几种锌基氧化物薄膜的原子层沉积制备、生长特性与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在近几十年里,材料科学取得了长足的发展。随着信息时代的来临和多学科的交叉,人们对具备各种优异性能的新材料需求日益迫切。半个世纪由于微电子领域遵循摩尔定律,保持高速成长,薄膜的制备技术也得到了迅猛发展,并在高新技术领域中起着举足轻重的作用。原子层沉积技术(Atomic layer deposition, ALD)正是在这样的背景下诞生的,并凭借其对薄膜厚度精确至原子层的控制、大面积的均匀性和良好的三维贴合性等优势,正在越来越多的领域获得应用。
     氧化锌是一种重要的直接带隙半导体材料,在光电子器件、压电器件、气敏元件、薄膜晶体管、固态白光照明、日用化工、医药卫生、光催化等领域有着重要而广泛的应用。而且作为明星材料,ZnO资源丰富,价格便宜,无毒安全,环境友好,具有巨大的商业价值,关于ZnO体系及其掺杂改性的研究一直是国际上多个领域的重要前沿和热点课题。
     因此,本论文针对蓬勃发展中的原子层沉积技术和几种具有实际应用价值的Zn基氧化物材料,开展了ZnO、Al掺杂ZnO以及Zn-Ti-O三元氧化物薄膜等的ALD沉积工作,系统研究了工艺条件对它们的生长特性、组成、相结构演变、形貌的影响,并对相关的电学、光学以及光催化性能进行了深入表征。主要成果如下:
     1.系统研究了ALD沉积ZnO、Al2O3和TiO2薄膜的生长特性,包括工作窗口、生长速率(Growth per cycle, GPC)、光学透过率、带隙和源温的影响等。分别采用三甲基铝、异丙醇铝和氯化铝作为Al源,水为氧源,在硅片上沉积了Al2O3薄膜。200~250℃生长,三种Al源均表现为ALD的自限制和自饱和机制。为了提供足够用于ALD饱和吸附的源蒸气,异丙醇铝和氯化铝的源温分别可优化为130℃和120℃。在源蒸汽压足够的前提下,使用三甲基铝或氯化铝时薄膜的GPC约为1.0A/cycle,而使用异丙醇铝时GPC约为1.6A/cycle.采用二乙基锌和H2O作为反应源制备ZnO薄膜,ALD窗口在130~220℃之间,薄膜的GPC约为1.5A/cycle。采用异丙醇钛和H20作为反应源制备Ti02薄膜,ALD窗口在200~250℃,薄膜的GPC约为0.3A/cycle。ALD沉积在-OH终止的硅表面上的ZnO、Ti02薄膜,具有较好的平整性,RMS值不到0.8nm。在-H终止的硅表面上,Ti02薄膜RMS值增大至7.9nm,归结为岛状生长机制。ALD生长的ZnO、TiO2薄膜光学带隙为3.3eV。
     2.深入研究了ALD制备Al掺杂ZnO薄膜(AZO)的生长特性、组成、结构和电学性能,系统比较了三种Al源、不同ZnO/Al2O3(?)勺循环比对AZO薄膜Al掺杂浓度和电阻率的影响,并重点对异丙醇铝源沉积AZO薄膜的工艺进行了优化。使用三甲基铝和异丙醇铝掺杂时,ZnO/Al2O3的循环比在19:1时薄膜的电阻率最低,约为3~4×10-3Ωcm,此时掺杂浓度Al/(A1+Zn)原子比约为2-2.3%,通过有效场模型予以了合理的解释。而使用氯化铝进行掺杂时,AZO薄膜的电阻率增大两个数量级,归结为氯元素残留带来的影响。通过降低异丙醇铝的源温来调控单个掺杂循环中的A1原子数及其分布,进而优化电学性能。A1源温在120℃时,200℃ALD沉积的60纳米厚的AZO薄膜的电阻率降至最低为9.4×10-4Ωcm,薄膜同时具有良好的平整度(RMS值为0.91nm)和可见光透光率(>90%),此时掺杂浓度Al/(Al+Zn)原子比为0.61%。另外,高温退火后ZnO和AZO薄膜电阻率明显增大,通过对输运机制的讨论,归因于退火过程中环境氧扩散进入薄膜,降低锌填隙和氧空位缺陷的浓度,从而导致载流子浓度的下降。
     3.沉积了ZnO/TiO2循环比为1:2、2:5、1:3的三种Zn-Ti-O (ZTO)薄膜,对应的Ti/(Zn+Ti)元素比分别为40.3%,48.8%,52.1%,研究了生长序列、循环比和后退火对GPC、组成和相结构演变的影响。发现Ti02循环生长在ZnO终止的表面上,其GPC增大,反之ZnO循环生长在Ti02终止的表面上,其GPC变小(1:2)-ZTO薄膜900℃后退火可获得纯的Zn2Ti04尖晶石相;(2:5)-ZTO薄膜700℃退火可获得纯的六方ZnTiO3(?)目,并具有较好的高温稳定性;(1:3)-ZTO在700℃退火就会出现六方ZnTiO3和Ti02金红石相。随着退火温度的进一步升高,六方ZnTiO3相分解为金红石相Ti02和尖晶石相Zn2Ti04。重点表征了主晶相为六方ZnTiO3(?)勺(2:5)-ZTO薄膜的介电和光催化性能。700℃退火的(2:5)-ZTO薄膜展现出最好的介电性质,1MHz时,介电常数为29.6,介电损耗为0.012。800℃退火的(2:5)-ZTO薄膜光学带隙为3.75eV,在紫外光照射下表现出较好的降解甲基紫染料的催化活性。本研究证实通过调控生长序列和沉积循环比,可获得组成和晶相可控的Zn-Ti-O薄膜,为ALD应用于三元化合物薄膜的制备提供了一个有力的例证。
     本论文采用ALD方法制备了ZnO、Al掺杂ZnO以及Zn-Ti-O三元氧化物薄膜,并对它们的生长特性和相关性能进行了深入研究,取得了一些有意义的进展。尤其是对Al掺杂ZnO薄膜ALD制备技术的改进,对需要在复杂三维结构上低温沉积透明导电薄膜的领域,如太阳能电池、有机发光二极管等,有重要意义。
Materials science has gained substantial progress in recent decades. With the new information age and interdisciplinary need, the demand for new materials with excellent performances is more and more urgent. Microelectronics has been growing aggressively according to Moore's law during the past half century, so the fabrication technology of thin films has also been developed rapidly, which plays an important role in high-tech fields. Atomic layer deposition (ALD) has emerged as an important technique to deposit thin films for scaling down semiconductor industry. Due to its precise thickness control down to atomic level, large area uniformity, and excellent3D conformality, this technique is being applied in more and more fields.
