富氢水对大鼠急性一氧化碳中毒脑损伤保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一氧化碳(carbon monoxide CO)中毒是一种常见的中毒性疾病,严重危害着人类的健康和生命。部分重度中毒患者常因累及大脑、心脏等多个重要脏器,即使挽救了生命,也常留下迟发性神经精神后遗症,严重影响了生存者的生活质量,给家庭和社会带来了巨大的负担。因此,如何尽早对急性CO中毒脑损伤采取有效治疗手段并防治迟发性中毒后脑病(Delayed neurologic sequelaeDNS),已经成为临床上迫切需要解决的问题。
     自由基损伤是急性CO中毒脑损伤的主要发病机制。自由基与人类的健康和疾病密切相关,是当前生命科学研究的热点。过量产生的自由基会导致DNA、脂质和蛋白的氧化损伤,其中羟自由基(.OH)和过氧亚硝酸阴离子(ONOO-)毒性强,目前为止还没有在哺乳动物体内发现内源性的有针对性的清除方式。2007年,有学者在《Nature medicine》报道,动物呼吸2%的氢就可有效清除自由基,显著改善脑缺血再灌注损伤。
     本课题采用吸入法建立大鼠急性CO中毒脑损伤模型,该模型为CO中毒的常用模型,大鼠与人类的大脑结构相似,能很好地模拟人脑缺血缺氧的过程。观察氢饱和的生理盐水(简称为富氢水)对急性CO中毒脑损伤大鼠的保护效应,通过症状学、病理学、形态学、行为学等不同指标分别评价富氢水对皮层区以及海马区的保护效应。并从两方面探讨富氢水对急性CO中毒脑损伤保护作用的机制:(1)富氢水治疗对大鼠急性CO中毒后氧自由基及相关抗氧化酶的作用。主要观察急性CO中毒后腹腔注射富氢水,大鼠大脑皮层和海马的氧化应激系统的变化;(2)急性CO中毒后予以富氢水治疗对大鼠神经元细胞凋亡的影响,并测定凋亡酶活性和凋亡相关蛋白变化。通过本课题的实施,旨在为富氢水用于临床治疗急性CO中毒脑损伤提供实验依据。
     一、富氢水对大鼠急性CO中毒脑损伤的保护效应
     目的:研究腹腔注射富氢水对大鼠急性CO中毒脑损伤是否具有保护效应;同时分别观察皮层和海马对富氢水治疗的反应。
     方法:采用吸入法制作急性CO中毒模型,腹腔注射富氢水治疗。动物分为正常对照组(Control)、CO+生理盐水(NS)组、CO+富氢水(Hydrogen)组。造模后24小时观察各组动物的一般精神行为状态、体重变化,14天生存情况,根据Brailowsky描述的神经学评分方法对神经功能缺损进行症状评估,测定脑组织含水量,采用脑组织灌流切片,行HE、NISSL染色,并在镜下对神经细胞进行计数。观察建模后存活14天大鼠的水迷宫实验,评价其空间记忆能力。
     结果:富氢水治疗组的动物在建模后24小时精神状态较好,毛色光滑,较为活泼,反应迅速,主动摄入食水,体重下降不明显,其结果明显优于生理盐水组(14.173.76g vs.18.52.43g;P<0.05);富氢水治疗组的生存率明显增高(80%vs.60%;P<0.05);神经功能缺失症状减轻明显(13.831.94vs.16.831.72;P<0.05);脑组织水含量低(0.790.04vs.0.880.04;P<0.01)。HE和NISSL染色均表明富氢水对皮层(NISSL:88.5022.88vs.58.6716.18;P<0.05)和海马(NISSL:102.8326.36vs.51.6716.79,P<0.01)有明显的保护作用。2周后水迷宫测试提示富氢水治疗组逃避潜伏期短于生理盐水组(22.674.03vs.32.334.59,P<0.05)。
     结论:1、吸入法模拟急性CO中毒模型制作方法相对简单,重复性好,能比较好地应用于观察动物急性CO中毒后各项指标的变化以及干预措施的疗效比较;2、富氢水注射对大鼠急性CO中毒脑损伤有保护作用。
     二、富氢水通过调节氧化应激系统对大鼠急性CO中毒脑损伤的保护作用
     目的:研究富氢水的保护效应是否与清除氧自由基、上调抗氧化酶的活性有关。
     方法:按照第一部分的方法进行建模和治疗。对大鼠皮层和海马分别取材,制作组织匀浆,根据试剂盒说明用硫代巴比妥酸法(TBA)测定丙二醛(MDA)含量,酶联免疫吸附测试法(ELISA)测定8-羟基鸟嘌呤(8-OHdG)含量,羟胺法测定超氧化物歧化酶(SOD)活力,比色法测定脑组织中谷胱甘肽过氧化物酶(GSH-px)活力。
     结果:CO中毒后24小时,与生理盐水组相比,富氢水能降低皮层(1.420.44vs.2.040.44,P<0.05)和海马(1.910.68vs.3.170.69,P<0.01)的MDA含量;降低8-OHdG的含量(皮层54.64±4.93vs.62.98±9.08,P<0.05);海马60.43±10.49vs.82.66±12.55,P<0.01);增强抗氧化酶的活性,如SOD(皮层111.35±44.95vs.46.23±28.78,P<0.05;海马173.08±51.43vs.89.11±35.38,P<0.01),但对GSH-px影响不明显(皮层5.41±1.41vs.5.25±0.89,P>0.05;海马6.19±2.67vs.5.87±2.38,P>0.05)。
     结论:1、大脑皮层和海马对急性CO中毒均有明显的氧化应激反应;2、富氢水的保护作用可能是通过上调内源性抗氧化酶、清除氧自由基发挥作用。
     三、富氢水通过抑制过度凋亡对急性CO中毒脑损伤的保护作用
     目的:研究富氢水的保护效应是否与抑制神经细胞过度凋亡有关。
     方法:按照第一部分的方法进行建模和治疗。采用TUNEL法检测细胞凋亡;ELISA法检测caspase-3和caspase-9的酶活性;Western Blot检测Bcl-2和Bax蛋白的表达。
     结果:CO中毒后24小时,与生理盐水组相比,富氢水能明显减少皮层(57.677.58vs.99.508.73,P<0.01)和海马区(52.3313.17vs.82.1715.79)的凋亡阳性细胞数;降低皮层和海马的caspase-3酶(皮层0.0290.008vs.0.0650.009,P<0.01vs. CO+NS group;海马0.0310.004vs.0.0530.007,P<0.01)和caspase-9酶(皮层1.1960.384vs.1.7970.432,P<0.01;海马1.2080.112vs.1.8970.280,P<0.01)相对活性;也提高了Bcl-2在皮层以及海马(皮层1.363±0.183vs.0.886±0.070,P<0.01;海马1.166±0.139vs.0.807±0.067,P<0.01)的表达,但对Bax水平影响不明显(皮层0.515±0.038vs.0.494±0.029,P>0.05;海马0.437±0.107vs.0.410±0.034,P>0.05)。
