高压氧对急性CO中毒大鼠脑损伤及学习记忆能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一氧化碳(carbon monoxide, CO)中毒是急性中毒最常见的原因之一,也是急性中毒死亡的主要原因之一。据报道,美国每年约有3800例患者死于CO中毒,大约占一半的致死性中毒是由于CO中毒引起的[Blumenthal I, 2001]业国内尚无每年CO中毒发病人数、发病率、死亡率等方面的直接统计资料。但根据各相关资料来看,在我国CO中毒也很常见。1992~1994年,在国内报导的急性职业性中毒2842例中,急性CO中毒占1384例,居首位[高春锦,1997]。
     自上个世纪60年代首次发现高压氧(hyperbaric oxygen, HBO)对急性CO中毒具有很好的疗效以来,高压氧成为治疗急性CO中毒的首选方法。人们随即对高压氧治疗急性CO中毒的机理进行了大量的研究。研究发现高压氧能加速碳氧血红蛋白解离和CO排出,增加机体的血氧含量,提高氧分压,迅速纠正组织缺氧[Myers RA,1998];改善微循环和血液流变性,增加损伤组织血液灌注;改善细胞内能量代谢,降低细胞内钙浓度,减轻钙超载[Rogatsky GG,1999];调节脂质过氧化过程和氧自由基损伤[Raub JA, 2000]。以上发现和结论很好的解释了高压氧治疗急性CO中毒
    
     第口军医大学硕士学位论文
    一
    的作用,但要完全弄清高压氧治疗CO中毒的机理,尤其是治疗CO中毒
    迟发性脑病的机理,则还需要做更深一步的研究。其中亟待解抉的几个问
    题是:回.急性CO中毒迟发性脑病的发病机制为何?2高压氧对急性CO中
    毒迟发性脑病是否具有治疗作用,其作用机理是什么?
     为了探讨以上问题,我们参照Ischiropoulos的CO染毒方法制备急
    性CO中毒动物模型。采用组织病理学、免疫组织化学。行为心理学等方
    法检测大鼠染毒后 6h、id、3d、sd、7d、14d和 Zd等各个时问点脑组织
    病理改变和学习、记忆功能变化的特点并与高压氧治疗组相比较,依此评
    价高压氧的治疗作用。通过细胞超微结构的观察、BC 12蛋白免疫组化染
    色和原位末端转移酶标记(TUNEL)技术等三种方法进行细胞凋亡的检测,
    观察高压氧对急性CO中毒导致神经元凋亡的作用。其主要结果如下:
     (一)建立了可靠的急性CO中毒动物模型 制定了不同浓度CO中
    毒大鼠血HbCO浓度曲线,确定了适宜的中毒浓度和中毒时问。暴露在
    2500Ppm(parts per million)CO中60min,可以使大鼠血中HbCO浓度
    达到 65~70%,大鼠无一例外发生昏迷,且死亡率不高(2%)。
     (二)急性CO中毒大鼠脑内发生急性水肿和广泛的病理损伤CO暴
    露后前3 天,大鼠出现脑水肿,脑组织含水量明显高于正常对照组
     (P<001)。与co 中毒组相比,高压氧治疗组脑组织含水量明显减轻
     (P<005)。CO中毒后大鼠大脑皮质、海马、纹状体和小脑等部位神经元
    出现变性坏死,其中大脑皮质、海马等部位损伤较重。此现象与大脑不同
    区域对缺氧的敏感程度有关。高压氧治疗可以减少大鼠脑内神经元变性坏
    死,实验中各时间点大鼠海马区损伤均轻于CO中毒组。
     (三)急性CO 中毒大鼠海马区迟发性神经元损伤和迟发性健忘症
    HE、TUN’EL染色和电镜观察表明CO中毒大鼠海马神经元发生凋亡,凋亡
    神经元从染毒后第 3d开始显著增加,第 7d达到高峰(P<001。。ontrol
    group),以后逐渐减少,直到 CO暴露后 ZId实验期结束时还可观察到凋
     *2.
    
