康复训练对脑梗死大鼠大脑皮质NOS阳性神经元和p38表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑卒中是中枢神经系统常见疾病之一,严重危害人类健康,死亡率、残疾率高。在存活患者中进行积极的康复治疗,可使90%重新步行和生活自理,30%恢复一些较轻的工作。而不进行康复治疗者,上述两方面恢复的百分率只有60%和5%。因此,为了提高患者生活质量及尽早重返社会,脑卒中的康复已日益受到重视。而探讨中枢神经系统损伤后功能恢复的机理得到广泛关注。
     多年来的大量实验和临床研究使人们认识到,无论在非哺乳类动物还是在哺乳类动物中,成年动物的CNS在损伤后具有在结构上或功能上重新组织的能力或可塑性,使损伤后的恢复成为可能。脑可塑性是指脑有适应能力,即在结构和功能上有修改自身以适应改变了的现实的能力。CNS的可塑性表现在多个层次、多个环节,既有突触及神经元水平、通路水平,也有大脑皮质水平,这是由于进行任何一项活动均需要大量神经元的同步活化,许多神经通路及高位中枢的参与。如果进行某项活动的主要区域损伤或致病,则这一活动会转换到调节这些活动的其他神经元、神经通路和大脑支配区。这种改变一方面取决于人的神经系统的巨大潜能使之能够代偿和适应损伤造成的解剖功能上的缺损,另一方面则是与病人的后天环境下损伤前后的运动学习情况密切相关。如能及时进行康复训练,则可促进该活动转变到新的通路。
     康复训练在损伤的早期、中期和后期都十分重要,它是通过与他人和环境相互作用,练习在接受刺激时及时和适当地作出反应,
    
     第四军医大学硕土研究主学位论文
     一
     适应环境和重新学习生活、工作所需的技能的过程。除非病情极轻,
     否则CNS的自发恢复总是有限的,要提高恢复的程度和使患者能够
     适应环境和独立生活,就必须功能训练。但其机制尚不十分清楚。
     本实验即是通过观察康复训练对脑梗死大鼠大脑皮质中NOS(一
     氧化氮合酶)阳性神经元和n38(svnantoPhvsin;突触膜糖蛋白)
     免疫阳性物质表达的影响,探讨康夏训练促进大脑功能恢复的机制,
     为临床脑卒中康复提供理论基础。
     NOS是NO(一氧化氮)合成的限速酶,是调节\0的最重要环节。
     \0是一种生物信使分子,参与脑内多种生理或病理过程。在脑缺血
     过程中卜0具有双重作用,既有神经毒性作用,又有神经保护作用。
     P3S是位于突触小泡膜上的特异性糖蛋白,构成突触小泡特异性膜通
     道;参与突触小泡膜与突触前膜的融合和神经递质释放。p38作为突
     触终末特异性标记物,可间接反映突触的密度及分布,己广泛用于
     神经系统的发育、疾病、损伤和再生等的研究。
     本实验将60只大鼠随机分为正常组,梗死24h组,康复训练l。
     2、3、4。组,制动1、2、3、4W组,每组6只。采用光化学法制作
     脑梗死大鼠模型:叶绿素衍生物IV号(CPD。)为光敏剂,He十e激光
     照射左侧前后肢皮质代表区20分钟。康复组大鼠每天进行水迷宫。
     转棒、滚笼训练,制动组网状笼内固定。在脑梗死后不同时间灌注
     切片,使用组织化学技术观察大脑皮质\OS阳性神经元的表达,以
     及通过免疫组织化学ABC法和图像分析方法观察P38免疫阳性物质
     的表达,SPSS统计软件方差分析。
     结果发现:门)正常大鼠双侧大脑皮质中即有NOS阳性神经元
     表达。梗死24h梗死灶周围及对侧相应皮质中\OS阳性神经元表达
     明显增多(P<0.05)。Iw时,NOS阳性神经元双侧表达减少,制动组
     较康复训练组减少的更加明显(P<0.01)。2。时,在梗死灶周围阳性
     神经元数量两组相差仍显著(P<0.05),对侧皮质己不明显(P>0.05)。
     -2-
    