     结论:1、急性CO中毒后,大鼠大脑皮层和海马均呈现不同程度的凋亡;2、抑制凋亡可能是富氢水保护作用机制之一。
Carbon monoxide(CO)poisoning is a common poisoning disease whichseriously endangers human health and life. Critical patients often undergo the injuryof brain, heart and other vital organs. Over half of those with serious poisoningdevelop delayed neurologic sequelae between3days and4weeks afterward, whichseriously affected the survivors’ life quality and brought great burden to familiesand society. It is urgent to take some effective treatments for brain injury of acuteCO poisoning as soon as possible.
     Oxidative stress is the main pathogenesis of brain injury resulting from acuteCO poisoning. Free radicals are closely related to human health and disease, whichare also a hot topic of current life science research. The excessive production ofoxygen free radicals can cause oxidative damage to DNA, lipids and proteins.Among which hydroxyl radical (.OH) and peroxynitrite anion (ONOO-) are thepotent members, and so far people have not found any corresponding endogenoustarget to clear them in mammals. In2007, scholars reported in Nature medicine thatanimals breathing2%hydrogen can significantly reduce the cerebral ischemia andreperfusion injury through scavenging free radical effectively.
     In this study we copy an animal model of acute CO poisoning by inhalation,which is a commonly used model for CO poisoning. Rats have similar brainstructure as human and can well simulate the human brain ischemia and hypoxiaprocess. We observe the protective effect of hydrogen-saturated saline(hydrogen-rich water) on brain injury of acute CO poisoning rats by the differentindicators of symptoms, pathology and morphology, evaluating the protective effectof hydrogen-rich water on the cortex and hippocampus. Then we explore themechanism of hydrogen-rich water protective function on acute CO poisoning braininjury in two ways:(1) Changes of reactive oxygen species and antioxidantenzymes,(2) Observing neurons apoptosis, determination of apoptosis activity andapoptosis-related protein changes in rats with acute CO poisoning followinghydrogen-rich water treatment. The implementation of this project is to provide theexperimental basis for the clinical treatment of acute CO poisoning brain injurywith hydrogen-rich water.
     1. Protective effect of the hydrogen-rich water on rats with brain injuryresulting from acute CO poisoning.
     Objective: To study whether hydrogen-rich water have protective effect on ratswith acute CO poisoning brain injury, we take intraperitoneal injection ofhydrogen-rich water to rats at different points, and observe the different responsesof cortex and hippocampus.