     第四军医大学硕士学位论文
    一
    亡神经元。通过卜迷宫实验和跳台实验发现CO中毒大鼠的正确反应率和
    跳台潜伏期*t印刁OW川at*Cy SDL)均明显低于正常对照组,尤其是 CO
    暴露后第3d开始,大鼠*L出现显著下降,至第7d达到最低(P< 0刀】s
    control groupL 以上说明 CO中毒导致大鼠海马区迟发性神经元损伤
     (delayed neuronal damage,DND)和迟发性学习记忆能力下降,亦称为
    迟发性健忘症(delay。d amn。sia)。迟发性健忘症与海马区迟发性神经元
    损伤在发生时间卜是一致的。因此认为,海马区迟发性神经元损伤是迟发
    性健忘症的发生原因之一。凋亡是迟发性神经元损伤的形式之一,它参与
    了迟发性健忘症的发生。
     (四)高压氧对CO中毒大鼠脑神经元的保护作用
     1)高压氧抑制CO 中毒大鼠海马区神经元凋亡 根据HE染色和
    TUNEL染色进行凋亡细胞记数发现与CO中毒组相比,HBO治疗组大鼠凋亡
    神经元数目减少,尤以*中毒后sd和N 明显(P<001),说明mO可
    以抑制CO中毒后神经元凋亡,减轻DND。
     2)高压氧促进 CO中毒大鼠海马区h 12蛋白表达 正常对照组和
    CO中毒组大鼠海马区不表达或很少表达BC12蛋白,两组之间比较无差
    别。HBO治疗组与 C0rl,毒组相比 BC]-2蛋白阳性细胞增多,尤以 CO暴露
    后3、sd明显(P<001),说明nBO暴露可以促进仇一2蛋白表达。BCI-2
    蛋白可以抑制神经元凋亡[Walton MI,1993」,HBO可能通过促进 Bcl-2蛋
    白表达从而起到减少神经元凋亡的作用。
     3)高压氧改善CO中毒大鼠学习记忆功能Y-迷宫实验中,HBO治
    疗组大鼠的正确反应率在CO暴露后第id到第7d都明显高?
Acute carbon monoxide (CO) poisoning is one of the common reasons for acute poisoning, and it is one of the main reasons of the death caused by acute poisoning. It's reported that there are 3800 patients died because of acute carbon monoxide poisoning. The number is about one half of that died of acute poisoning. At present, there are not detailed data of morbidity and mortality about acute CO poisoning in out country. But according as all kinds of data, the morbidity of acute CO poisoning is comparative high in our country. From 1992 to 1994, 2842 accidental deaths
    
    
    due to acute vocationally poisoning are reported in China. Thereinto, there are 1384 accidental deaths due to acute carbon monoxide poisoning. The proportion of carbon monoxide poisoning to acute vocationally poisoning is highest.
    Since the effect of hyperbaric oxygen (HBO) on acute carbon monoxide was known in 1960s, hyperbaric oxygen has became the mainstay of treatment for acute carbon monoxide poisoning. People have made a lot of research on the mechanism of hyperbaric oxygen. All these research found that Hyperbaric oxygen has many benefits. The half-life of carboxyhaemoglobin at 3 ATA (absolute atmospheres) of oxygen is only 23 minutes. Other benefits are improved mitochondrial function, impairment of platelet adhesion in the capillaries and inhibition of lipid peroxidation. But contrary to expectation, clinical trials of hyperbaric oxygen have given conflicting results. A recent Cochrane review of three major randomized controlled trials concluded that there is as yet no evidence of neurological benefit at one month. Ongoing trials will soon provide further information. In the absence of firm evidence most centres continue using hyperbaric oxygen if the carboxyhaemoglobin is above 25-30%. Myocardial ischaemia and neurological signs, especially coma, are treated with hyperbaric oxygen irrespective of the concentration. All these found and conclusions have explained the effect of hyperbaric oxygen on acute carbon monoxide poisoning. However this research is only in the beginning and there are several questions to be considered firstly: 1) what is the mechanism of delayed neurological syndrome (DNS) induced by acute carbon monoxide poisoning? 2) Whether hyperbaric oxygen treatment has the effect on delayed neurological syndrome induced by acute carbon monoxide poisoning and what is the mechanism of hyperbaric oxygen treatment.
    -6-
    
