lanthanide-based hybrid materials.
     The dissertation includes following four chapters:
     Chapter1:A brief review of investigation progress of lanthanide-based hybrid materials was summarized.
     Chapter2:Lanthanide complexes based inorganic matrices hybrid materials were assembled.
     Attapulgite (so-called palygorskite) is a hydrated magnesium aluminium silicate present in nature as a fibrillar silicate clay mineral. We discuss the preparation and luminescence of a europium complex covalently attached to attapulgite and SiO2nanoparticals, grafting the europium complexes with two alkoxide structures, APTES and APMDES. The composites display more efficient emission and improved lifetime in comparison with the isolated complexes, due to interactions of the complexes with the matrixes. The most efficient emission of Atta-APTES-cpa-Eu(DBM)3among the composites results from the uniformly structured ternary europium complexes.
     The development of sol-gel derived hybrid materials have been of widespread interest in materials science. Highly luminescent Eu(Ⅲ) and Tb(Ⅲ) complexes with a kind of amide-type β-diketone ligands, emitting in the green and red visible spectral regions upon UV irradiation, respectively, have been covalently bonded to the silica gels upon acidic hydrolysis and by using tetraethylorthosilicate as a silica source. The hybrids assembled by the ligand containing aromatic end group exhibited more effective intramolecular energy transfer, longer luminescence lifetimes and higher quantum efficiency. The above photoluminescence features indicated that the existence of a suitable conjugated system should allow a better energy transfer.
     Chapter3:Lanthanide complexes based inorganic-organic mixed matrices hybrid materials were assembled.
     Polymers are always incorporated into inorganic matrix to constitute inorganic-organic mixed matrix due to their several attractive features including mechanical strength, flexibility, and controllable cost. We assembled the ionic liquid-type lanthanide complexes onto attapulgite (atta). First, atta was anchored by1-propyl-3-methylimidazolium groups. Then we could prepare an immobilized analogue of the complex [C4mim][Ln(TTA)4] by an ion exchange route. The luminescence behaviors of the hybrid materials were investigated. The results of this work would have potential significance for the design and assembly of the luminescent lanthanide materials for high performance luminescence application.
     We also embedded a new terbium β-diketonate complex into silica gel and SiO2/polymer matrices containing the long organic carbon chains and inorganic network (Si-O-Si) through sol-gel process to assemble the hybrid polymeric materials, Tb-L xerogel and Polymer-Tb-L xerogels. As the data suggested, the polymeric hybrid materials in comparison with the isolated complex possess higher unit mass luminescence intensities and exposure durability. The polymers containing carbonyl groups are supposed to conduce to the energy transfer progress and the hydrogen bonding between the host and guest may affect the ligand-to-metal energy transfer.
     Chapter4:Lanthanide complexes based organic matrices hybrid materials were assembled.
     The full-color photoluminescence materials including a white-light-emitting film were designed and fabricated facilely with a fixed-component Ln-based (Ln=Tb and Eu) polymer hybrid doped with an amide-type β-diketonated ligand. The tunable photoluminescence emissions were achieved by changing the amounts of the hydroxides of the polymer hybrid as well as excitation wavelength, rather than varying the relative concentrations of the lanthanide ions and ligand. The film with good stability, sensitivity, reversibility, and quick response triggered by base-acid vapor would be available as a vapoluminescent indicator.
引文
[1]Feldmann, C., Justel, T., Ronda, C.R., Schmidt, P.J. Inorganic Luminescent Materials:100 Years of Research and Application. Adv. Funct. Mater.2003,13(7):511-516.
    [2]Bunzli, J.C.G., Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005,34(12):1048-1077.
    [3]Biinzli, J.C.G., Piguet, C. Lanthanide-Containing Molecular and Supramolecular Polymetallic Functional Assemblies. Chem. Rev.2002,102(6):1897-1928.
    [4]Parker, D., Dickins, R. S., Puschmann, H., Crossland, C., Howard, J.A.K., Being Excited by Lanthanide Coordination Complexes:Aqua Species, Chirality, Excited-State Chemistry, and Exchange Dynamics. Chem. Rev.2002,102(6):1977-2010.
    [5]D'Aleo, A., Pointillart, F., Ouahab, L., Andraud, C., Maury, O. Charge transfer excited states sensitization of lanthanide emitting from the visible to the near-infra-red, Coord. Chem. Rev. 2012,256:1604-1620.
    [6]Biinzli, J.C.G. Benefiting from the Unique Properties of Lanthanide Ions. Ace. Chem. Res. 2005,39(1):53-61.
    [7]Eliseeva, S.V., Biinzli, J.C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev.2010,39(1):189-227.
    [8]Kuriki, K., Koike, Y., Okamoto, Y. Plastic Optical Fiber Lasers and Amplifiers Containing Lanthanide Complexes. Chem. Rev.2002,102(6):2347-2356.
    [9]Moore, E.G., Samuel, A.P.S, Raymond, K.N. From Antenna to Assay:Lessons Learned in Lanthanide Luminescence. Ace. Chem. Res.2009,42(4):542-552.
    [10]Carlos, L.D., Ferreira, R., A.S., de Zea Bermudez, V., Ribeiro, S.J.L. Lanthanide-Containing Light-Emitting Organic-Inorganic Hybrids:A Bet on the Future. Adv. Mater.2008,20:1-26.
    [11]Yan, B. Recent progress in photofunctional lanthanide hybrid materials. RSC Adv.2012, 2:9304-9324.
    [12]Ding, J. J., Jiu, H. F., Bao, J., Lu, J. C., Gui, W. R., Zhang, Q. J., Gao, C. Combinatorial Study of Cofluorescence of Rare Earth Organic Complexes Doped in the Poly(Methyl Methacrylate) Matrix. J. Comb. Chem.2005,7(1):69-72.
    [13]Luo, Y. H., Yan, Q., Wu, S., Wu, W. X., Zhang, Q. J. Inter- and intra-molecular energy transfer during sensitization of Eu(DBM)3Phen luminescence by Tb(DBM)3Phen in PMMA J. Photochem. Photobiol. A 2007,191(2-3):91-96.
    [14]Feng, J.; Zhang, H. Hybrid materials based on lanthanide organic complexes:a review, Chem. Soc. Rev.2013,42:387-410.
    [15]Liu, H.G., Lee, Y.I., Qin, W.P., Jang, K.W., Feng, X.S. Studies on composites formed by europium complexes with different ligands and polyvinylpyrrolidone. Mater. Lett.2004, 58(11):1677-1682.