     Methods: We copy an animal model of acute CO poisoning by inhalation andtake intraperitoneal injection of hydrogen-rich water as the treatment. The animalswere divided into normal control group (Control), CO+saline (NS) group, CO+hydrogen-rich water (Hydrogen) group. We observe the behavior of animals, weightchange, survival rate of14d, the neurological score which described by Brailowskyas neurological deficit symptoms assessment, brain water content, HE staining andNISSL staining at24h after poisoning. Using Morris water maze test to evaluate thespatial memory ability of animals at14d.
     Results: Animals of hydrogen-rich water group were lively and responsive, alsohad a good mental state, smooth coat and were willing to take in food and water at24h after poisoning. They had less weight loss (14.17±3.76g vs.18.5±2.43g, P<0.05), higher survival rate (80%vs.60%, P<0.05), lower score of symptoms ofneurological deficit (13.83±1.94vs.16.83±1.72, P<0.05), and lower water contentof brain tissue (0.790.04vs.0.880.04, P<0.01) than those of the saline group.NISSL staining showed apparent protective effect of hydrogen-rich water on thecortex (88.5022.88vs.58.6716.18, P<0.05NISSL) and hippocampus (102.8326.36vs.51.6716.79, P<0.01NISSL).
     Conclusions:1、 To stimulate CO poisoning model by static inhalationsimulating is relatively simple, reproducible, and better used in comparing the effectof hydrogen-rich water effect.2、Hydrogen-rich water injection has a protectiveeffect on animals with acute CO poisoning.
     2. The protective effect of hydrogen-rich water on acute CO poisoning throughadjusting the oxidative stress system.
     Objective: To study whether the mechanism of protective effect of thehydrogen-rich water by scavenging oxygen free radicals, increasing the activity ofantioxidant enzymes or not.
     Methods: According to the method of modeling and treatment in the first part,we took the rats’ cortex and hippocampus of each group and produced tissuehomogenates. We measured malondialdehyde (MDA) by thiobarbituric acid (TBA)method,8-hydroxyguanine (8-OHdG) content by enzyme-linked immunosorbent assay (ELISA), superoxide dismutase (SOD) change by hydroxylamine method andactivity of glutathione peroxidase (GSH-px) at24h after acute CO poisoning.
     Results: Hydrogen-rich water can reduce the MDA content of cortex (1.420.44vs.2.040.44, P<0.05) and hippocampus (1.910.68vs.3.170.69,P<0.01), decrease the8-OHdG content of cortex (54.64±4.93vs.62.98±9.08,P<0.05) and hippocampus (60.43±10.49vs.82.66±12.55,P<0.01), enhance theactivity of antioxidant enzymes such as SOD (cortex,111.35±44.95vs.46.23±28.78,P<0.05; hippocampus,173.08±51.43vs.89.11±35.38,P<0.01), but noeffect on GSH-px(cortex,5.41±1.41vs.5.25±0.89, P>0.05, hippocampus,6.19±2.67vs.5.87±2.38,P>0.05).
     Conclusions:1、Cerebral cortex and hippocampus suffer significant oxidativestress response from CO poisoning.2、The protective effect of the hydrogen-richwater may be through upregulation of endogenous antioxidant enzymes, scavengingoxygen free radicals.
     3、The protective effect of hydrogen-rich water on acute CO poisoning throughinhibiting excessive apoptosis.
     Objective: To study whether the mechanism of protective effect of thehydrogen-rich water by inhibiting excessive apoptosis or not.
     Methods: We detected apoptosis by TUNEL method, measured activity ofcaspase-3and caspase-9enzyme by enzyme-linked immunosorbent assay (ELISA)and Bcl-2, Bax protein expression by Western blot.
     Results: Hydrogen-rich water can significantly reduce the positive apoptoticcells number of cortex (57.677.58vs.99.508.73,P<0.01) and hippocampus(52.3313.17vs.82.1715.79), reduce relative activity of caspase-3(cortex0.0290.008vs.0.0650.009,P<0.01vs. CO+NS group;hippocampus0.0310.004vs.0.0530.007,P<0.01)and caspase-9(cortex1.1960.384vs.1.7970.432,P<0.01vs. CO+NS group;hippocampus1.2080.112vs.1.8970.280,P<0.01vs. CO+NS group)enzyme of cortex and hippocampus, also increase theexpression of Bcl-2in the cortex(1.363±0.183vs.0.886±0.070,P<0.01) andhippocampus(1.166±0.139vs.0.807±0.067,P<0.01), without significant effect onBax levels (cortex0.515±0.038vs.0.494±0.029, P>0.05, hippocampus0.437±0.107vs.0.410±0.034,P>0.05).
     Conclusions:1、Cerebral cortex and hippocampus showed varying degree of apoptosis after CO poisoning.2、The protective effect of the hydrogen-rich watermay be through inhibiting apoptosis.