     第四军医大学硕士研究生学位论文
     3、4W时两组在梗死灶周围和对侧皮质相差均不显著(p>0.05)。
     (2)正常大鼠双侧大脑皮质中即可见到 P3S免疫阳性产物点
     状分布,梗死24h梗死灶周围及对侧相应皮质中免疫染色未见明显
     变化(p>0.05)。Iw时,康复训练组、制动组和正常鼠之间 p38染色
     亦无明显差异(…0.05)。ZW时,康复组大鼠在梗死灶周围皮质及对
     侧相应皮质中,邓8表达明显增加(小0.0U:制动组大鼠亦有明显
     增高(P<0.05)。但康复训练组与制动组相比,在梗死灶周围和对侧
     皮质中均无明显差异(P>0.05)。3\4W时,两组大鼠P38表达较正
     常鼠有显著升高(P<0.of),而且康复训练组无论在梗死灶周围还是
     对侧皮质,P38表达较制动组均有明显增加(P<0.05)。
     我们认为:*
Stroke is found as one of common diseases in central nervous system, and seriously dangerous to the human health. It leads to high mortality and incidence of disability. Active rehabilitation could make 90 percent of survivors recover walking and self-care, and 30 percent reengage in trivial work. Without rehabilitation, those recoveries above are only limited 60% and 5% respectively. In order to improve quality of life and return to society earlier, rehabilitation is more and more important for the patients with stroke, and it is widely supported to explore the bases that CNS function could recover from injury.
    From lots of experiments and clinical researches for many years, it has been recognized that mature CNS could acquire ability to reorganize the structure and function or has plasticity whatever among mammallian or nonmammallian species, which makes it possible to recover from damage. The plasticity is defined that brain has adaptation that is brain could alter its structure and function to adjust to changed conditions. The plasticity of CNS is performed to occur at multi-levels and stages such as synapses, neurons, pathway and cerebral cortex as well. This is because any activity needs synchronous activation of many neurons and participation of lots of pathway and cortex. If major area where a certain activity is conducted is injured or diseased, this activity will be transferred to other neurons, pathway and areas of cortex. The alteration is determined by CNS potency of recovery and adaptation from damage,
    
    
    
    as well as by motor learning before and after injury. Prompt rehabilitation training could promote this alteration.
    It is increasingly clear that rehabilitation training plays an important role in the brain functional reorganization. The training is a process to exercise to react to stimulation promptly and properly, adapt to environment and relearn technique in life and work through interaction with other people and surroundings. The spontaneous recovery of CNS is limited unless patients' status is not serious at all. It is necessary for patients to take rehabilitation training in order to improve the effectiveness of recovery, adapt to surroundings and take self-care. But the mechanisms are not entirely clear.
    The present study is to investigate the effects of rehabilitation training on the expression of NOS-positive neurons and synaptophysin (p38) immunoreactivity in the cortex of cerebral infarcted rats, and to explore the mechanism of rehabilitation training promoting cerebral function recovery, to provide theoretic bases to clinical rehabilitation of stroke.
    NOS (nitric oxide synthase) is the rate-limiting enzyme during NO (nitric oxide) synthesis and the most important step in modulation of nitric oxide. As a biologic messenger molecule, NO is involved in many normal biological processes and pathological states. In brain ischemia, NO is dual functional, not only in participating in neuronal excitotoxicity, but also in neuroprotection. P38 is a major glycoprotein of the synaptic vesicle membrane, and is capable of forming transmembrane channels. P38 could participate in vesicle-plasma membrane fusion and in releasing neurotransmitter. As an indicator of synapse, p38 measured by immunohistochemistry and subsequent image analysis has become an
    - 6 -
    
    
    