    [16]Liu, H.G., Xiao, F., Zhang, W.S., Chung, Y.H., Seo, H.J., Jang, K., Lee Y.I. Influences of matrices and concentrations on luminescent characteristics of Eu(TTA)3(H2O)2/polymer composites. J. Lumin.2005,114(3-4):187-196.
    [17]de Souza, J.M., Alves, Jr.S., De Sa, G.F., de Azevedo, W.M. Doped polymers with Ln(Ⅲ) complexes:simulation and control of light colors. J. Alloys Compd.2002,344(1-2):320-322.
    [18]O'Riordan, A., O'Connor, E., Moynihan, S., Llinares, X., Van Deun, R., Fias, P., Nockemann, P., Binnemans, K., Redmond, G. Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films. Thin Solid Films 2005, 491(1-2):264-269.
    [19]Li, H.R., Zhang, H.J., Meng, Q.G., Fu, L.S., Lin, J. Luminescence properties of lanthanide complexes doped in hybrid material from tetraethoxysilane and 3-glycidyioxyropyl-trimethoxysilane, Mater. Lett.2002,56(5),624-627.
    [20]Yan, B., Sol-gel preparation and luminescence of silica/polymer hybrid material incorporated with terbium complex, Mater. Lett.2003,57(16-17),2535-2539.
    [21]肖静,刘韩星,欧阳世翕,有机改性先驱体对含铕配合物的凝胶玻璃结构及性能的影响.2007,65(18):2063-2068.
    [22]Stathatos, E., Lianos, P. Highly efficient photoluminescent films made by mixing aminopropyltriethoxysilane, Eu3+ ions, and thenoyltrifluoroacetone. Appl. Phys. Lett.2007, 90(6):061110.
    [23]Moleski, R., Stathatos, E., Bekiari, V., Lianos, P. Preparation of thin Ureasil films with strong photoluminescence based on incorporated europium-thenoyltrifluoroacetone-bipyridine complexes, Thin Solid Films 2002,416(1-2):279-283.
    [24]Bekiari, V., Lianos, P. Strongly Luminescent Poly(ethylene glycol)-2,2prime-bipyridine Lanthanide Ion Complexes. Adv. Mater.1998,10(17):1455-1458.
    [25]Lunstroot, K., Driesen, K., Nockemann, P., Gorller-Walrand, C., Binnemans, K., Bellayer, S., Le Bideau, J., Vioux, A. Luminescent Ionogels Based on Europium-Doped Ionic Liquids Confined within Silica-Derived Networks. Chem. Mater.2006,18(24):5711-5715.
    [26]Driesen, K., Binnemans, K. Temperature-driven luminescence switching of europium(III) in a glass dispersed liquid crystal film. Liq. Cryst.2004,31(4):601-605.
    [27]Moore, E.G., Xu, J., Jocher, C. J., Werner, E. J. Raymond, K. N. "Cymothoe sangaris":An Extremely Stable and Highly Luminescent 1,2-Hydroxypyridinonate Chelate of Eu(III). J. Am. Chem. Soc.2006,128(33):10648-10649.
    [28]Parker, D., Williams, J.A.G. Modest effectiveness of carbostyril 124 as a sensitising chromophore in europium and terbium amide complexes based on 1,4,7,10-tetraazacyclododecane. J. Chem. Soc., Perkin Trans.2.1996,8:1581-1586.
    [29]Liu, W., Jiao, T., Li, Y., Liu, Q., Tan, M., Wang, H., Wang, L. Lanthanide Coordination Polymers and Their Ag+-Modulated Fluorescence. J. Am. Chem. Soc.2004, 126(8):2280-2281.
    [30]Bettencourt-Dias, A.d., Viswanathan, S. Nitro-functionalization and luminescence quantum yield of Eu(ⅲ) and Tb(ⅲ) benzoic acid complexes. Dalton Trans.2006,35(34):4093-4103.
    [31]Deun, R.V., Nockemann, P., Fias, P., Hecke, K.V., Meervelt, L.V. Binnemans, K. Visible light sensitisation of europium(ⅲ) luminescence in a 9-hydroxyphenal-l-one complex. Chem. Commun.2005,41(5):590-592.
    [32]Mancino, G, Ferguson, A.J., Beeby, A., Long, N.J., Jones, T.S. Dramatic increases in the lifetime of the Er3+ Ion in a molecular complex using a perfluorinated imidodiphosphinate sensitizing ligand. J. Am. Chem. Soc.2005,127(2):524-525.
    [33]Chen, B., Yang, Y., Zapata, F., Qian, G., Luo, Y., Zhang, J., Lobkovsky, E.B. Enhanced Near-Infrared-Luminescence in an Erbium Tetrafluoroterephthalate Framework. Inorg. Chem. 2006,45(22):8882-8886.
    [34]Bassett, A.P., Van Deun, R., Nockemann, P., Glover, P.B., Kariuki, B.M., Van Hecke, K., Van Meervelt., L. Pikramenou, Z. Long-Lived Near-Infrared Luminescent Lanthanide Complexes of Imidodiphosphinate "Shell" Ligands. Inorg. Chem.2005,44(18):6140-6142.
    [35]Faulkner, S., Carrie, M.C., Pope, S.J.A., Squire, J., Beeby, A., Sammes, P.G. Pyrene-sensitised near-IR luminescence from ytterbium and neodymium complexes. Dalton Trans. 2004(9):1405-1409.
    [36]Miller, T. A., Jeffery, J. C., Ward, M. D., Adams, H., Pope, S. J. A. Faulkner, S. Photoinduced Ru-Yb energy transfer and sensitised near-IR luminescence in a coordination polymer containing co-crystallised [Ru(bipy)(CN)4]2- and Yb(iii) units. Dalton Trans.2004, 33(10):1524-1526.
    [37]Senechal-David, K., Pope, S.J.A., Quinn, S., Faulkner, S., Gunnlaugsson, T. Sensitized Near-Infrared Lanthanide Luminescence from Nd(III)-and Yb(III)-Based Cyclen-Ruthenium Coordination Conjugates. Inorg. Chem.2006,45(25):10040-10042.
    [38]Imbert, D., Cantuel, M., Bunzli, J.C.G., Bernardinelli, G, Piguet, C. Extending Lifetimes of Lanthanide-Based Near-Infrared Emitters (Nd, Yb) in the Millisecond Range through Cr(III) Sensitization in Discrete Bimetallic Edifices. J. Am. Chem. Soc.2003,125(51):15698-15699.