引文
1、Nonfatal unintentional non-fire-related carbon monoxide exposures—United States,2004–2006.MMWR Morb Mortal Wkly Rep.2008;57(33):896–899.
    2、Unintentional poisoning deaths—United States1999–2004. MMWR Morb Mortal Wkly Rep.2007;56(5):93–96.
    3、Department of Health and Human Services (US) Healthy people2010: volume1.2nd ed. Objectivesfor improving health, focus area8: environmental health. Objective8-27h: carbon monoxide poisoning.[cited2008Sep10]. Available from: URL:http://www.healthypeople.gov/Document/HTML/Volume1/08Environmental.htm#_Toc490564711.
    4、L.K. Weaver, Clinical practice. Carbon monoxide poisoning, N Engl J Med.2009;360(12),1217–1225.
    5、Piantadosi CA, Tatro L, Zhang J. Hydroxyl radical production in the brain after CO hypoxia in rats.Free Radical Biol. Med.1995;18:603–609.
    6、Thom SR, Bhopale VM, Han ST, et al. Intravascular neutrophil activation due to carbon monoxidepoisoning. Am J Respir Crit Care Med.2006;174(11):1239-1248.
    7、Hara S, Mukai T, Kurosaki K, et al.Characterization of hydroxyl radical generation in the striatum offree moving rats due to carbon monoxide poisoning, as determined by in vivo microdialysis. BrainResearch.2007;1016:281-284.
    8、Ischiropoulos H, Beers, MF, Ohnishi ST, et al. Nitric oxide production and perivascular nitration inbrain after carbon monoxide poisoning in the rat.Clin Invest.1996;97(10):2260-2267.
    9、Biswal S, Remick DG. Sepsis: redox mechanisms and therapeutic opportunities. Antioxid RedoxSignal.2007;9:1959-1961.
    10、Ohsawa I, Ishikawa M, Takahashi K, et al.Hydrogen acts as a therapeutic antioxidant by selectivelyreducing cytotoxic oxygen radical.Nature Medicine.2007;13:688-694.
    11、Cai JM, Kang ZM, Liu K,et al.Neuroprotective effectsof hydrogen saline in neonatalhypoxia-ischemia rat model.Brain Res.2009;1256:129-137.
    12、Fukuda KI, Asoh S, Ishikawa M, et al. Inhalation of hydrogen gas suppresses hepatic injury causedby ischemia/reperfusion through reducing oxidative stress.Biochem Biophys ResCommun.2007;361:670-674.
    13、Sun Q, Kang ZM, Cai JM, et al. Hydrogen-rich saline protects myocardium againstischemia/reperfusion injury in rats. Exp Biol Med2009;451:374-378.
    14、Fu Y, Ito M, Fujita Y, et al. Molecular hydrogen is protective against6-hydroxydopamine-inducednigrostriatal degenetation in a rat model of Parkinson’s disease.Neurosci lett.2009;453(2):81-85.
    15、Li J, Wang Cai, Zhang JH, et al. Hydrogen-rich saline improves memory function in a rat model ofamyloidbeta-inducedAlzheimer’s disease by reduction of oxidative stress.2010;1328:152-161.
    16、Nagata K, Nakashima-Kamimura N, Mikami T, et al. Comsumption of Molecular HydrogenPrevents the Stress-Induced Impairments in Hippocampus-Dependent Learning Tasks during ChronicPhysical Restraint in Mice. Neuropsychopharmacology.2009;34:501-508.
    17、Raub JA, Mathieu-Nolf M, Hampson NB, et al. Carbon monoxide poisoning----a public healthperspective. Toxicology.2000;145:1-14.
    18、Thom SR. Carbon-monoxide-mediated brain lipid peroxidation in the rat. Appl Physiol.1990;68:997-1003.
    19、Brailowsky S, Knight RT, Blook K, et a1. Υ-Aminobutyric acid-induced potentiation of corticalherniplegia. Brain Res.1986;362:322-330.
    20、施新猷,顾为望.人类疾病动物模型.人民卫生出版社.2008;380-381.
    21、赵天智,常耀明,李金声,等.大鼠急性一氧化碳中毒后迟发性脑病模型的建立.第四军医大学学报.2006;27(5):1024-1026.
    22、Benaissa ML, Bruno M, Stephen Borron, et a1. Is elevated plasma lactate a useful marker in theevaluation of pure carbon monoxide poisoning? Intensive Care Medicine.2003;29(8):1372-1375.
    23、Cevik AA, Unluoglu I, Yanturali S, et al. Interrelation between the Poisoning Severity Score,carboxyhaemoglobin levels and in-hospital clinical course of carbon monoxide poisoning. Int J ClinPract,2006,60(12):1558-1564.