     ZnO is a kind of semiconductor materials with direct band gap, which has been widely used in piezoelectricity, gas sensor, thin film transistor, white light illumination, photocatalysis, chemical industry, and medicine. As a star material, ZnO shows great commercial value with advantages of abundant resource in the earth, low price, non-toxicity, safety and friendly environment. The research on ZnO system and its doping/modification has been a hotspot in a number of scientific frontiers.
     In this thesis, we focused on the atomic layer deposition (ALD) technique and several kinds of valuable Zn-based oxides materials. ZnO, Al doped ZnO, and Zn-Ti-O ternary thin films have been prepared by ALD. The effect of the processing parameters on their growth behavior, composition, phase evolution, and morphology has been investigated systematically. The related electrical, optical and photocatalytic properties have been characterized deeply. Main achievements are summarized as follows:
     1. The growth behavior of ALD ZnO, Al2O3and TiO2films was investigated, including ALD window, deposition rate, transmittance, and optical band gap. Al2O3films were deposited on Si by ALD using water as oxygen source, and trimethylaluminum (TMA), Al isopropoxide (AIP), and AICl3as Al source, respectively. During the deposition temperature range from200to250℃, the growth of Al2O3films with three kinds of Al precursors shows typical ALD self-limiting and self-saturation features. The source temperature of AIP, and AICl3were optimized to130and120℃, respectively, to generate enough source vapor pressure for ALD saturated chemisorption process. In typical ALD growth, growth per cycle (GPC) of A12O3were1.0,1.6, and1.0A/cycle with TMA, AIP and AICl3as Al precursor, respectively. The ALD window of ZnO deposited with diethylzinc (DEZ) and water as precursors was130~220℃, and the corresponding GPC was about1.5A/cycle. With the substrate temperature of200~250℃, the GPC of ALD TiO2with isopropyl titanate (TTIP) and water as precursors was found to constant as low as0.3A/cycle. ALD ZnO and TiO2films on-OH terminated Si surface show better surface smoothness with roughness less than0.8nm in RMS. While deposited on-H terminated Si surface, the roughness of ZnO increases to7.9nm, ascribed to the island growth. The optical band gap of ALD ZnO and TiO2films is determined to be3.3eV.
     2. The growth, composition, structures and electrical properties of ALD Al doped ZnO (AZO) films were investigated in depth. The impact of Al precursor type and3cycle ratios on doping concentration and resistivity of AZO films were compared. The processing in ALD AZO with AIP as A1precursor was optimized. While using TMA and AIP as A1precursor, at optimal Zn/Al cycle ratio of19:1, the AZO films show the lowest resistivity of3~4×10-3Ω cm with the Al/(A1+Zn) atomic ratio of2~2.3%, which is explained by an effective field model. While using AICl3as Al precursor, the resistivity of AZO films increases by two orders of magnitude, attributed to the residual C1element in the AZO films. For the first time, by changing the AIP source temperature, the doped Al atoms in one doping layer is adjusted so as to optimize the film resistivity. At optimal Zn/Al cycle ratio of19:1, by changing the AIP temperature from115℃to135℃, the Al dopant atomic concentration (Al/(A1+Zn)) in AZO films varies from0.25%to2.32%. The60nm-thick AZO films deposited at AIP temperature of120℃and substrate temperature of200℃shows the lowest resistivity of9.4×10-4Ω cm with the Al/(A1+Zn) atomic ratio of0.61%, relatively low roughness (RMS=0.91nm) and better optical transparency (>90%). In addition, after annealed at400℃in containing oxygen atmosphere, both ZnO and AZO films show enhanced resistivity, which can be attributed to lower carrier concentration of Zni and Vo caused by incorporation of oxygen into the films.