    ? US
    established indirectly way reflecting synaptic density and distribution, and is used in many researching fields of neural development, disease, injury and regeneration of neural system.
    In the experiment 60 rats were divided into different groups randomly and 54 rats were made cerebral infarction models by photochemistry method: laser irradiation on the cortex areas of the left forelimb and hindlimb 10 minutes after the intravenous injection of photosensitive drug as chlorophyll derivative I\ . Rehabilitation group were given water maze, rotating bar and rolling cage exercises everyday, while immobilization group were fixed in cages. Histochemistry was used to detect the NOS-positive neurons express
引文
1.倪朝民等,编著.脑血管病的临床康复.安徽合肥:安徽大学出版社.1998.9:34—35:138—142:145—149
    2.缪鸿石主编.康复医学理论与实践.上海:上海科学技术出版社.2000.11:21—22;49—100
    3.南登崑主编.康复医学.北京:人民卫生出版社.2001.9第二版:5—6;11—14
    4.陈景藻主编.康复医学.北京:高等教育出版社.2001.7:26—32
    5. Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of functon after damage to motor cortex. Muscle Nerve. 2001, 24(8):1000-1019
    6. Delisa JA.Rehabilition medicine principles and practice.Third edition. New York: Lippincott-Raven publishers.1998:1199-1201
    7.刘君澜.海马长时程增强形成机制的研究进展.国外医学·生理、病理科学与临床分册,1998,18(2):187—189
    8.周竹娟,郑健.谷氨酸受体与脑缺血后迟发性神经元损伤.国外医学·脑血管病分册,1999,7(5):268—270
    9.王振宇.神经营养因子与中枢神经系统可塑性.国外医学·神经病学神经外科学分册,1992,19(4):196—199
    10.高磊、王茂斌.脑的可塑性与卒中康复.国外医学·脑血管疾病分册,2000,8(6):368—371
    11.刘士民,郭玉璞.脑缺血的胶质细胞反应.国外医学·脑血管疾病分册,1999,7(2):67—70
    12. Ullian EM,Sapperstein SK,Christopherson KS,etc.Control of synapse number by glia. Science, 2001, 291(26): 657-661
    
    
    13.刘青.中枢神经系统损伤修复的若干进展.国外医学·脑血管疾病分册,1997,5(1):14—17
    14.刘海鹏.中枢神经系统损伤后的再生修复.国外医学·神经病学神经外科学分册,1996,23(6):294—297
    15. Nudo RJ, Wise BM, SiFuentes F,et al.Neural substrates for the effects of rehabilitive training on motor recovery after ischemic infarct. Science, 1996, 272(21): 1791-1794
    16.司良毅.NO、NOS与缺血再灌注损伤的研究进展.国外医学·内科学分册,1999,26(5)
    17.韩济生主编.神经科学原理(第二版).北京:北京医科大学出版社,1999,9:555—569
    18. Nathan C, Xie QW. Nitric oxide synthases: roles,toiles,and controls. cell, 1994,78:915-918
    19.高博,尹桂山.神经系统中的一氧化氮.生物化学与生物物理进展,1999,26(1)
    20. Marietta MA. Nitric oxide synthase: aspects concerning structure and catalysis. Cell, 1994, 78:927-930
    21.胡文辉,刘景生,任民峰.一氧化氮与神经损伤.生理科学进展,1994,25(4):300—304
    22.潘家祜,伍嘉宁.NO:中枢神经系统中一个新的重要信使物质.生理科学进展,1993,24(4):293—297
    23.柯开富,包仕尧,张树生.一氧化氮与缺血性神经元损伤.中风与神经疾病杂志,1996,13(4):253—254
    24.柯开富,包仕尧.一氧化氮在缺血性脑损伤中的作用.国外医学·脑血管疾病分册,2000,8(2):82—85
    25.Schmidt HW,Walter U.NO at work.Cell,1994,78:919—925
    26.韩太真,吴馥梅主编.学习与记忆的神经生物学.北京:北京医科大学、
    