    Based on these questions, we produced acute carbon monoxide poisoning animal model designed by Ischiropoulos. General hematoxylin-eosin(H&E) stain and immunohistochemistry stain were used to observe the neurological damage in the brain of rat at different time after CO exposure (include 6h> ld> 3d, 5d> 7d, 14d and 21d). Y-maze and Step-Down type passive avoidance task were used to assess the effects of the CO exposure on learning and memory. We compared HBO-treated group with CO-exposed group to assess the effects of hyperbaric oxygen on carbon monoxide poisoning. At the same time to detect neural apoptosis, electron microscopy, immunohistochemistry stain of Bcl-2 and terminal deoxy-nucleotidyl transferase mediated UTP end labeling (TUNEL) were used to assess the effect of HBO on neural apoptosis induced by CO poisoning. The main results of present work are as follows:
    I) A stable method for the acute CO poisoning animal model: we
    described the curve of arterial HbCO in the rats which were exposed to CO with different concentration and confirmed feasible exposing concentration and time. Exposed in 2500 parts per million (ppm) carbon monoxide will make the arterial HbCO of rats increased to 65%-70%. All rats loss of conscious (LOG) and the mortality is low (2%).
    II) Acute oedema and diffuse pathology injury in the brain of rats following acute CO poisoning: Oedema was observed in the brain of rats in the first 3 days after CO exposed. Compared with control group, the brain water content increased significantly (P<0.01). Neural necrosis was observed in cortex, hippocampus, striatum, and cerebellum
引文
1 Blumenthal I. Carbon monoxide poisoning, J R Soc Med. 2001, 94(6): 270-2.
    2 Cai J,Yang J,Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biocbim Biopbys Acta, 1998, 1366(1-2): 139-49
    3 Choi IS. Carbon monoxide poisoning: systemic manifestations and complications. J Korean Med Sci. 2001 Jun; 16(3):253-61
    4 Christova T, Diankova Z, Setchenska M. Heme oxygenase--carbon monoxide signalling pathway as a physiological regulator of vascular smooth muscle cells. Acta Pbysiol Pbarmacol Bulg. 2000; 25(1):9-17
    5 Coceani F. Carbon monoxide in vasoregulation: the promise and the challenge. Circ Res 2000 Jun 23; 86(12):1184-6
    6 Gilmer B, Kilkenny J, Tomaszewski C, Watts JA. Hyperbaric oxygen does not prevent neurologic sequelae after carbon monoxide poisoning. Acad Ernerg Med 2002 Jan; 9(1): 1-8
    7 Gorman DF, Huang YL, Williams C. Prolonged exposure to one percent carbon monoxide causes a leucoencephalopathy in un-anaesthetised sheep. Toxicology 2001 Aug 28; 165(2-3):97-107
    8 Halebian PN, Robinson P, Barie C, Goodwin, Shires GT. Whole body oxygen utilization during acute carbon monoxide poisoning and isocapneic nitrogen hypoxia. J Trauma 1986; 26:110-117
    9 Halestrap AP, Doran E, Gillespie JP, et al. Mitochondria and cell death. Biochem Soc Trans 2000; 28(2): 170-7
    10 Hardy KR, Thom SR. Pathophysiology and treatment of carbon monoxide poisoning, J Toxicol Clin Toxicol 1994; 32(6):613-29
    11 Hawkins RD, Son H, Arancio O. Nitric oxide as a retrograde messenger
    
    during long-term potentiation in hippocampus. Prog Brain Res 1998;118:155-72
    12 Hiramatsu M, Inoue K. Des-tyrosine(1) dynorphin A-(2-13) improves carbon monoxide-induced impairment of learning and memory in mice. Brain Res 2000 Mar 24;859(2):303-10
    13 Hiramatsu M, Sasaki M, Nabeshima T, Kameyama T. Effects of dynorphin A (1-13) oncarbon monoxide-induced delayed amnesia in mice. Pharmacol Biochem Behcn, 1997; 56(1):73-9
    14 Hlavica P, Lewis D F. Allosteric phenomena in cytochrome P450-catalyzed monooxygenations. Eur J Biochem 2001 Sep; 268(18):4817-32
    15 Horita N, Ando S, Seino S, Hagiwara I. Experimental carbon monoxide leucoencephalopathy in the cat. J Neuropathol Exp Neurol 1980 Mar; 39(2): 197-211
    16 Horowitz AL,Kaplan R, Sarpel G.Carbon monoxide toxicity:MR imaging in brain. Radiology, 1987,162:787-788
    17 Hossmann KA. The hypoxic brain. Insights from ischemia research. Adv Exp Med Biol 1999; 474:155-69
    18 Ischiropoulos H, Beers MF, Ohnishi ST, Fisher D, Garner SE, Thom SR. Nitric oxide production and perivascular nitration in brain after carbon monoxide poisoning in the rat. J Clin Invest 1996; 97(10):2260-7
    19 Ishimaru H, Nabeshima T, Katoh A, Suzuki H, Fukuta T, Kameyama T. Effects of succe-ssive carbon monoxide exposures on delayed neuronal death in mice under the maintenance of normal body temperature. Biochem Biophys Res Commun 1991; 179(2): 836-40
    20 Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria.
    