    24、Acland PR, Heaver C. Retrograde amnesia following carbon monoxide poisoning.Med Sci Law,2008,48(3):251-255.
    25、Carol AP, Barbara B, Joanne BS. Testing spatial and nonspatial learning using a Morris Water Maze.Cold Spring Harb Protoc,2007,doi:10.1101/pdb.prot4801.
    26、Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer.Science.1975;190:152-154.
    27、Gharib B, Hanna S, Abdallahi OM, et al.Anti-inflammatory properties of molecular hydrogen:investigation on parasite-induced liver inflammation.C R Acad Sci III.2001;324:719-724.
    28、Sun Q, Kang ZM, Cai JM, et al. Hydrogen-rich saline protects myocardium againstischemia/reperfusion injury in rats. Exp Biol Med2009;451:374-378.
    29、Winter PM, Miller JN. Carbon monoxide poisoning. JAMA,1976;236:1502-1504.
    30、熊冰,周游,蔡亚利,等.脑血流灌注显像评价高压氧联合药物治疗一氧化碳中毒迟发性脑病疗效.中华物理医学与康复杂志,2009,11:756-759.
    31、Ikuroh O, Masahiro I, Kumiko T, et al, Sadamitsu A and Shigeo O. Hydrogen acts a therapeuticantioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med.2007;13:688-694.
    32、Liu S, Liu M, Peterson S, et a1. Hydroxyl radical formation is greater in striatal core than inpenumbra in a rat model of ischemic stroke. J Neurosci Res.2003;71:882-888.
    33、Nanetti L, Taffi R, Vignini A, et a1. Reactive oxygen species plasmatic levels in ischernic stroke.Mol Cell Biochem,2007,303:19-25.
    34、Zhang J,Piantadosi CA. Mitochondrial oxidative stress after CO hypoxia in the rat brain. J ClinInves,1992;90:1193-1199.
    35、Thom SR. Functional inhibition of leukocyte B2intergrins by hyperbaric oxygen in CO-mediatedbrain injury in rats. Toxicol Appl Pharmacol,1993;123:248-256..
    36、Brown SD, Piantsdosi A, et al. Recovery of energy metabolism in rat brain after carbon monoxidehypoxia. J clue invest,1992;89:666-672.
    37、Wang SM, He CM. Anti-lipid peroxidation and oxygen free radical scavenging activity ofPericarpium Citri Reticulatae extract. J Chin Pharm Univ,1998;29(6):4622-4651.
    38、Keller JN, Kindy MS, Holtsberg FW, et a1. Mitochondrial manganese superoxide dismutaseprevents neural apoptosisand reduces ischemic brain injury: suppressionof peroxynitrite production,lipid peroxidation, and mitoehondrial dysfunction. Neurosci.1998;18(2):687-697.
    39、Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science.1993;262(5134):689-695.
    40、Olanow CW. An introduction to the free radical hypothesis in Parkinson’S disease. Ann Neurol.1992,32Suppl:S2-9.
    41、Balazs L, Leon M. Evidenceof an oxidative challenge in the Alzheimer's brain. NeurochemRes.1994,19(9):1131-1137.
    42、Wang P, Zeng T, Zhang CL,et al. Lipid peroxidation was involved in the memory impairment ofcarbon monixide-induced delayed nerron damage. Neurochem Res.2009,34:1030-1042.
    43、李自立,李培杰,陈天铎.急性CO中毒患者血清SOD、GSH-Px活性及MDA水平的变化及其意义.中国急救医学.2003;4:221-222.
    44、Emst A, Zibrak J D. Carbon monoxide poisoning. New Eng J Med,1998;339(22):1603-1608.
    45、张秀明,顾任骏,贾福军等.急性一氧化碳中毒后迟发性脑病发病机理的探讨.中华劳动卫生职业病杂志,1996;14:148-150.
    46、Zhang J,Piantadosi CA. Mitochondrial oxidative stress after CO hypoxia in the rat brain. Clin Inves,1992;90:1193–1199.
    47、Reth M. Hydrogen peroxide as second messenger in lymphocyte activation[J]. Nat Immunol.2002;3(12):1129-1134.
    48、Pawate S, Shen Q, Fan F, et al. Redox regulation of glial inflammatory response tolipopolysaccharide and interferony. Neurosci Res.2004;77(4):540-551.
    49、Adams M W, Mortenson LE, Chen JS. Hydrogenase. Biochimic et Biophysica Acta.1980;594(2-3):105-176.
    50、Maehara K, Hasegawa T, Isobe K. A NF-κB p65subunit is indispensable for activating manganesesuperoxide: Dismutase gene transcription mediated by tumor necrosis factor-. Cellular Biochemistry.2000;77(3):474-486.