    中国协和医科大学联合出版社,1998:61:146:206—322
    27.王景华,杨贵贞.一氧化氮对大鼠学习记忆功能的影响.中国神经免疫学和神经病学杂志,1997,4(1):11—15
    28. Buisson A, Plotkine M, Bloulu RG. The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischemia.Br J Pharmacol,1992,106(4): 766-767
    29. Buisson A, Margaill I, Callebert T, et al. Mechanisms involved in the neuroprotective activity of a nitric oxide inhibitor during focal cerebral ischemia. J Neurochem, 1993, 61(2): 690-696
    30. Dawson VL, Dawson TM. Bartley DA, et al. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci,1993,13(6): 2651-2661
    31. Stagliano NE, Dietrich WU, Prado R, et al. The role of nitric oxide in the pathophysiology of thromboembolic stroke in the rat. Brain Res,1997,759:32-40
    32. Lipton SA, Choi YB, Pan ZH, et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature, 1993, 364(6438): 626-632
    33.王国强,廖维宏.兴奋毒性与神经元凋亡.国外医学·脑血管疾病分册,2000,8(1):3—5
    34.吕晓红,李广生,饶明俐.NOS抑制剂对局灶性缺血再灌注大鼠脑神经细胞凋亡的影响研究.临床神经病学杂志,2000,13(5)
    35.高谦,余华峰.7-NI对脑缺血再灌注后NOS、MDA和神经元超微结构的影响.北京医学,2000,22(4)
    36.姚瑜,俞惠民.一氧化氮与缺氧缺血性脑损伤的神经元凋亡.国外医学·脑血管疾病分册,2001,9(1):8—11
    37.高谦,余华峰.神经元型一氧化氮合酶抑制剂在脑缺血再灌注中的作用.
    
    国外医学·脑血管疾病分册,2000,8(4) :244-247
    38. Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke, 1997, 28(6) : 1283-1288
    39. Jahn R, Schiebler W, Ouimet C, et al. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc. Natl. Acad. Sci. USA, 1985, 82: 4137-4141
    40. Thomas L, Hartung K, Langosch D, et al. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science, 1988, 242: 1050-1053
    41. Eastwood SL, Burnet PWJ, McDonald B, et al. Synaptophysin gene expression in human brain: a quantitative in situ hybridization and immunocytochemical study. Neuroscience, 1994,59(4) : 881-892
    42. Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38, 000 characteristic of presynaptic vesicles. Cell, 1985, 41: 1017-1028
    43. Alder J, Lu B, Valtorta F, et al. Calcium-dependent transmitter secretion reconstituted in xenopus oocytes : requirement for synaptophysin. Science, 1992, 257: 657-661
    44. Navone F, Jahn R, DiGioiaG, et al. Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol, 1986, 103: 2511-2527
    45. Knaus P, Betz H, Rehm H. Expression of synaptophysin during postnatal development of the mouse brain. J Neurochem. 1986, 47(4) : 1302-1304
    46. Cabalka LM, Ritchie TC, Coulter JD. Immunolocalization and quantitation of a novel nerve terminal protein in spinal cord development. J Comp Neurol, 1990, 295: 83-91
    
    
    47. Ovtscharoff W, Bergmann M,Marquèze-Pouey B, et al. Ontogeny of synaptophysin and synaptoporin in the central nervous system: Differential expression in striatal neurons and their afferents during development. Dev Brain Res, 1993, 72:219-225
    48.钱雪松、李陈莉、侯广棋,等.人胚胎小脑突触体素及NOS阳性细胞的观察.河北医科大学学报,1999,20(6):325—328
    49.舒先涛、张纯清、陈运才.大鼠小脑皮质内突触素P38免疫反应产物的分布及年龄变化.解剖学杂志,1997,20(1):41—44
    50. Masliah E,Terry RD, Alford M,et al. Cortical and subeortical patterns of synaptophysinlike immunoreactivity in Alzheimer's disease. Am J Path,1991,138:235-246
    51. Masliah E, Fagan AM,Terry RD,et al. Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with GAP-43 in the dentate gyrus of the adult rat. Exp Neurol, 1991, 113:131-142
    52. Korematsu K, Goto S, Nagahiro S, et al. Changes of immunoreaetivity for synaptophysin ('protein p38') following a transient cerebral ischemia in the rat striatum. Brain Res,1993, 616:320-324
    53. Stroemer RP, Kent TA,Hulsebosch CE.Increase in synaptophysin immunoreaetivity following cortical infarction. Neurosei Lett, 1992, 147:21-24
    54. Stroemer RP, Kent TA,Hulseboseh CE.Neocortical neural sprouting,synaptogenesis,and behavioral recovery after neocortieal infarction in rats.Stroke,1995, 26(11): 2135-2144
    55. Stroemer RP, Kent TA,Hulsebosch CE.Enhanced neocortieal neural sprouting,synaptogenesis,and behavioral recovery with D-amphetamine therapy after neoeortieal infarction in rats. Stroke,
    