    Proc Natl Acad Sci U S A 1998; 95(9):4997-5002.
    21 Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239:57-69
    22 Kreck TC, Shade ED, Lamm WJ, McKinney SE, Hlastala MP. Isocapnic hyperventilation increases carbon monoxide elimination and oxygen delivery. Am J Respir Crit Care Med 2001 Feb; 163(2):458-62
    23 Magnoni MS, Govoni S, Battaini F. L-type calcium channels are modified in rat hippocampus by short-term experimental ischemia. J Cereb Blood Flow Metab, 1991; 11: 96-99
    24 Matsuoka M, Igisu H, Tanaka I, Hod H, Koga M. Brain energy metabolites in mice after an acute exposure to carbon monoxide. Res Commun Chem Pathol Pharmacol 1993 Jul; 81(1):15-20
    25 Maurice T, Hiramatsu M, Kameyama T, Hasegawa T, Nabeshima T. Behavioral evidencefor a modulating role of sigma ligands in memory processes. Ⅱ. Reversion of carbon monoxide-induced amnesia. Brain Res 1994; 647(1):57-64
    26 Maurice T, Phan V, Sandillon F, Urani A. Differential effect of dehydroepiandrosterone and its steroid precursor pregnenolone against the behavioural deficits in CO-exposed mice. Eur J Pharmacol 2000 Feb 25; 390(1-2): 145-55
    27 Monaghan DT, Cotman CW. Distribution of N-methyl-D-aspartate sensitive 1-[~3H] glutamate binding sites in rat brain. J Neurosci 1985; 5:2909-2919
    28 Myers RA, Snyder SK, Emhoff TA. Subacute sequelae of carbon monoxide poisoning. Ann Emerg Med 1998; 14:1163-7
    29 Nabeshima T, Katoh A, Ishimaru H. Carbon monoxide-induced delayed
    
    amnesia, delayed neuronal death and change in acetylcholine concentration in mice. J Pharmacol Exp Ther 1991; 256(1):378-84
    30 Parsadanian AS, Cheng Y, Keller-Peck CR, Holtzman D M, Snider WD. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons, J Neurosci 1998; 18(3):1009-19
    31 Penney DG. Acute carbon monoxide poisoning in an animal model: the effects of altered glucose on morbidity and mortality. Toxicology 1993 Jun 11; 80(2-3):85-101
    32 Piantadosi CA, Zhang J, Levin ED, Folz RJ, Schmechel ED. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp Neurol 1997; 147(1): 103-14
    33 Powers WE. Delayed presentation of carbon monoxide poisoning. J Emerg Med 1999 Sep-Oct; 17(5):905-6
    34 Pulsinelli WA, Briely JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neural 1982; 11:491-498
    35 Raub JA, Mathieu-Nolf M, Hampson NB, Thom SR. Carbon monoxide poisoning-a public health perspective. Toxicology 2000; 145:1-14
    36 Riedl AG, Watts PM, Brown CT, Jenner P. P450 and heine oxygenase enzymes in the basal ganglia and their roles in Parkinson's disease. Adv Neural 1999; 80:271-86
    37 Rivier C. Role of nitric oxide and carbon monoxide in modulating the ACTH response to immune and nonimmune signals. Neuroimmunomodulation 1998 May-Aug; 5(3-4):203-13
    38 Robertson JD, Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 2000; 30(5):609-27
    39 Rogatsky GG, Shifrin E G, Mayevsky A. Physiologic and biochemical
    