    51、Lindell KW, Ramona OH, Karen JC, et al. Hyperbaric Oxygen for Acute Carbon MonoxidePoisoning. N Engl J Med.2002;347:1057-1067.
    52、Zhang J, Piantadosi CA. Mitochondrial oxidative stress after carbon monoxide hypoxia in the ratbrain. J Clin Invest.1992;90:1193-1199.
    53、Thom SR. Antidotes in depth: hyperbaric oxygen. In: Goldfrank LR, Flomenbaum NE, Lewin NA,Howland MA, Hoffman RS, Nelson LS editor. Goldfrank's toxicologic emergencies.7th edition. NewYork: McGraw-Hill;2002:1492-1497.
    54、Thom SR. Functional inhibition of leukocyte B2integrins by hyperbaric oxygen in carbonmonoxide-mediated brain injury in rats. Toxicol Appl Pharmacol.1993;123:248-256.
    55、Turcanu V, Dhouib M, Gendrault JL, et al. Carbon monoxide induces murine thymocyte apoptosisby a free radical-mediated mechanism. Cell Biol Toxicol.1998;1447–1454.
    56、Clayton CE, Carraway MS, Suliman HB, et al. Inhaled carbon monoxide and hyperoxic lung injuryin rats. Am J Physiol Lung Cell Mol Physiol.2001;281:L949–L957.
    57、Uemura K, Harada K, Sadamitsu D, et al. Apoptotic and necrotic brain lesions in a fatal case ofcarbon monoxide poisoning. Forensic Science International.2001;116:213-219.
    58、Piantadosi CA, Zhang J, Levin ED, et al. Apoptosis and Delayed Neuronal Damage after CarbonMonoxide Poisoning in the Rat. Experimental Neurology.1997;147(1):103–114
    59、Bratton SB, Cain IL, Cohen GM, et al. Protein complexes activate distinct caspase cascades in deathreceptor and stress-induced apoptosis. Exp Cell Res.2000;6(1):27-33.
    60、Cohen GM.Caspase: the executioners of apoptosis. Biochem.1997;326:1-16.
    61、Duke RC, Ojcius DM, Young JD. Cell suicide in health and disease. Sci Am275:80–87,1996.
    62、Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP)concentration: a switch in the decision between apoptosis and necrosis. J Exp Med.1997,185:1481–1486.
    63、Richter C, Schweizer M, Cossarizza A, Franceschi C. Control of apoptosis by the cellular ATP level.FEBS Lett.1996,378:107–110.
    64、Toorn M, Slebos DJ, Bruin HG, et al. Cigarette smoke-induced blockade of the mitochondrialrespiratory chain switches lung epithelial cell apoptosis into necrosis. Am J Physiol Lung Cell MolPhysiol.2007;292: L1211–L1218.
    65、Green DR, Reed JC. Mitochondria and apoptosis. Science.1998;281:1309-1312.
    66、Li JS, Zhang W, Kang ZM, et al. Hyperbaric oxygen preconditioning reduces ischemia-reperfusioninjury by inhition of apoptosis via mitochondrial pathway in rat brains. Neuroscience.2009;159:1309-1315.
    67、Zhang L, L WW, Kang ZML, et al. Mechanism of hyperbaric oxygen preconditioning in neonatalhypoxia–ischemia rat model. Brain Research,2008:1196:151–156.
    68、Vaux DL. Toward an understanding ofthe molecular mechanisms of physiological cell death. ProcNatl Acad Sci USA.1993;90:786-789.
    69、Qin F, Shite J, Mao W, eta1. Selegiline atenuatescardiac oxidative stress and apoptosis in heartfailure: association with improvement ofcardiac function. Eur JP harmacol.2003;461(3):149-158.
    70、Hofstaetter B, Taimor G, Inserte J, et al. Inhibition of apoptotic responses after ischemic stress inisolated hearts and cardiomyocytes. Basic Res Cardiol.2002;97(6):479-488.
    71、Kroemcr C, Reed JC. Mitochondrial control of cell death. Nature med.2000;6:513-519.
    72、EarnshawW C. Apoptosis: a cellular poison cupboard. Nature.1999;397:387-389.
    73、Liu P, Xu B, Cavalieri TA, Hock CE. Age-related diference in myocardial function andinflammation in a rat model of myocardial ischemia reperfusion. Cardiovasc Res,2002;56(3):443-453.
    74、Hochhauser E, Kivity S, Often D, et al. Bax ablation protects against myocardialischemia-reperfusion injuryin transgenic mice.Am J Physiol Heart Circ Physiol.2003;284(6):H2351-2359.
    75、Chang TH, Liu X-Y, Zhang XH, et a1. Efects of dl-praeruptorin A on interleukin-6level and Fas,box, Bcl-2protein expression in ischemia-reperfusion myocardium.Acta PharmacolSin.2002;(9):769-774.