    [39]Guo, D., Duan, C.Y., Lu, F., Hasegawa, Y, Meng,. Q.j. Yanagida, S. Lanthanide heterometallic molecular squares Ru2-Ln2 exhibiting sensitized near-infrared emission. Chem. Commun.2004,40(13):1486-1487.
    [40]Slooff, L.H., Polman, A., Wolbers, M.P.O., van Veggel, F.C.J.M., Reinhoudt, D.N., Hofstraat, J. W. Optical properties of erbium-doped organic polydentate cage complexes. J. Appl. Phys. 1998,83(1):497-503.
    [41]Nockemann, P., Beurer, E., Driesen, K., Deun, R.V., Hecke, K.V., Meervelt, L.V., Binnemans, K. Photostability of a highly luminescent europium bis-diketonate complex in imidazolium ionic liquids. Chem. Commun.2005, (34):4354-4356
    [42]Bassett, A.P., Magennis, S.W., Glover, P.B., Lewis, D J., Spencer, N., Parsons, S., Williams, R.M., De Cola, L. Pikramenou, Z. Highly Luminescent, Triple- and Quadruple-Stranded, Dinuclear Eu, Nd, and Sm(Ⅲ) Lanthanide Complexes Based on Bis-Diketonate Ligands. J. Am. Chem. Soc.2004,126(30):9413-9424.
    [43]Olphen, H.V. Maya Blue:A Clay-Organic Pigment. Science,1966,154(4):645-646.
    [44]Pedro, G.R., Clement, S.,张学军,迟伟东译,功能杂化材料,化学工业出版社,北京,2006,第一版
    [45]Hench, L.L., West, J. K. The sol-gel process. Chem. Rev.1990,90(1):33-72.
    [46]Brinker, C.J., Scherer, G.W. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing; Academic Press:San Diego, CA,1989.
    [47]Buckley, A.M., Greenblatt, A.J. The Sol-Gel Preparation of Silica Gels. Chem. Educ.1994, 71(7):599-602.
    [48]Collinson, M.M. In Handbook of Advanced Electronic and Photonic Materials and Devices; Nalwa, H. S., Ed.; Academic Press, San Diego, CA,2001; Vol.5, Chapter 6, p 163.
    [49]Bohmer, M.R., Balkenende, A.R., Bernards, T.N.M., Peeters, M.P.J., van Bommel, M.J., Boonekamp, E.P., Verheijen, M.A., Krings, L.H.M., Vroon, Z.A.E.P. In Handbook of Advanced Electronic and Photonic Materials and Devices; Nalwa, H. S., Ed.; Academic Press:San Diego, CA,2001; Volume 5, Chapter 8, p 219.
    [50]Matthews, L.R., Knobbe, E.T. Luminescence behavior of europium complexes in sol-gel derived host materials. Chem. Mater.1993,5(12):1697-1700.
    [51]Adachi, T., Sakka, S. The Role of N,N-Dimethylformamide, a DCCA, in the Formation of Silica Gel Monoliths by Sol-Gel Method. J. Non-Cryst. Solids,1988,99:118-128.
    [52]Yan, B., Zhang, H.J., Wang S.B., Ni J.Z. Luminescence properties of the ternary rare earth complexes with P-diketones and 1,10-phenanthroline incorporated in silica matrix by a sol-gel method. Mater. Chem. Phys.1997,51(1),92-96.
    [53]Dang, S., Sun, L., Zhang, H., Guo, X., Li, Z., Feng, J., Guo, H., Guo, Z. Near-infrared luminescence from sol-gel materials doped with holmium(Ⅲ) and thulium(Ⅲ) complexes. J. Phys. Chem. C.,2008,112(34):13240-13247.
    [54]Morita, M.; Rau, D. and Kai, T. Luminescence and circularly polarized luminescence of macrocyclic Eu(Ⅲ) and Tb(Ⅲ) complexes embedded in xerogel and sol-gel SiO2 glasses. J. Lumin.2002,100(1-4):97-106.
    [55]Quici, S., Scalera, C., Cavazzini, M., Accorsi, G, Bolognesi, M., Armelao, L., Bottaro, G. Chem. Mater.2009,21(13):2941-2949.
    [56]Armelao, L., Bottaro, G, Quici, S., Cavazzini, M., Raffo, M. C., Barigelletti, F., Accorsi, G. Chem. Commun.2007,43(28):2911-2913.
    [57]Franville, A.C., Zambon, D., Mahiou, R., Chou, S., Troin, Y., Cousseins, J.C. Synthesis and optical features of an europium organic-inorganic silicate hybrid. J. Alloys Compd.1998, 275(27):831-834.
    [58]Franville, A.C., Mahiou, R., Zambon, D., Cousseins, J.C. Molecular design of luminescent organic-inorganic hybrid materials activated by europium (Ⅲ) ions. Solid State Sci.2001, 3(1-2):211-222.
    [59]Kloster, G.M,, Taylo,r C.M, Watton, S.P. Effects of Multiple Covalent Attachments on Immobilized Iron(Ⅱ)-1,10-Phenanthroline Complexes in Silica Sol-Gels. Inorg. Chem.1999, 38(18):3954-3955.
    [60]Binnemans, K., Lenaerts, P., Driesen, K., Gorller-Walrand, C. A luminescent tris(2-thenoyltrifluoroacetonato)europium(Ⅲ) complex covalently linked to a 1,10-phenanthroline-functionalised sol-gel glass. J. Mater. Chem.2004,14(2):191-195.
    [61]Lenaerts, P., Ryckebosch, E., Driesen, K., Van Deun, R., Nockemann, P., Gorller-Walrand, C., Binnemans, K. Study of the luminescence of tris(2-thenoyltrifluoroacetonato)lanthanide(Ⅲ) complexes covalently linked to 1,10-phenanthroline-functionalized hybrid sol-gel glasses. J. Lumin.2005,114(1):77-84.
    [62]Feng, J., Zhang, H.J., Yu, J.B., Wang, C., Sun, L. N., Shi, W. D. Novel multifunctional nanocomposites:magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. Langmuir,2010,26(5):3596-3600.
    [63]Guo, X.M., Guo, H.D., Fu, L.S., Carlos, L.D., Ferreira, R.A.S., Sun, L.N., Deng, R.P., Zhang, H.J. Novel Near-Infrared Luminescent Hybrid Materials Covalently Linking with Lanthanide [Nd(Ⅲ), Er(Ⅲ), Yb(Ⅲ), and Sm(Ⅲ)] Complexes via a Primary beta-Diketone Ligand:Synthesis and Photophysical Studies J. Phy. Chem. C,2009, 113(28):12538-12545.