     3. Zn-Ti-O (ZTO) ternary films with various Zn/Ti cycle ratios were deposited on Si substrates using DEZ and TTIP as Zn and Ti sources by ALD. The effect of Zn/Ti cycle ratio and post-annealing temperature on the growth rate, composition, phase structure, and morphology of ZTO films were investigated deeply. It is found that for ALD ZTO films, the growth per cycle (GPC) of TiO2deposited on ZnO-terminated surface is faster than that of pure TiO2, while the GPC of ZnO deposited on TiO2-terminated surface becomes slower than that of pure ZnO. This makes the Zn/Ti cycle ratio effect on the film composition become weak. The post-annealing temperature and ALD sequence play important roles in facilitating the ZTO phase evolution. Pure spinel Zn2TiO4phase can be obtained in the (1:2)-ZTO films with40.3mol.%Ti content post-annealed at900℃. For (2:5)-ZTO samples with48.8mol.%Ti content, pure hexagonal ZnTiO3phase can be formed at700℃with better thermal stability. At700℃and above, the rutile TiO2phase appears for (1:3)-ZTO samples with52.1mol.%Ti content. The SEM images confirm with increasing the post-annealing temperature, the grain size becomes large with the inhomogenous morphologic change due to the h-ZnTiO3phase decomposition into Zn2TiO4and rutile TiO2phases. Dielectric and photocatalytical properties of the (2:5)-ZTO films with h-ZnTiO3phase were characterized.(2:5)-ZTO annealed at700℃show the best dielectric properties of dielectric constant and dielectric loss of29.6and0.012at1MHz, respectively. The800℃annealed (2:5)-ZTO film with optical band gap of3.75eV show better photocatalytical activity in degradation of methyl violet under UV-light. This study confirms that Zn-Ti-O films with controllable composition and phase can be achieved by optimizing the ALD sequences and cycle ratios. Further more, this work provides an example for ALD application in fabrication of ternary compounds.
     In summary, ALD technique was explored to prepare ZnO, Al doped ZnO and Zn-Ti-O ternary films. The growth behavior and related properties were investigated deeply and some meaningful progress has been made. The improved electrical property of ALD Al doped ZnO films at low temperature deposition on complex three-dimensional structures is of importance for some applications such as solar cell and organic light-emitting diodes.
引文
1. A. Sherman, Atomic Layer Deposition for Nanotechnology:An Enabling Process for Nanotechnology Fabrication. New York:Ivoryton Press,2008
    2. R. L. Puurunena, Surface chemistry of atomic layer deposition:A case study for the trimethylaluminum/water process. J. Appl. Phys.,2005,97:121301
    3. D. R. Clarke, Varistor CeramicsJ. Am. Ceram. Soc.1999,82:485.
    4. T. Minami, New n-type transparent conducting oxides, MRS Bull.2000,25:38.
    5. J. Xu, Q. Pan, Y Shun and Z Tian Grain size control and gas sensing properties of ZnO gas sensor, Sensors and Actuators B:Chemical,2000,66:277
    6. D. C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Eng., B 2001,80:383.
    7. J. E. Jaffe and A. C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure, Phys. Rev. B 1993,48:7903.
    8. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and devices J. Appl. Phys.2005,98:041301.
    9. E. Kisi and M. M. Elcombe, U parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction, Acta Crystallogr., Sect. C:Cryst. Struct. Commun. C 1989,45:1867.
    10. H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das P. Blaha, K. Schwarz and M. P. PasternakLattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Phys. Rev. B 1996,53:11425.
    11. F. Oba, S. R. Nishitani, S. Isotahi, H. Adachi, and I. Tanaka, J. Appl. Phys.2001, 90:824.
    12. http://baike.baidu.com/view/1845771.htm
    13. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett.1996,68:403.
    14. D. C. Look, J. W. Hemsky, and J. R. Sizelove, Residual Native Shallow Donor in ZnO, Phys. Rev. Lett.1999,82:2552.
    15. D. W. Hamby, D. A. Lucca, and M. J. Klopfstein, Photoluminescence of mechanically polished ZnO, J. Appl. Phys.2005,97:043504.
    16. H. S. Kang, J. S. Kang, J. W. Kim, and Y. S. Lee, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films, J. Appl. Phys.2004,95: 1246.
    17. F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, Nature of Native Defects in ZnO, Phys. Rev. Lett.2007,99:085502.
    18. D. C. Look, B. Claflin, Y. Alivov, and S. J. Park, The future of ZnO light emitters, Phys. Stat. Sol. A 2004,201:2203.
    19. J. Sann, J. Stehr, A. Hofstaetter, D. M. Hofmann, A. Neumann, M. Lerch U. Haboeck, A. Hoffmann, and C. Thomsen, Zn interstitial related donors in ammonia-treated ZnO powders, Phys. Rev. B 2007,76,195203.
    20. S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, Role of defects in tailoring structural, electrical and optical properties of ZnO, Progress in Materials Science 2009,54:89.
    21. A. Ashrafi and C. Jagadish, Review of zincblende ZnO:Stability of metastable ZnO phases, J. Appl. Phys.2007,102:071101.
    22. P. Wagner and R. Helbig, Halleffekt and anisotropie der beweglichkeit der elektronen in ZnO, J. Phys. Chem. Solids,1974,35:327.
    23. D. C. Look, D. C. Reynolds, J. R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, and W.C. Harsch, Electrical properties of bulk ZnO,Solid State Commun.1997,105: 399.
    24. D. B. Buchholz, J.Liu,T. J.Marks,M.Zhang, andR. P. H. Chang, Control and characterization of the structural, electrical, and optical properties of amorphous zinc-indium-tin oxide thin films, ACS Applied Materials & Interfaces,2009,1,2147.
    25. C. A. Hoel, T.O.Mason, J. F.Gaillard, and K. R. Poeppelmeier, Transparent conducting oxides in the ZnO-In2O3-SnO2system, Chemistry of Materials,2010,22: 3569.
    26. A. Stadler, Transparent conducting oxides-an up-to-date overview, Materials, 2012,5,661.
    27. C. G. Granqvist, Transparent conductors as solar energy materials:a panoramic review, Solar EnergyMaterials and Solar Cells, vol.91,2007,17:1529.