    76、Qian L, Cao F, Cui J, et al. Radioprotective effect of hydrogen in cultured cells and mice. FreeRadic Res.2010;44:275-282.
    77、Nakashima-Kamimura N, Mori T, Ohsawa I, et al: Molecular hydrogen alleviates nephro toxicityinduced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice.CancerChemother Pharmacol2009;64:753-761.
    78、刘菲,刘郁.流式细胞仪检测急性一氧化碳中毒后大鼠脑细胞凋亡.中国医科大学学报.2000;29(6):420-422.
    79、Sulejczak D, Czarkowska-Bauch J, Macias M, et al. Bcl-2and Bax proteins are increased inneocortical but not in thalamic apoptosis following devascularizing lesion of the cerebral cortex in therat:an imrnunohistochcmical study. Brain Res.2004;1006(2):133-149.
    80、Nakamura M, Raghupathi R, Merry DE,et al. Overexpression of Bcl-2is neuroprotective afterexperimental brain injury in transgenic mice.The Journal of Comparative Neurology.1999;412(4):681–692.
    81、Raghupathi A, Conti AC, Graham DI, et al. Mild traumatic brain injury induces apoptotic cell deathin the cortex that is preceded by decreases in cellular Bcl-2immunoreactivity.Neuroscience.2002;110(4):605–616.
    82、Mu XJ, He J, Anderson DW, et al. Altered expression of bcl-2and bax mRNA in amyotrophic lateralsclerosis spinal cord motor neurons. Annals of Neurology.1996;40(3):379–386.
    83、刘福佳,高春锦,夏成青等.急性一氧化碳中毒小鼠脑海马细胞凋亡及Bcl-2、Bax和caspase-3蛋白表达.中华航海医学与高气压医学杂志.2005;12(2):66-68.
    84、Mandal M, Adam L, Mendelsohn J, et a1. Nuclear targeting Bax during apoptosis in humancolorectal cancer cells. Oncogene.1998;17(8):999-1007.
    85、Jin D, Ojcius DM, Sun D, et al. Leptospira interrogans induces apoptosis in macrophages viacaspase-8and caspase-3dependent pathways. Infect Immun.2009;77(2):799-809.
    86、Park SY, Tournell C, Sinjoanu RC, Ferreira A. Caspase-3and calpain-mediated tau cleavages aredifferentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons.Neuroscience.2007;144(1):119-127.
    87、Nakao A, Kaczorowski DJ, Wang Y, et al. Amelioration of rat cardiac cold ischemia/reperfusioninjury with inhaled hydrogen or carbon monoxide, or both. Heart Lung Transplant.2010;29:544-553.
    88、Chen H, Sun YP, Li Y, et al: Hydrogen-rich saline ameliorates the severity of L-arginine-inducedacute pancreatitis in rats. Biochem Biophys Res Commun2010;393:308-313.
    89、Garbin U, Pasini AF, Stranieri C, et al. Cigarette Smoking Blocks the Protective Expression ofNrf2/ARE Pathway in Peripheral Mononuclear Cells of Young Heavy Smokers Favouring Inflammation.PLoS One.2009;4(12): e8225.
    90、Motohashi H, Yamamoto M. Nrf2-Keap1defines a physiologically important stress responsemechanism. Trends Mol Med.2004;10:549–557.
    91、Ma Q, Battelli L, Hubbs AF. Multiorgan autoimmune inflammation, enhanced lymphoproliferation,and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activatedtranscription factor Nrf2. Am J Pathol.2006;168:1960–1974.
    92、Sahin K, Tuzcu M, Sahin N, et al. Nrf2/HO-1signaling pathway may be the prime target forchemoprevention of cisplatin-induced nephrotoxicity by lycopene. Food Chem Toxicol.2010;48(10):2670-2674.
    [1] Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectivelyreducing cytotoxic oxygen radicals. Nat Med2007;13(6):688-94.
    [2] Wood KC, Gladwin MT. The hydrogen highway to reperfusion therapy. Nat Med2007;13(6):673-4.
    [3] Sun Q, Kang ZM, Cai JM, et al. Hydrogen-rich saline protects myocardium againstischemia/reperfusion injury in rats. Exp Biol Med2009;451:374-8.
    [4] Fukuda KI, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S. Inhalation of hydrogen gassuppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress.Biochem Biophys Res Commun2007;361:670-4.
    [5] Cai JM, Kang ZM, Liu W, et al. Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemiarat model. Neurosci lett2008;441:167-72.
    [6] Fu Y, Ito M, Fujita Y, et al. Molecular hydrogen is protective against6-hydroxydopamine-inducednigrostriatal degeneration in a rat model of Parkinson’s disease. Neurosci Lett2009;453(2):81-5.