    [64]Feng, J., Song, S. Y., Fan, W. Q., Sun, L. N., Guo, X. M., Peng, C. Y., Yu, J. B., Yu, Y. N., Zhang, H. J. Near-infrared luminescent mesoporous MCM-41 materials covalently bonded with ternary thulium complexes. Microporous Mesoporous Mater.,2009,117(1-2):278-284.
    [65]Zhang, H., Xu, Y, Yang, W., Li, Q. Dual-Lanthanide-Chelated Silica Nanoparticles as Labels for Highly Sensitive Time-Resolved Fluorometry. Chem. Mater.2007,19(24):5875-5881.
    [66]Takahashi, N., Kuroda, K. Materials design of layered silicates through covalent modification of interlayer surfaces. J Mater Chem.2011,21(38):14336-14353.
    [67]Lezhnina, M., Benavente, E., Bentlage, M., Echevarria, Y, Klumpp, E., Kynast, U. Luminescent Hybrid Material Based on a Clay Mineral. Chem. Mater.2007, 19(5):1098-1102.
    [68]Sanchez, A., Echeverria, Y, Torres, C.M.S., Gonzalez, G., Benavente, E. Intercalation of Europium (Ⅲ) species into bentonite.Mater. Res. Bull.2006,41(6):1185-1191.
    [69]Jiang, W., T, Y, Liu, W.S., Tan, M.Y. Europium(Ⅲ) complexes were intercalated into the interlayer spacing of montmorillonite clay. Chin J Inorg Chem.2006,22(12):2235-2242.
    [70]Rives, V., Angeles, U.M. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord Chem Rev.1999;181(1):61-120.
    [71]Gunawan, P., Xu, R. Lanthanide-Doped Layered Double Hydroxides Intercalated with Sensitizing Anions:Efficient Energy Transfer between Host and Guest Layers. J. Phy. Chem. C.,2009,113(39):17206-17214.
    [72]de Faria, E.H., Nassar, E.J., Ciuffi, K.J., Vicente, M.A., Trujillano, R., Rives, V. New Highly Luminescent Hybrid Materials:Terbium Pyridine-Picolinate Covalently Grafted on Kaolinite. ACS Appl Mater Interfaces.2011,3(4):1311-1318.
    [73]徐如人,庞文琴等著,分子筛与多孔材料化学.北京:科学出版社,北京,2004年,第一版.
    [74]Wada, Y, Sato, M., Tsukahara, Y. Fine Control of Red-Green-Blue Photoluminescence in Zeolites Incorporated with Rare-Earth Ions and a Photosensitizer. Angew. Chem., Int. Ed. 2006,45(12):1925-1928.
    [75]Yao, Y. F., Zhang, M.S., Shi, J.X., Gong, M.L., Zhang, H.J., Yang, Y.S. Encapsulation of Eu(TTA)3 into MCM-41 Mesoporous Molecular Sieve by Sol Gel Method. J. Rare Earths 2000,18(3):186-189.
    [76]Zhao, D., Seo, S., Bae, B. Full-Color Mesophase Silicate Thin Film Phosphors Incorporated with Rare Earth Ions and Photosensitizers, Adv. Mater.2007,19(21):3473-3479
    [77]Peng, C.Y., Zhang, H., Yu, J., Meng, Q., Fu, L., Li, H., Sun, L., Guo, X. Synthesis, Characterization, and Luminescence Properties of the Ternary Europium Complex Covalently Bonded to Mesoporous SBA-15. J. Phys. Chem. B,2005,109(32):15278-15287.
    [78]Li, Y., Yan, B., Yang, H. Construction, characterization, and photoluminescence of mesoporous hybrids containing europium (Ⅲ) complexes covalently bonded to SBA-15 directly functionalized by modified beta-diketone. J Phys Chem C,2008,112(10): 3959-3968.
    [79]Gago, S., Fernandes, J.A., Rainho, J.P., Sa Ferreira, R.A., Pillinger, M., Valente, A.A., Santos, T.M., Carlos, L.D., Ribeiro-Claro, P.J.A., Goncalves, I.S. Highly Luminescent Tris(β-diketonate)europium(Ⅲ) Complexes Immobilized in a Functionalized Mesoporous Silica. Chem. Mater.2005,17(20):5077-5084.
    [80]Wang, H., Ma, Y., Tian, H., Tang, N., W, Q., Liu, W., Tang, Yu. Novel Europium Complexes Covalently Bonded to MCM-41 and SBA-15:The Spatial Confinement Effects on Photoluminescence Behaviors. Dalton Trans.,2010,39(32):7485-7492.
    [81]Kerbellec, N., Catala, L., Daiguebonne, C., Gloter, A., Stephan, O., Bunzli, J.C., Guillou, O., Mallah, T. Luminescent coordination nanoparticles. New J. Chem.,2008,32(2):584-587.
    [82]Lewis, D. J., Day, T. M., Macpherson, J. V., Pikramenou, Z. Luminescent nanobeads: attachment of surface reactive Eu(Ⅲ) complexes to gold nanoparticles. Chem.Commun., 2006,42(13):1433-1435;
    [83]Ipe, B.I., Yoosaf, K., Thomas, K.G. Functionalized Gold Nanoparticles as Phosphorescent Nanomaterials and Sensors. J. Am. Chem. Soc.,2006,128(6):1907-1913.
    [84]Siddiqui, T.S., Jani, A., Williams, F., Muller, R.N., Elst, L.V., Laurent, S., Yao, F., Wadghiri, Y.Z., Walters, M.A. Lanthanide complexes on Ag nanoparticles:designing contrast agents for magnetic resonance imaging. J. Colloid Interface Sci.2009,337(1):88-96.
    [85]Steve, C., Thorfinnur, G. Luminescent Lanthanide-Functionalized Gold Nanoparticles: Exploiting the Interaction with Bovine Serum Albumin for Potential Sensing Applications. ACS Nano,2011,5 (9):7184-7197
    [86]Choi, J.K., Kim, J.C., Lee, Y.K., Kim, I.S., Park, Y.K., Hur, N. H. Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes. Chem. Commun.2007,43(16):1644-1646.
    [87]Yu, S.Y., Zhang, H.J., Yu, J.B., Wang, C., Sun, L.N., Shi, W. D. Bifunctional magnetic-optical nanocomposites:grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture. Langmuir,2007,23(14):7836-7840.