    28. U.S.G. Survey, Mineral Commodity Summaries,2012.
    29. K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nature Photonics,2012,6:809-817.
    30. T. Minami, Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications, Thin Solid Films,2008,516:1314.
    31. T. W. Kim, D. C. Choo, Y. S. No, W. K. Choi, and E. H. Choi, High work function of Al-doped zinc-oxide thin films as transparent conductive anodes in organic light-emitting devices, Applied Surface Science,2006,253,1917.
    32. T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, Thin Solid Films,2008,516:5822.
    33. T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology,2005,20:S35.
    34. J. R. Bakke, K. L. Pickrahn, T. P. Brennan and S. F. Bent, Nanoengineering and interfacial engineering of photovoltaics by atomic layer Deposition, Nanoscale,2011, 3:3482.
    35. S. M. Park, T. Ikegami, and K. Ebihara, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition, Thin Solid Films,2006,513: 90.
    36. A. Illiberi, B. Kniknie, J. van Deelen, H.L.A.H. Steijvers, D. Habets, P.J.P.M. Simons, A.C. Janssen, and E.H.A. Beckers, Industrial high-rate (~14 nm/s) deposition of low resistive and transparent ZnOx:Al films on glass, Solar Energy Materials and Solar Cells,2011,95:1955.
    37. A. Illiberi, P. J. P. M. Simons, B. Kniknie, J. van Deelen, M. Theelen, M. Zeman, M. Tijssen, W. Zijlmans, H.L.A.H. Steijvers, D. Habets, A.C. Janssen, and E.H.A. Beckers, Growth of ZnOx:Al by high-throughput CVD at atmospheric pressure, Journal of Crystal Growth,2012,347:56.
    38. L. Luo, M. D. Rossell, D. Xie, R. Erni, and M. Niederberger, Microwave-assisted nonaqueous Sol-Gel synthesis:from Al:ZnO nanoparticles to transparent conducting films, ACS Sustainable Chemistry & Engineering,2013,1:152.
    39. H. Tanaka, K. Ihara, T. Miyata, H. Sato and T. Minami, J. Vac. Sci. Technol. A 2004,22:1757.
    40. X. R. Deng, H. Deng, M. Wei, and J. J. Chen, Preparation of highly transparent conductive Al-doped ZnO thin films and annealing effects on properties, J Mater. Sci.: Mater. Electron.2012,23:413.
    41. G. J. J. Fang, D. J. Li, and B. L. Yao, Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target, Thin Solid Films, 2002,418:156.
    42. T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition, J. Vac. Sci. Technol. A,2012,30:021202.
    43. M. W. Zhu, H. Huang, J. Gong, and C. Sun, Role of oxygen desorption during vacuum annealing in the improvement of electrical properties of aluminum doped zinc oxide films synthesized by sol gel method, J. Appl. Phys.2007,102:043106.
    44. K. H. Kim, S. H. Shim, and K. B. Shim, Microstructural and Thermoelectric Characteristics of Zinc Oxide-Based Thermoelectric Materials Fabricated Using a Spark Plasma Sintering Process, J. Am. Ceram. Soc,2005,88:628.
    45. S. Katsuyama, Y. Takagi, M. Ito, K. Majima, H. Nagai, H. Sakai, K. Yoshimura, and K. Kosuge Thermoelectric properties of (Zn1-yMgy)1-xAlxO ceramics prepared by the polymerized complex method J. Appl. Phys.2002,92:1391.
    46. T. Tsubota, M. Ohtaki, K. Eguchi and H. Arai, Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion, J. Mater. Chem.,1997,7:85.
    47. K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, and J. Hojo, Distribution and Solubility Limit of Al in Al2O3-Doped ZnO Sintered Body, J. Ceram. Soc. Jap.2007, 115:254.
    48. G. Luka, T. A. Krajewski, B. S. Witkowski, G. Wisz, I. S. Virt, E. Guziewicz, and M. Godlewski, Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications, J Mater Sci:Mater Electron,2011,22:1810.
    49. Y. H. Jiang, Y. M. Sun, H. Liu, F. H. Zhu, H. B. Yin, Solar photocatalytic decolorization of CI Basic Blue 41 in an aqueous suspension of TiO2-ZnO, Dyes Pigments,2008,78:77.
    50. J. Z. Kong, A. D. Li, H. F. Zhai, H. Li, Q. Y. Yan, J. Ma, and D. Wu, Preparation, characterization and photocatalytic properties of ZnTiO3 powders, J Hazar. Mater. 2009,171:918.
    51. A.T. McCord and H.F. Saunder, Preparation of pigmentary, U.S. Patent No. 2379019.
    52. D. Qian, L. Gerward, and J. Z. Jiang, Deformation-induced reactions of ZnO and TiO2, J. Mater. Sci.2004,39:5389.
    53. J.H. Swisher, J. Yang, and R.P. Gupta, Attrition-resistant zinc titanate sorbent for sulfurInd. Eng. Chem. Res.1995,34:4463.,
    54. R.P. Gupta, S.K. Gangwal, and S.C. Jain, Zinc titanate sorbents, U.S. Patent No. 5714431.
    55. H. T. Kim, S. H. Kim, S. Nahm, J. D. Byun, and Y. Kim, Low-Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate-Rutile Mixtures Using Boron, J. Am. Ceram. Soc.1999,82:3043.
    56. F. H. Dulin and D. E. Rase, Phase equilibria in the system of ZnO-TiO2. J. Am. Ceram. Soc.,1960,43:125.
    57. S. F. Bartram and R. A. Slepetys, Compound formation and crystal structure in the system ZnO-TiO2. J. Am. Ceram. Soc.,1961,44:493.