    1998,29:2381-2395
    56.徐莉,李玲,陈景藻,等.叶绿素光敏剂诱导大鼠脑梗死模型.第四军医大学学报,2000,21(5):s104—s106
    57. Combs DJ, Alecy LG. Motor performance in rats exposed to severe forebrain ischemia: effect of fasting and 1, 3-butanediol. Stroke,1987,18(2): 503-510
    58.徐莉,李玲,陈景藻,等.康复训练对大鼠脑梗死神经功能恢复的影响.中华物理医学与康复杂志,2000,22(2):86—88
    59. Paxinos G,Watson C.The rat brain.ACADEMIC PRESS. 1982
    60.刘红梅,高天明,佟振清.急性脑缺血动物模型实验研究进展.第一军医大学学报,1999,19(4)
    61.李玲,徐莉,袁华,等.康复训练促进脑梗死大鼠记忆功能的恢复.第四军医大学学报,2000,21(12):1555—1558
    62.徐莉,李玲,晏培松,等.康复训练后大鼠脑梗死的组织形态学改变.现代康复,2000,4(5):678—679
    63.李玲,袁华,徐莉.康复训练对脑梗死大鼠中枢神经系统Fos表达的影响.中华物理医学与康复杂志,2001,23(1):7—10
    64.李玲,徐莉,晏培松,等.脑梗死大鼠康复训练后脑的增殖细胞核抗原的表达及病理学改变.中华物理医学与康复杂志,2000,22(5):339—342
    65.李玲,袁华,徐莉.康复训练对大鼠脑梗死后CGRP表达的影响.第四军医大学学报,2001,22(15):1365—1367
    66. Black JE, Isaacs KR, Anderson BJ,etc. Learning causes synaptogenesis whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats.Proc Natl Acad Sci,1990, 87:5568-5572
    67. Chang FF, Greenough WT. Lateratized effects of monocular training on dendritic branching in adult split-brain rats. Brain Res, 1982,
    
    232:283—291
    68.隋南,匡培梓.MORRIS迷宫图像自动处理系统.心理学动态,1995,1:62
    69. Boulu RG, Plotkine M, Buisson A.Nitrie oxide,a newneurotransmitter in the central nervous system. Arm Pharm Fr, 1994,52 (2): 69-80
    70.谢勉,颐耀铭,姚志彬.脑缺血后大鼠海马一氧化氮合酶表达的变化.神经解剖学杂志.1998,14(1):8—12
    71.李玲,袁华,牟翔,等.康复训练对大鼠脑梗死后Fos和Hsp70表达的影响.第四军医大学学报,2001,22(10):901—904
    72.李玲,徐莉,饶志仁,等.康复训练对大鼠脑梗塞后血管构筑的改变.现代康复,2000,4(6):842—843
    73.陈运才,姚志彬,陈以慈,等.运动对小鼠小瞄皮质和脊髓内突触素年龄变化的影响.解剖学报,1994,25(3):263—267
    74.徐莉,李玲,饶志仁,等.康复训练对脑梗死大鼠脑GAP—43表达的影响.第四军医大学学报,2001,22(16):1469—1472
    75. Kleim JA, Barbay S, Cooper NR,etc. Motor learning-dependent synaptogenesis is localized to functional reorganized motor cortex.Nerrobiol Learn Mem,2002, 77(1): 63-77
    76. Nudo RJ, Friel KM. Cortical plasticity after stroke: implications for rehabilition. Rev Neurol,1999,155(9): 713-717
    77.黄如训,张艳,方燕南,等.大鼠脑梗死后运动功能可塑性物质基础及发生机制.中华医学杂志,2000,80(10):769—772
    78.曾进胜,李华,范玉华,等.实验性大脑皮层梗死后中枢神经系统相关部位的神经可塑性.中国康复医学杂志,2002,17(2):69—71
    79.余茜,李晓红,吴士明,等.运动康复对脑梗死大鼠学习记忆能力和LTP的影响.中华物理医学与康复杂志,2002,24(3):140—143
    
    
    80.张艳、黄如训、吴金浪,等.电刺激对大鼠脑梗塞运动功能及突触的影响.中山医科大学学报,1998,19(2):89—93