    [88]Wang, B., Hai, J., Wang, Q., Li, T., Yang, Z. Coupling of Luminescent Terbium Complexes to Fe3O4 Nanoparticles for Imaging Applications. Angew. Chem. Int. Ed.2011, 50(13):3063-3066
    [89]Chuai, X.H., Zhang, H.J., Li, F.S., Wangm S.B., Zhoum G.Z. Luminescence properties of Eu(phen)2Cl3 doped in sol-gel-derived SiO2-PEG matrix, Mater. Lett.2000,46(4),244-247.
    [90]Maggini, L., Toma, F. M., Feruglio, L., Malicka, J. M., Ros, T. D., Armaroli, N., Prato, M., Bonifazi, D. Luminescent Blooming of Dendronic Carbon Nanotubes through Ion-Pairing Interactions with an EuⅢ Complex. Chem. Eur. J.2012,18(19):5889-5897.
    [91]Fan, W.Q., Feng, J., Song, S.Y., Lei, Y.Q., Zheng G.L., Zhang, H.J. Synthesis and Optical Properties of Europium-Complex-Doped Inorganic/Organic Hybrid Materials Built from Oxo-Hydroxo Organotin Nano Building Blocks. Chem. Eur. J.,2010,16(6):1903-1910.
    [92]Li, Y. J., Yan, B. Lanthanide (Eu3+, Tb3+)/β-Diketone Modified Mesoporous SBA-15/Organic Polymer Hybrids:Chemically Bonded Construction, Physical Characterization, and Photophysical Properties. Inorg. Chem.,2009,48(17:)8276-8285.
    [93]Wolff, N.E., Pressley, R.J. Optical Maser Action in an Eu3+-Containing Organic Matrix. Optical maser action in Eu3+containing organicmatrix. Appl. Phys. Lett.1963,2(8):152-154.
    [94]Liang, H., Zheng, Z.Q., Li, Z.C., Xu, J., Chen, B., Zhao, H., Zhang, Q.J., Ming, H. Fabrication and amplified spontaneous emission of Eu(DBM)3Phen doped step-index polymer optical fiber. Opt. Quantum Electron.2004,36(15):1313-1322.
    [95]Kai, J., Felinto, M.C.F.C., Nunes, L.A.O., Malta, O.L., Brito, H.F. Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide-β-diketonate complexes. J. Mater. Chem.,2011,21(11):3796-3802
    [96]Sun, R.G., Wang, Y.Z., Zheng, Q.B.1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound. Journal ofApplied Physics,2000, 87(10):7589-7591.
    [97]Zhang, H., Song, H., Dong, B., Han, L., Pan, G, Bai, X., Fan, L., Lu, S., Zhao, H., Wang, F. Electrospinning Preparation and Luminescence Properties of Europium Complex/Polymer Composite Fibers. J. Phys. Chem. C,2008,112(25):9155-9162.
    [98]Velasco, D.S., de Moura, A.P.,. Medina, A.N., Baesso, M.L., Rubira, A.F., Cremona, M., Bento, A.C., Preparation, Characterization, and Spectroscopic Properties of PC/PMMA Doped Blends:Study of the Effect of Rare-Earth Doping on Luminescence, Quenching Rate, and Lifetime Enhancement. J. Phys. Chem. B,2010,114(17):5657-5660.
    [99]Fernandes, A., Dexpert-Ghys, J., Brouca-Cabarrecq, C. Philippot, E., Gleizes, A., Galarneau, A., Brunel, D., Inclusion of europium (Ⅲ) β-diketonates in mesoporous MCM-41 silica. Stud. Surf. Sci. Catal.2002,142:1371-1378.
    [100]Fernandes, A., Dexpert-Ghys, J., Gleizes, A., Galarneau, A., Brunel, D. Grafting luminescent metal-organic species into mesoporous MCM-41 silica from europium(Ⅲ) tetramethylheptanedionate, Eu(thd)3. Microporous Mesoporous Mater.2005,8(1-3):35-46.
    [101]Bruno, S.M., Ferreira, R.A.S., Paz, F.A.A., Carlos, L.D., Pillinger, M., Ribeiro-Claro, P., Gonξalves, I.S. Structural and photoluminescence studies of a europium(Ⅲ) tetrakis(beta-diketonate) complex with tetrabutylammonium, imidazolium, pyridinium and silica-supported imidazolium counterions. Inorg. Chem.,2009,48(11):4882-4895.
    [102]Lai, D.C., Dunn, B., Zink, J.I. Room Temperature Luminescence of Silicate Sol-Gel Materials Containing Trisodium Tris(dipicolinato)neodymate(Ⅲ). Inorg. Chem.,1996, 35(7):2152-2154.
    [103]Sun, L.N., Zhang, H.J., Meng, Q.G., Liu, F.Y., Fu, L.S., Peng, C.Y., Yu, J.B., Zheng, G.L., Wang, S.B. Near-Infrared Luminescent Hybrid Materials Doped with Lanthanide (Ln) Complexes (Ln= Nd, Yb) and Their Possible Laser Application. J. Phys. Chem. B.2005, 109(13):6174-6182.
    [104]Hao, X.P., Fan, X.P., Wang, M.Q. Luminescence behavior of Eu(TTFA)3 doped sol-gel films. Thin Solid Films 1999,353(1-2):223-226.
    [105]Yan, B., Lu, H. Lanthanide centered covalently bonded hybrids through sulfide linkage: molecular assembly, physical characterization and photoluminescence. Inorg. Chem.,2008, 47:5601-5611.
    [106]Ma, Y., Wang, H., Liu, W., Wang, Q., Xu, J., Tang, Yu. Microstructure, Luminescence and Stability of a Europium Complex Covalently Bonded to an Attapulgite Clay. J. Phys. Chem. B,2009,113(43):14139-14145.
    [107]Daiguebonne, C., Kerbellec, N., Guillou, O., Bunzli, J.C., Gumy, F., Catala, L., Mallah, T., Audebrand, N., Gerault, Y., Bernot, K., Calvez, G. Structural and Luminescent Properties of Micro-and Nanosized Particles of Lanthanide Terephthalate Coordination Polymers Inorg. Chem.2008,47(5):3700-3708.
    [108]Okamoto, Y. Synthesis, characterization and applications of polymers containing lanthanide metals. J. Macromol. Sci. Chem.1987, A24:435-477.