    58. J. C. Conesa, Band structures and nitrogen doping effects in zinc titanate photocatalysts Catalysis Today,2013,208:11.
    59. L. Li, Y. Fan, D. Wang, G. Feng, and D. Xu, Refractive index dispersion of spinel Zn2TiO4 single crystal, Crystal Research and Technology,2011,46:475.
    60. U. Steinike and B. Wallis, Formation and Structure of Ti-Zn-OxidesCrystal Research and Technology,1997,32:187.
    61 G. Krylova, A. Brioude, S. Ababou-Girard, J. Mrazeka, and L. Spanhel, Natural superhydrophilicity and photocatalytic properties of sol-gel derived ZnTiO3-ilmenite/r-TiO2 films, Phys. Chem. Chem. Phys.,2010,12:15101.
    62. J. S. Jang, P. H. Borse, J. S. Lee, K. T. Lim, O. S. Jung, E. D. Jeong, J. S. Bae, M. S. Won, and H. G. Kim, Energy Band Structure and Photocatalytic Property of Fe-doped Zn2Ti04 Material, Bull. Kor. Chem. Soc.2009,30:3021.
    63. T. Aubert, F. Grasset, M. Potel, V. Nazabal, T. Cardinal, S. Pechev, N. Saito, N. Ohashi, and H. Haneda, Synthesis and characterization of Eu3+,Ti4+@ZnO organosols and nanocrystalline c-ZnTiO3 thin films aiming at high transparency and luminescence, Sci. Tech. Adv. Mater.,2010,11:044401.
    64. C. L. Wang, W. S. Hwang, K. M. Chang, H. H. Ko, C. S. Hsi, H. H. Huang, and M.C. Wang, Formation and morphology of Zn2Tu3O8 powders using hydrothermal process without dispersant agent or mineralizer, International Journal of Molecular Sciences,2011,12:935.
    65. Suntola T. Antson J. Method for Producing Compound Thin Films. US Patent No. 4058430,1977.
    66. The National Technology Roadmap for Semiconductors, semiconductor Industry Association, USA (2009,2004), http://pub.itrs.org//
    67. S. M. George, Atomic Layer Deposition:An Overview, Chem. Rev.2010,110: 111.
    68. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, High-Speed Spatial Atomic Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation, Adv. Mater.2010,22:3564.
    69. O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, Thin film atomic layer deposition equipment for semiconductor processing Thin Solid Films 2002,402:248.
    70. International Technology Roadmap for Semiconductors,2007 Edition, http://www.itrs.net/.
    71. J. Biener, T. F. Baumann, Y. M. Wang, E. J. Nelson, S. O. Kucheyev, A. V. Hamza, M. Kemell, M. Ritala, and M. Leskela, Ruthenium/aerogel nanocomposites via atomic layer deposition, Nanotechnology,2007,18:055303.
    72. J. W. Elam, J. A. Libera, M. J. Pellin, A. V. Zinovev, J. P. Greene, and J. A. Nolen, Atomic layer deposition of W on nanoporous carbon aerogels, Appl. Phys. Lett.2006,89:053124.
    73. H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, Plasma-assisted atomic layer deposition:Basics, opportunities, and challenges, J. Vac. Sci. Technol. A 2011,29:050801.
    74. J. A. van Delft, D. Garcia-Alonso, and W. M. M. Kessels, Atomic layer deposition for photovoltaics:applications and prospects for solar cell manufacturing, Semicond. Sci. Technol.2012,27:074002.
    75. H. C. M. Knoops, M. E. Donders, M. C. M. van de Sanden, P. H. L Notten, and W. M. M. Kessels, Atomic layer deposition for nanostructured Li-ion batteries, J. Vac. Sci. Technol. A 2012,30:010801.
    76. T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices, Appl. Phys. Lett.2003,82:2883.
    77. G. K. Hyde, K. J. Park, S. M. Stewart, J. P. Hinestroza, and G. N. Parsons, Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems:effect of surface topology on film growth characteristics, Langmuir 2007,23:9844.
    78. V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, Crystallinity of inorganic films grown by atomic layer deposition:Overview and general trends, J. Appl. Phys.2013,113:021301.
    79. M. Nieminen, T. Sajavaara, E. Rauhala, M. Putkonen, and L. Niinisto, Surface-controlled growth of LaAlO3 thin films by atomic layer epitaxy, J. Mater. Chem.2001,11:2340.
    80. B. S. Lim, A. Rahtu, P. de Rouffignac, and R. G. Gordon, Atomic layer deposition of lanthanum aluminum oxide nano-laminates for electrical applications, Appl. Phys.Lett.2004,84:3957.
    81. M. Vehkamaki, T. Hanninen, M. Ritala, M. Leskela, T. Sajavaara, E. Rauhala, and J. Keinonen, Atomic Layer Deposition of SrTiO3 Thin Films from a Novel Strontium Precursor-Strontium-bis(tri-isopropyl cyclopentadienyl), Chem. Vap. Deposition, 2001,7:75.
    82. M. Vehkamaki, T. Hatanpaa, T. Hanninen, M. Ritala, and M. Leskela, Atomic Layer Deposition of SrTiO3 Thin Films from a Novel Strontium Precursor Strontium-bis(tri-isopropyl cyclopentadienyl) Electrochem. Solid-State Lett.,1999,2: 504.
    83. A. Kosola, M. Putkonen, L.-S. Johansson, and L. Niinisto, Effect of annealing in processing of strontium titanate thin films by ALD, Appl. Surf. Sci.2003,211:102.