    [7] Nagata K, Nakashima-Kamimura N, Mikami T, Ohsawa I, Ohta S. Consumption of MolecularHydrogen Prevents the Stress-Induced Impairments in Hippocampus-Dependent Learning Tasksduring Chronic Physical Restraint in Mice. Neuropsychopharmacology2009;34(2):501-8.
    [8] Ginsberg MD. Carbon monoxide. In: Spencer PS, Schaumburg HH,(Eds.), Experimental andClinical Neurotoxicity. The Williams&Wilkins Company, Baltimore1980.pp.374-94.
    [9] Lapresle J, Fardeau M. The central nervous system and carbon monoxide poisoning.II. Anatomicalstudy of brain lesions following intoxication with carbon monoxide (22cases). Prog Brain Res1967;24:31-74.
    [10] Hara S, Mukai T, Kurosaki K, Kuriiwa F, Endo T. Characterization of hydroxyl radical generationin the striatum of free-moving rats due to carbon monoxide poisoning, as determined by in vivomicrodialysis.Brain Res2004;1016:281-4.
    [11] Chang KH, Han MH, Kim HS, Wie BA, Han MC. Delayed encephalopathy after acute carbonmonoxide intoxication: MR imaging features and distribution of cerebral white matter lesions.Radiology1992;184,117-22.
    [12] Choi IS. Delayed neurologic sequelae in carbon monoxide intoxication. Arch.Neurol1983;40,433-5.
    [13] Choi IS, Cheon HY.Delayed movement disorders after carbon monoxide poisoning. Eur Neurol1999;42,141-4.
    [14] O’Donnell P, Buxton PJ, PitkinA, Jarvis LJ. The magnetic resonance imaging appearances of thebrain in acute carbon monoxide poisoning. Clin Radiol2000;55:273-80.
    [15] Thom SR. Carbon-monoxide-mediated brain lipid peroxidation in the rat. Appl Physiol1990;68:997-1003.
    [16] Ernst A, Zibrak JD. Carbon monoxide poisoning. N Engl J Med1998;339:1603-8.
    [17] Miro O, Alonso JR, Casademont J, Jarreta D, Urbano-Marquez A, Cardellach F. Oxidative damageon lymphocyte menbranes is increased in patients suffering from acute carbon monoxide poisoning.Toxicology let1999;110(3),219-23.
    [18] Clerici WJ, Hensley K, DiMartino DL, Butterfield DA. Direct detection of ototoxicant-inducedreactive oxygen species generation in cochlear explants. Hear Res1996;98:116-24.
    [19] Linseman DA. Targeting oxidative stress for neuroprotection. Antioxid Redox Signal2009;11:421-4.
    [20] Klein M, Koedel U, Pfister HW. Oxidative stress in pneumococcal meningitis: a future target foradjunctive therapy? Prog Neurobiol2006;80:269-80.
    [21] Evans PH. Free radicals in brain metabolism and pathology. Br Med Bull1993;49:577-87.
    [22] Reiter RJ. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J1995;9pp:526-33.
    [23] Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervoussystem injury: current state. Pharmacol Rev2002;54:271-84.
    [24] Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. Neurotrauma2000;17:871-90.
    [25] Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning.N Engl J Med2002;347:1057-67.
    [26] Thom SR, Bhopale VM, Fisher D. Hyperbaric oxygen reduces delayed immune-mediatedneuropathology in experimental carbon monoxide toxicity. Toxicol Appl Pharmacol2006;213:152-9.
    [27] Stoller KP. Hyperbaric oxygen and carbon monoxide poisoning: A critical review. NeurolRes.2007;29:146-55.
    [28] Buckley NA, Isbister GK, Stokes B, Juurlink DN. Hyperbaric oxygen for carbon monoxidepoisoning: A systematic review and critical analysis of the evidence. Toxicol Rev2005;24:75-92.
    [29] Silver S, Smith C, Worster A. Should hyperbaric oxygen be used for carbon monoxide poisoning?Can J Emerg Med2006;8:43-6.
    [30] Narkowicz CK, Vial JH, McCartnev PW. Hyperbaric oxygen increased free radicals levels in theblood of humans. Free Radic Res Commun1993;19:71-80.
    [31] Elayan IM, Axley MJ, Prasad PV, Ahlers ST, Auker CR. Effect of hyperbaric oxygen treatment onnitric oxide and oxygen free radicals in rat brain. Neurophysiol2000;83:2022-9
    [32] Liu WW, Li JS, Sun XJ, et al. Effect of repetitive hyperbaric oxygen exposures on latency toconvulsion and the role of NOS. Brain Res2008;1201:128-34.
    [33] Sun XJ, Zhang JH. Hydrogen-an endogenous antioxidant in the body. Acad J Sec Mil Med Univ2008;29(3):233-5.