    [109]Kuriki, K., Kobayashi, T., Imai, N., Tamura, T., Tagaya, A., Koike, Y, Okamoto, Y. Fabrication and Properties of Polymer Optical Fibers Containing Nd-Chelate. IEEE Photonic. Tech. L.2000,12(8):989-991.
    [110]Kobayashi, T., Nakatsuka, S., Iwafuji, T., Kuriki, K., Imai, N., Nakamoto, T., Claude, C.D., Sasaki, K., Koike, Y. Fabrication and superfluorescence of rare-earth chelate-doped graded index polymer optical fibers. Appl. Phys. Lett.1997,71(17):2421-2423.
    [111]Binnemans, K. Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev.,2009, 109(9):4283-4374.
    [112]Amao, Y, Okura, I., Miyashita, T. Thenoyltrifluoroacetonato 1,10-Phenanthroline Europium (III) Complex Immobilized in Fluoropolymer Film as Optical Oxygen Sensing Material. Chem. Lett.2000,29(8):934-935.
    [113]Amao, Y., Okura, I., Miyashita, T. Optical Oxygen Sensing Based on the Luminescence Quenching of Europium(Ⅲ) Complex Immobilized in Fluoropolymer Film. Bull. Chem. Soc. Jpn.2000,73(12):2663-2668.
    [114]Sun, L., Yu, J., Peng, H., Zhang, J.Z., Shi, L., Wolfbeis, O.S. Temperature-Sensitive Luminescent Nanoparticles and Films Based on a Terbium (Ⅲ) Complex Probe. J. Phys. Chem. C 2010,114:12642-2648.
    [115]Wolfbeis, O.S. Materials for fluorescence-based optical chemical sensors. J. Mater. Chem. 2005,15(27-28):2657-2669.
    [116]Bonnet, C.S., Massue, J., Quinn, S.J., Gunnlaugsson, T. Lanthanide luminescent gold nanoparticles:pH-driven self-assembly formation between Eu(Ⅲ)-cyclen conjugated AuNPs and sensitising β-diketonate antenna in water. Org. Biomol. Chem.,2009,7,3074-3078.
    [117]Wong, K.L., Law, G.L., Yang, Y.Y., Wong, W.T. A Highly Porous Luminescent Terbium-Organic Framework for Reversible Anion Sensing. Adv. Mater.2006, 18(8):1051-1054.
    [1]Armelao, L., Quici, S., Barigelletti, F., Accorsi, G., Bottaro, G., Cavazzini, M., Tondello, E. Design of luminescent lanthanide complexes:From molecules to highly efficient photo-emitting materials. Coord. Chem. Rev.2010,254(5-6):487-505.
    [2]Carlos, L.D., Ferreira, R.A.S., de Zea Bermudez, V., Ribeiro, S.J.L. Lanthanide-Containing Light-Emitting Organic-Inorganic Hybrids:A Bet on the Future. Adv. Mater.2009, 21(5):509-534.
    [3]Domenech, A., Domenech-Carbo, M.T., del Rio, M.S., de A. Pascual, M.L.V., Lima, E. Maya Blue as a nanostructured polyfunctional hybrid organic-inorganic material:the need to change paradigms. New J. Chem.2009,33(12):2371-2379.
    [4]Nakagawa, K., Amita, K., Mizuno, H., Inoue, Y., Hakushi, T. Preparation of Some Lanthanoid Picrates and the Behavior of Their Water of Hydration. Bull. Chem. Soc. Jpn.,1987, 60:2037-2040.
    [5]Kaiser, E., Colescott, R.L., Bossinger, C.D., Cook, P.I. Color Test for Detection of Free Terminal Amino Groups in Solid-Phase Synthesis of Peptides. Anal. Biochem.,1970, 34(2):595-598.
    [6]dos Santos, C.M.G., McCabe, T., Gunnlaugsson, T. Selective fluorescent sensing of chloride. Tetrahedron Lett.2007,48(18):3135-3139.
    [7]Smith, G.F., Cagle, F.W. The improved synthesis of 5-nitro-1,10-phenanthroline. J. Org. Chem. 1947,12(6):781-784.
    [8]Ma, Y., Wang, H., Liu, W., Wang, Q., Xu, J., Tang, Y. J. Microstructure, Luminescence, and Stability of a Europium Complex Covalently Bonded to an Attapulgite Clay. J. Phys. Chem. B 2009,113(43):14139-14145.
    [9]Melby, L.R., Rose, N.J., Abramson, E., Caris, J.C. Synthesis and Fluorescence of Some Trivalent Lanthanide Complexes. J. Am. Chem. Soc.1964,86(23):5117-5125.
    [10]Wen, X., Li, M., Wang, Y., Zhang, J., Fu, L., Hao, R., Ma, Y., Ai, X. Colloidal Nanoparticles of a Europium Complex with Enhanced Luminescent Properties. Langmuir,2008,24(13): 6932-6936.
    [11]Hagerman,M.E., Salamone, S.J., Herbst, R.W., Payeur, A..L. Tris(2,2'-bipyridine)ruthenium(II) Cations as Photoprobes of Clay Tactoid Architecture within Hectorite and Laponite Films. Chem. Mater.,2003,15(2):443-450.
    [12]Martinus, H., Werts, V., Ronald, Y, Jukes, T.F., Verhoeven, J. W. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys., 2002,4(9):1542-1548.
    [13]Teotonio, E.E.S., Espinola, J.G.P., Brito, H.F., Malta, O.L., Oliveria, S.F., de Foria, D.L.A., Izumi, C.M.S. Influence of the N-[methylpyridyl]acetamide ligands on the photoluminescent properties of Eu(Ⅲ)-perchlorate complexes. Polyhedron,2002,21(18):1837-1844.
    [14]Supkowski, R.M., Horrocks, W.D. On the determination of the number of water molecules, q, coordinated to europium(Ⅲ) ions in solution from luminescence decay lifetimes. Inorg. Chim. Acta,2002,340:44-57.
    [15]Jeong, J., Cho, M., Lim, Y.T., Song, N.W., Chung, B.H. Synthesis and Characterization of a Photoluminescent Nanoparticle Based on Fullerene-Silica Hybridization. Angew. Chem. Int. Ed.,2009,48(29):5296-5299.
    [16]Xu, L., Ma, Y.F., Tang, K.Z., Tang, Y., Liu, W.S., Tan, M.Y. Preparation, Characterization and Photophysical Properties of Highly Luminescent Terbium Complexes Incorporated Into SiO2/Polymer Hybrid Material. J. Fluoresc.2008,18(3-4):685-693.