    84. S. W. Lee, O. S. Kwon, J. H. Han, and C. S. Hwang, Measuring the microwave frequency relative permittivity of polyetherimide/BaTi4O9 composites by using a rectangular cavity resonator, Appl. Phys. Lett.,2008,92:22903.
    85. M. Roeckerath, T. Heeg, J. Lopes, J. Schubert, S. Mantl, A. Besmehn, P. Myllymaki, and L. Niinisto, Characterization of lanthanum lutetium oxide thin films grown by atomic layer deposition as an alternative gate dielectric, Thin Solid Films, 2008,517:201.
    86. P. Myllymaki, M. Nieminen, J. Niinisto, M. Putkonen, K. Kukli, and L. Niinisto, High-permittivity YScO3 thin films by atomic layer deposition using two precursor approaches, J. Mater. Chem.,2006,16:563.
    87. M. Vehkamaki, M. Ritala, M. Leskela, A. C. Jones, H. O. Davies, T. Sajavaara, and E. Rauhala, Atomic Layer Deposition of Strontium Tantalate Thin Films from Bimetallic Precursors and Water, J. Electrochem. Soc.,2004,151:F69.
    88. T. Hatanpaa, M. Vehkamaki, I. Mutikainen, J. Kansikas, M. Ritala, and M. Leskela, Synthesis and characterisation of cyclopentadienyl complexes of barium: precursors for atomic layer deposition of BaTiO3, Dalton Trans.2004,1181.
    89. S. W. Lee, J. H. Han, S. Han, W. Lee, J. H. Jang, M. Seo, S. K. Kim, C. Dussarrat, J. Gatineau, Y. S. Min, and C. S. Hwang, Atomic Layer Deposition of SrTiO3 Thin Films with Highly Enhanced Growth Rate for Ultrahigh Density Capacitors, Chem. Mater.2011,23:2227.
    90. M. Vehkamaki, T. Hatanpaa, M. Ritala, and M. Leskela, Bismuth precursors for atomic layer deposition of bismuth-containing oxide films, J. Mater. Chem.2004,14: 3191.
    91. M. Ritala, K. Kukli, A. Rahtu, P.1. Raisanen, M. Leskela, T. Sajavaara, and J. Keinonen, Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources, Science,2000,288:319.
    92 G. Clavel, E. Rauwel, M. G. Willinger and N. Pinna, Non-aqueous sol-gel routes applied to atomic layer deposition of oxides, J. Mater. Chem.,2009,19:454.
    93. E. Rauwel, G. Clavel, M. G. Willinger, P. Rauwel, and N. Pinna, Non-Aqueous Routes to Metal Oxide Thin Films by Atomic Layer Deposition, Angew. Chem. Int. Ed.2008,47:3592.
    94. A. Rahtu, M. Ritala and M. Leskela, Atomic layer deposition of zirconium titanium oxide from titanium isopropoxide and zirconium chloride, Chem. Mater. 2001,13:1528.
    95. A. Rahtu and M. Ritala, Reaction mechanism studies on the atomic layer deposition of ZrxTiyOz using the novel metal halide-metal alkoxide approach, Langmuir,2002,18:10046.
    96. J. W. Elam, D. Routkevitch and S. M. George, Properties of ZnO/Al2O3 alloy films grown using atomic layer deposition techniques, J. Electrochem. Soc.2003,150: G339.
    97. J. W. Elam and S. M. George, Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques, Chem. Mater.,2003,15:1020.
    98. R. L. Puurunen, T. Sajavaara, E. Santala, V. Miikkulainen, T. Saukkonen, M. Laitinen, and M. Leskela, Controlling the Crystallinity and Roughness of Atomic Layer Deposited Titanium Dioxide Films J. Nanosci. Nanotechnol.2011,11:8101.
    99. D. R. G. Mitchell, G. Triani, D. J. Attard, K. S. Finnie, P. J. Evans, C. J. Barb, and J. R. Bartlett, Atomic layer deposition of TiO2 and Al2O3 thin films and anolaminates, Smart Mater. Struct.2006,15:S57.
    100. R. L. Puurunen, J. Saarilahti, and H. Kattelus, Implementing ALD Layers in MEMS Processing, ECS Trans.2007,11:3.
    101. J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, Morphology and structure of TiO2 thin films grown by atomic layer deposition, J. Cryst. Growth,1995,148:268. 102. O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvag, Simulation of growth dynamics in atomic layer deposition. Part I. Amorphous films, Thin Solid Films,2007, 515:4527.
    103. O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvag, Simulation of growth dynamics for nearly epitaxial filmsJ. Cryst. Growth,2007,308:366.
    1. http://wenku.baidu.com/view/84879c7d31b765ce0508149f.html
    2.潘承璜,赵良仲,电子能谱基础,科学出版社,1981.
    3.http://zh.wikipedia.org/wiki/%E6%A9%A2%E5%9C%93%E5%81%8F%E6%8C% AF%E6%8A%80%E8%A1%93
    4. P. E. J. Flewitt, R. K. Wild, Physical methods for materials characterization, published by Institute of Physics Publishing,2003.
    5. G. Binnig, C. F. Quate, and C. Gerber, The Atomic Force Microscope, Phys. Rev. Lett.,1986,56:930.
    6. D. K. Schroder,半导体材料与器件表征技术,大连理工大学出版社,2008.
    7. http://baike.baidu.com/view/632512.htm
    8.王卓鹏,分子筛的晶化机理及多孔涂层的制备与应用研究,吉林大学博士论文,2010.
    1. R. L. Puureunen, Surface chemistry of atomic layer deposition:A case study for the trimethylaluminum/water process, J. Appl. Phys.2005,97:121301.