    monitoring during hyperbaric oxygenation: a review. Undersea Hyperb Med 1999 Summer; 26(2): 111-22
    40 Sharma HS, Alm P, Westman J. Nitric oxide and carbon monoxide in the brain pathology of heat stress. Prog Brain Res 1998; 115:297-333
    41 Sheridan RL, Shank ES. Hyperbaric oxygen treatment: a brief overview of a controversial topic. J Trauma 1999 Aug; 47(2):426-35
    42 Shimazu T, Ikeuchi H, Sugimoto H, Goodwin CW, Mason AD Jr, Pruitt BA Jr. Half-life of blood carboxyhemoglobin after short-term and long-term exposure to carbon monoxide, J Trauma 2000 Jul;49(1): 126-131
    43 Snyder SH, Baranano DE. Heine oxygenase: a font of multiple messengers. Neuropsychopharmacology 2001 Sep; 25(3):294-8
    44 Snyder SH, Jaffrey SR, Zakhary R. Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Res Brain Res Rev 1998 May; 26(2-3): 167-75
    45 Sorenson JR. Prion diseases: copper deficiency states associated with impaired nitrogen monoxide or carbon monoxide transduction and translocation. J Inorg Biochem 2001 Dec 1; 87(3): 125-7
    46 Stevenson DK, Vreman HJ, Wong RJ, Dennery PA, Contag CH. Carbon monoxide detection and biological investigations. Trans Am Clin Climatol Assoc 2000; 111:61-75
    47 Takahashi M, Iwatsuki N, Oho K. Hyperbaric oxygen therapy accelerates neurologic recovery after 15-minute complete global cerebral ischemiain dogs. Crit Care Med, 1992, 20:1588-1594
    48 Thom SR. Carbon monoxide-induced deficits in cognitive performance of mice and lack of effect of hyperbaric oxygen treatment. Acad Emerg Med 2002 Jan; 9(1):75-7
    
    
    49 Thom SR, Fisher D, Manevich Y. Roles for platelet-activating factor and NO-derived oxidants causing neutrophil adherence after CO poisoning. Am J Physiol Heart Circ Physiol 2001 Aug; 281(2):H923-30
    50 Thom SR. Functional inhibition of leukocyte B2 integrins by hyperbaric oxygen in carbon monoxide-mediated brain injury in rats. Toxicol Appl Pharmacoi 1993 Dec; 123(2):248-56
    51 Tomaszewski CA, Thom S R. Use of hyperbaric oxygen in toxicology. Emerg Med Clin North Am 1994; 12(2):437-59
    52 Unsworth IP. Hyperbaric or normobaric oxygen for acute carbon monoxide poisoning: a randomised controlled clinical trial. Med J Aust 1999 Mar 1;170(5):203-10
    53 Vecsei L, Dibo G, Kiss C. Neurotoxins and neurodegenerative disorders. Neurotoxicology 1998 Aug-Oct; 19(4-5):511-4
    54 Wada K, Miyazawa T, Nomura N, Yano A, Tsuzuki N, Nawashiro H, Shima K. Mn-SOD and Bcl-2 expression after repeated hyperbaric oxygenation. Acta Neurochir Supp12000; 76:285-90
    55 Walton MI, Whysong D, O'Connor PM, Hovatter RC. Constitutive expression of human bcl-2 modulates nitrogen mustard and camptothecin induced apoptosis. Cancer Res 1993, 53(8): 1853-1861
    56 Yang JQ, Zhou QX. Protective effects of fructose-1,6-diphosphate against cerebral injury induced by subacute carbon monoxide intoxication in mice. Acta Pharmacol Sin 2000 Apr; 21(4):360-3
    57 高春锦,赵立明,夏成清,武连华,饶小雪,庞宝森,葛环.高压氧对CO中毒大鼠海马中钙离子、cGMP及血浆NO含量的影响.中华航海医学杂志,1999;6(4):226-229
    58 李金声,郭守一,饶志仁,刘惠玲,骆阁大,高建保,谢晓萍,马丽
    
    云.高压氧下大鼠脑组织中氧化氮合酶阳性细胞的表达.中华航海医学杂志,1997;4(2):100-103
    59 刘景昌.高压氧医学的理论与新技术.北京:军事医学出版社,1998年10月
    60 刘颖菊,杨俊卿,周歧新,薛春生.急性一氧化碳中毒致脑细胞调亡及相关基因表达.工业卫生与职业病,2000;26(5):257-260
    61 王泊云,李玉松,黄高异,张远强.病理学技术.人民卫生出版社.1999年
    62 徐叔云.药理实验方法学.第二版.北京:人民卫生出版社,1991:23-41
    63 张镭.一氧化碳中毒后迟发性脑病的CT特征.临床医学影像杂志,1998;9(2):93-96