    [17]Qiao, X.F., Yan, B. Hybrid Materials of Lanthanide Centers/Functionalized 2-Thenoyltrifluoroacetone/Silicon-Oxygen Network/Polymeric Chain:Coordination Bonded Assembly, Physical Characterization, and Photoluminescence. Inorg. Chem.2009, 48(11):4714-4723.
    [18]Fu, L.S., Zhang, H.J., Wang, S.B., Meng, Q.G., Yang, K.Y., Ni, J.Z. Preparation and luminescence properties of the ternary europium complex incorporated into an inorganic/polymer matrix by a sol-gel method. J. Sol-Gel Sci. Techn,1999,15(1):49-55.
    [19]Latvaa, M., Takalob, H., Mukkala, V. M., Matachescuc, C. J. Kankarea, Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J. Lumin,1997,75(2):149-169.
    [20]Gutierrez, F., Tedeschi, C., Maron, L., Daudey, J.P., Poteau, R., Azema, J., Tisnes, P., Picard, C. Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. Dalton Trans,2004, (9):1334-1337.
    [21]Dexter, D.L. A theory of sensitized luminescence in solids. J. Chem. Phys.1953, 21(5):836-850.
    [22]Xiao, M., Selvin, P.R. Quantum Yields of Luminescent Lanthanide Chelates and Far-Red Dyes Measured by Resonance Energy Transfer. J. Am. Chem. Soc.2001,123(29):7067-7073.
    [23]Zhang, H., Song, H., Dong, B., Han, L., Pan, G, Bai, X., Fan, L., Lu, S., Zhao, H., Wang, F. Electrospinning Preparation and Luminescence Properties of Europium Complex/Polymer Composite Fibers. J. Phys. Chem. C,2008,112(25):9155-9162.
    [1]Armelao, L., Quici, S., Barigelletti, F., Accorsi, G., Bottaro, G., Cavazzini, M., Tondello, E. Design of luminescent lanthanide complexes:From molecules to highly efficient photo-emitting materials. Coord. Chem. Rev.2010,254(5-6):487-505.
    [2]Lenaerts, P., Storms, A., Mullens, J., D'Haen, J., Gorller-Walrand, C., Binnemans, K., Driesen, K. Thin Films of Highly Luminescent Lanthanide Complexes Covalently Linked to an Organic-Inorganic Hybrid Material via 2-Substituted Imidazo[4,5-f]-1,10-phenanthroline Groups. Chem. Mater.2005,17(20):5194-5201.
    [3]Armelao, L., Bottaro, G, Quici, S., Cavazzini, M., Raffo, M.C., Barigelletti, F., Accorsi, G. Photophysical properties and tunable colour changes of silica single layers doped with lanthanide(Ⅲ) complexes. Chem. Commun.2007,28:2911-2913.
    [4]Kai, J., Felinto, M.C.F.C., Nunes, L.A.O., Malta, O.L., Brito, H.F. Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide-β-diketonatecomplexes. J. Mater. Chem.2011,21(11):3796-3802.
    [5]Bekiari, V., Lianos, P. Photophysical Behavior of Terpyridine-Lanthanide Ion Complexes Incorporated in a Poly(N,N-dimethylacrylamide) Hydrogel. Langmuir 2006, 22(20):8602-8606.
    [6]Yan, B., Qiao, X.F. Rare-Earth/Inorganic/Organic Polymeric Hybrid Materials:Molecular Assembly, Regular Microstructure and Photoluminescence. J. Phys. Chem. B 2007, 111(43):12362-12374.
    [7]Chen, H.Y., Archer, R.D. Synthesis and Characterization of Linear Luminescent Schiff-Base Polyelectrolytes with Europium(Ⅲ) in the Backbone. Macromolecules 1996, 29(6):1957-1964.
    [8]Nakagawa, K., Amita, K., Mizuno, H., Inoue, Y., Hakushi, T. Preparation of Some Lanthanoid Picrates and the Behavior of Their Water of Hydration. Bull. Chem. Soc. Jpn.1987, 60:2037-2040.
    [9]Klink, S.I., Alink, P.O., Grave, L., Peters, F.G.A., Hofstraat, J.W., Geurts, F., Van Veggel, F.C.J.M. Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+. J. Chem. Soc., Perkin Trans.2001,2(2):363-372.
    [10]Lai, W.P.W., Wong, W.T. Trinitrato[N,N',N"-tris(2,3-dimethoxybenzamido)triethylamine] neodymium(Ⅲ). Synthesis, crystal structure and luminescence of a Nd complex containing tripodal amide ligands. New J. Chem.,2000,24(12):943-944.
    [11]Wolbers, M.P.O., Van Veggel, F.C.J.M., Snellink-Ruel, B.H.M., Hofstraat, J.W., Geurts, F.A.J., Reinhoudt, D. N. Photophysical studies of m-terphenyl-sensitized visible and near-infrared emission from organic 1:1 lanthanide ion complexes in methanol solutions. J. Chem. Soc.,Perkin Trans.1998,2(10):2141-2143.
    [12]Van Deun, R., Nockemann, P., Gorller-Walrand, C., Binnemans, K. Strong erbium luminescence in the near-infrared telecommunication window. Chem. Phys. Lett.,2004, 397:447-450.
    [13]Boulon, G, Collombet, A., Brenier, A., Cohen-Adad, M.T., Yoshikawa, A., Lebbou, K., Lee, J. H., Fukuda, T. Structural and Spectroscopic Characterization of Nominal Yb3+:Ca8La2(PO4)6O2Oxyapatite Single Crystal Fibers Grown by the Micro-Pulling-Down Method. Adv. Funct. Mater.,2001,11(4):,263-270.
    [14]Davies, G.M., Aarons, R.J., Motson, G.R., Jeffery, J.C., Adams, H., Faulkner, S., Ward, M. D. Structural and near-IR photophysical studies on ternary lanthanide complexes containing poly(pyrazolyl)borate and 1,3-diketonate ligands. Dalton Trans.2004,8:1136-1144.
    [15]SMART and SAINT Software Reference manuals, Version 6.22; Bruker AXS, Inc. Madison, WI,2000.
    [16]sheldrick, G.M. SHELXTL Reference Manual, Version 6.14; Bruker AXS, Inc. Madison, WI, 2003.
    [17]Yang, L., Yang, R. Synthesis and structure of didysprosium complexes with a tetraketone. J. Mol. Structure.1996,380(1-2):75-84.