    2. S. M. George, Atomic Layer Deposition:An Overview, Chem. Rev.2010,110: 111.
    3. O. Sneh, R. B. Phelps, A. R. Londergan, J. Winkler and T. E.Seidel, Thin film atomic layer deposition equipment for semiconductor processing, Thin Solid Films, 2002,402:248.
    4. International Technology Roadmap for Semiconductors,2007 Edition, http://www.itrs.net/.
    5. T. Suntola and J. Antson, Method for producing compound thin films, U.S. Patent, No.4058430,1977.
    6. M. Lindblad and A. Root, in Proceedings of the Seventh International Symposium Scientific Bases for the Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, Belgium,1-4 September,1998.
    7. J. R. Bakke, K. L. Pickrahn, T. P. Brennan and S. F. Bent, Nanoengineering and interfacial engineering of photovoltaics by atomic layer Deposition, Nanoscale,2011, 3:3482.
    8. T. M. Mayer, J. W. Elam, S. M George, P. G. Kotula, R. S.Goeke, Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices, Appl. Phys. Lett.2003,82:2883.
    9. R. L. Puurunen, Correlation between the growth-per-cycle and the surface hydroxyl group concentration in the atomic layer deposition of aluminum oxide from trimethylaluminum and water, Appl. Surf. Sci.2005,245:6.
    10. K. Kukli, M. Ritala, and M. Leskela, Dielectric properties of zirconium oxide grown by atomic layer deposition from iodide precursor, J. Electrochem. Soc.2001, 148:F35.
    11. T. Torndahl, C. Platzer-Bjorkman, J. Kessler, and M. Edoff, Atomic layer deposition of Zn1-xMgxO buffer layers for Cu(In, Ga)Se2 solar cells, Prog. Photovoltaics,2007,15:225.
    12.A. P. Belyaev, A. A. Malygin, V. V. Antipov, and V. P. Rubets, Phase transformations in titanium dioxide thin films during chemical synthesis under strongly nonequilibrium conditions, Phys.Solid State,2009,51:495.
    13. R. Bankras, J. Holleman, J. Schmitz, M. Sturm, A. Zinine, H. Wormeester, and B.Poelsema, In situ reflective high-energy electron diffraction analysis during the initial stage of a trimethylaluminum/water ALD process, Chem. Vap. Dep.2006,12: 275.
    14.龚佑品,高介电栅介质薄膜的原子层沉积技术制备、界面结构与电学性能研究,南京大学博士论文,2010.
    15.M. Ritala, K. Kukli, A. Rahtu, P. I. Raisanen, M. Leskela, T. Sajavaara, and J. Keinonen, Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources, Science,2000,288:319.
    16. P. I. Raisanen, M. Ritala, and M. Leskela, Atomic layer deposition of Al2O3 films using AICl3 and Al (O'Pr)3 as precursors, J. Mater. Chem.2002,12:1415.
    17. R. C. Wilhoit, Vapor pressures of some aluminum alkoxides, J. Phys. Chem.,1957, 61:114.
    18. http://baike.baidu.com/view/333199.htm
    19. J. Aarik, A. Aidla, T. Uustare, M. Ritala, M. Leskela, Titanium isopropoxide as a precursor for atomic layer deposition:characterization of titanium dioxide growth process, Appl. Surf. Sci.,2000,161:385.
    20. W. D. Kim, G. W. Hwang, O. S. Kwon, S. K. Kim, M. Cho, D. S. Jeong, S. W. Lee, M. H. Seo, C. S. Hwang, Y. S. Min, and Y. J. Chob, Growth characteristics of atomic layer deposited TiO2 thin films on Ru and Si electrodes for memory capacitor applications, J. Electro. Soc.,2005,152:552.
    21. V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, Crystallinity of inorganic films grown by atomic layer deposition:Overview and general trends, J. Appl. Phys.2013,113:021301.
    1. M. Chen, Z. L. Pei, C. Sun, J. Gong, R. F. Huang, and L. S. Wen, ZAO:an attractive potential substitute for ITO in flat display panels, Mater. Sci. Eng. B.2001, 85:212.
    2. K. Schulze, B. Maennig, K. Leo, Y. Tomita, C. May, J. Hupkes, E. Reinold, E. Brier, and P. Bauerle, Organic solar cells on indium tin oxide and aluminum doped zinc oxide anodes, Appl. Phys. Lett.2007,91:073521.
    3. P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, Towards See Through Displays:Fully Transparent Thin Film Transistors Driving Transparent Organic Light Emitting Diodes, Adv. Mater.2006,18:738.
    4. Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates, Appl. Phys. Lett.2007,91:063510.
    5. E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, V. Narayanamurti, Phys. Rev. B.2011,83,075430.
    6. M. Bazzani, A. Neroni, A. Calzolari, and A. Catellani, Optoelectronic properties of Al:ZnO:Critical dosage for an optimal transparent conductive oxide, Appl. Phys. Lett.2011,98:121907.
    7. G. J. Fang, D. J. Li, and B. L. Yao, Effect of vacuum annealing on the properties of transparent conductive AZO thin films prepared by dc magnetron sputtering, Phys. Status Solidi A 2002,193:139.
    8. Y. Igasaki, H. Kanma, Argon gas pressure dependence of the properties of transparent conducting ZnO:Al films deposited on glass substrates, Appl. Surf. Sci. 2001,508:169.
    9. M. Hiramatsu, K. Imaeda, N. Horo, M. Nawata, Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation, J. Vac. Sci. Technol. A 1998,16:669.