    [18]Liu, H.G., Lee, Y.I., Qin, W.P., Jang, K., Kim, S., Feng, X.S. Distinct Composite Structure and Properties of Eu(phen)2Cl3(H2O)2 in Poly(methyl methacrylate) and Polyvinylpyrrolidone. J. Appl. Polym. Sci.2004,92:3524-3530.
    [19]Lakowicz, J.R. Principles of Fluorescence Spectroscopy, Plenum Press, New York,1983.
    [20]Martinez Martinez, V., Lopez Arbeloa, F., Banuelos Prieto, J., Lopez Arbeloa, I. Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay.2 Fluorescence Spectroscopy. J. Phys. Chem. B 2005,109(15):7443-7450.
    [21]de Mello, J.C., Wittmann, H.F., Friend, R.H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater.1997,9(3):230-232.
    [22]de Mello Donega, C., Alves, Jr., S., de Sa, G.F. Europium(III) mixed complexes with β-diketones and o-phenanthroline-N-oxide as promising light-conversion molecular devices. Chem. Commun.1996,(10):1199-1200.
    [23]de Mello Donega, C., Ribeiro, S.J.L., Gonξlves, R.R., Blasse, G. Luminescence and non-radiative processes in lanthanide squarate hydrates. J. Phys. Chem. Solids 1996, 57(11):1727-1734.
    [24]Xu, Q.H., Li, L.S., Liu, X.S., Xu, R..R. Incorporation of Rare-Earth Complex Eu(TTA)4C5H5NC16H33 into Surface-Modified Si-MCM-41 and Its Photophysical Properties. Chem. Mater.2002,14(2):549-555.
    [25]Zhang, H., Song, H.W., Dong, B., Han, L.L., Pan, G.H., Bai, X., Fan, L.B., Lu, S.Z., Zhao, H.F., Wang, F. Electrospinning Preparation and Luminescence Properties of Europium Complex/Polymer Composite Fibers. J. Phys, Chem, C 2008,112(25):9155-9162.
    [26]Yan, B., Qiao, X.F. Hybrid Materials of Lanthanide Centers/Functionalized 2-Thenoyltrifluoroacetone/Silicon-Oxygen Network/Polymeric Chain:Coordination Bonded Assembly, Physical Characterization, and Photoluminescence. Inorg. Chem.2009, 48(11):4714-4723.
    [27]Qiao, X.F., Yan, B. Covalently Bonded Assembly of Lanthanide/Silicon-Oxygen Network/Polyethylene Glycol Hybrid Materials through Functionalized 2-Thenoyltrifluoroacetone Linkage. J. Phys. Chem. B 2009,113(35):11865-11875.
    [1]Hoppe, H. A. Recent Developments in the Field of Inorganic Phosphors. Angew. Chem. Int. Ed. 2009,48(1):3572-3582.
    [2]He, G., Guo, D., He, C., Zhang, X., Zhao, X., Duan, C. A Color-Tunable Europium Complex Emitting Three Primary Colors and White Light. Angew. Chem. Int. Ed.2009,48(33): 6132-6135.
    [3]Kamtekar, K.T., Monkman, A.P., Bryce, M.R. Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs). Adv. Mater.2010,22(5):572-582.
    [4]Sava, D.F., Rohwer, L.E.S., Rodriguez, M. A., Nenoff, T.M. Intrinsic Broad-Band White-Light Emission by a Tuned, Corrugated Metal-Organic Framework. J. Am. Chem. Soc.2012, 134(9):3983-3986.
    [5]Balamurugan, A., Reddy, M.L.P., Jayakannan, M. Single Polymer Photosensitizer for Tb3+and Eu3+ Ions:An Approach for White Light Emission Based on Carboxylic-Functionalized Poly(m-phenylenevinylene)s. J. Phys. Chem. B 2009,113(43):14128-14138.
    [6]Shelton, A.H., Sazanovich, I.V., Weinstein, J.A., Ward, M.D. Controllable three-component luminescence from a 1,8-naphthalimide/Eu(Ⅲ) complex:white light emission from a single molecule. Chem. Commun.2012,48(22):2749-2751.
    [7]Farinola, G.M., Ragni, R. Chem. Soc. Rev. Electroluminescent materials for white organic light emitting diodes.2011,40(7):3467-3482.
    [8]Ki, W., Li, J. J. Am. Chem. Soc. A Semiconductor Bulk Material That Emits Direct White Light.2008,130(26):8114-8115.
    [9]Dai, Q., Duty, C.E., Hu, M.Z. Semiconductor-Nanocrystals-Based White Light-Emitting Diodes. Small 2010,6(15):1577-1588.
    [10]Zhao, D., Seo, S.J., Bae, B.S. Full-Color Mesophase Silicate Thin Film Phosphors Incorporated with Rare Earth Ions and Photosensitizers. Adv. Mater.2007, 19(21):3473-3479.
    [11]Wada, Y., Sato, M., Tsukahara, Y. Fine Control of Red-Green-Blue Photoluminescence in Zeolites Incorporated with Rare-Earth Ions and a Photosensitizer. Angew. Chem. Int. Ed. 2006,45(12):1925-1928.
    [12]Frisch, M.J. et al. Gaussian 03, Revision B.05, Gaussian Inc., Pittsburgh, PA,2003.
    [13]Zhang, T., Xu, Z., Qian, L., Teng, F., Xu, X.R., Tao, D.L. Improved emission of Eu3+by energy transfer via Tb3+ in coprecipitates TbxEu(1-x)(aspirin)3(phen). J. Appl. Phys.2005, 98(6):063503-063506.
    [14]Xiao, M., Selvin, P.R. Quantum Yields of Luminescent Lanthanide Chelates and Far-Red Dyes Measured by Resonance Energy Transfer. J. Am. Chem. Soc.2001,123(29):7067-7073.
    [15]Satoa, T., Higuchi, M. A vapoluminescent Eu-based metallo-supramolecular polymer. Chem. Commun.2012,48(41):4947-4949.
    [16]Zhao, Y.S., Wu, J., Huang, J. Vertical Organic Nanowire Arrays:Controlled Synthesis and Chemical Sensors. J. Am. Chem. Soc.2009,131(9):3158-3159.
    [17]Dou, C., Han, L., Zhao, S., Zhang, H., Wang, Y. Multi-Stimuli-Responsive Fluorescence Switching of a Donor-Acceptor π-Conjugated Compound. J. Phys. Chem. Lett.2011, 2(6):666-670.