    10. A. Martin, J. P. Espinos, A. Justo, J. P. Holgado, F. Yubero, A. R. Gonzalez-Elipe, Preparation of transparent and conductive Al-doped ZnO thin films by ECR plasma enhanced CVD, Surf. Coat. Technol.2002,289:151.
    11. M. Ohyama, H. Kozuka, T. J. Yoko, Sol-Gel Preparation of Transparent and Conductive Aluminum-Doped Zinc Oxide Films with Highly Preferential Crystal Orientation, J. Am. Ceram. Soc.1998,81:1622.
    12. S. M. George, Atomic Layer Deposition:An Overview, Chem. Rev.2010,110: 111.
    13. P. M. Martin, Handbook of deposition technologies for films andcoatings, third edition:science, applications and technology, Elsevier, Amsterdam,2010.
    14. S.H. K. Park, J.I. Lee, C.S. Hwang, H. Y. Chu, Characteristics of organic light emitting diodes with Al-doped ZnO anode deposited by atomic layer deposition, Jpn. J. Appl. Phys.2005,44:L242.
    15. J. Meyer, P. Gorrn, S. Hamwi, H. H. Johannes, T. Riedl, W. Kowalsky, Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition, Appl. Phys. Lett.2008,83: 073308.
    16. G. Luka, T. A. Krajewski, B. S. Witkowski,G. Wisz, I. S. Virt, E. Guziewicz, M. Godlewski, Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications, J. Mater. Sci.:Mater. Electron.2011,22:1810.
    17. M. Bouderbala, S. Hamzaoui, M. Adnane, T. Sahraoui, and M. Zerdali, Annealing effect on properties of transparent and conducting ZnO thin films, Thin Solid Films, 2009,517:1572.
    18. W.M. Hlaing Oo, M.D. McCluskey, J. Huso, L. Bergman, Infrared and Raman spectroscopy of ZnO nanoparticles annealed in hydrogen, J. Appl. Phys.2007,102: 043529.
    19. D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, K. B. Kim, Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films, Adv. Funct. Mater.2011,21:448.
    20. N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J. R. Lee, Fritz B. Prinz, Atomic layer deposition of Al-doped ZnO films:effect of grain orientation on conductivity, Chem. Mater.2010,22:4769.
    21. J. W. Elam and S. M. George, Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques, Chem. Mater.,2003,15:1020.
    22. G. J. Schoen, Electron Spectrosc. Relat. Phenom.1973,2:75.
    23. T. L. Barr, Appl. Surf. Sci.1983,15:1.
    24. C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six, W. T. Jansen, and J. A. Taylor, Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds, J. Vac. Sci. Technol.1982,21: 933.
    25. V. I. Nefedov, Y. V. Salyn, G. Leonhardt, and R. J. Scheibe, Comparison of different spectrometers and charge corrections uesd in X-ray photoelectron-spectroscopy, Electron Spectrosc. Relat. Phenom.1977,10:121.
    26. M. Takagi-Kawai, M. Soma, T. Onishi, K. Tamaru, The adsorption and the reaction of NH3 and NOx on supported V2O5 catalysts:effect of supporting materials, Can. J. Chem.1980,58:2132.
    27. T. Tsubota, M. Ohtaki, K. Eguchi and H. Arai, Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion, J. Mater. Chem.,1997,7:85.
    28. K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, and J. Hojo, Distribution and Solubility Limit of Al in Al2O3-Doped ZnO Sintered Body, J. Ceram. Soc. Jap.,2007, 115:254.
    29. P. Genevee, F. Donsanti, G. Renou, and D. Lincot, Study of the aluminum doping of zinc oxide films prepared by atomic layer deposition at low temperature, Appl. Surf. Sci.2013,264:464.
    30. T. Tynell, H. Yamauchi, M. Karppinen, R. Okazaki, and I. Terasaki, Atomic layer deposition of Al-doped ZnO thin films, J. Vac. Sci. Technol. A 2013,31:01A109.
    31. T. Dhakal, D. Vanhart, R. Christian, A. Nandur, and A. Sharma, Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition, J. Vac. Sci. Technol. A 2012,30:021202.
    32. L. F. Lu, H. L. Shen, F. Jiang, C. Yang, and L. Lin, The enhanced conductivity of AZO thin films on soda lime glass with an ultrathin Al2O3 buffer layer, Physica B, 2010,405:3320.
    33. N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J. R. Lee, and F. B. Prinz, Atomic layer deposition of Al-doped ZnO films:effect of grain orientation on conductivity, Chem. Mater.2010,22:4769.
    34. H. Cheun, C. F. Hernandez, J. Shim, Y. N. Fang, Y. Cai, H. Li, A. K. Sigdel, J. Meyer, J. Maibach, A. Dindar, Y. Zhou, J. J. Berry, J. L. Bredas, A. Kahn, K. H. Sandhage, B. Kippelen, Oriented Growth of Al2O3:ZnO Nanolaminates for Use as Electron-Selective Electrodes in Inverted Polymer Solar Cells, Adv. Funct. Mater. 2012,22:1531.
    35. Z. Baji, Z. Labadi, Z. E. Horvath, I. Barsony, Structure and morphology of aluminium doped Zinc-oxide layers prepared by atomic layer deposition, Thin Solid Films 2012,520:4703.
    36. S. C. Gong, Y. J. Choi, H. Kim, C. S. Park, H. H. Park, Aluminum-doped zinc oxide formed by atomic layer deposition for use as anodes in organic light emitting diodes, J. Vac. Sci. Technol. A 2013,31:01A101.
    37. E. Burstein, Anomalous optical absorption limit in InSb, Phys. Rev.1954,93: 632.
    38. C. H. Ahn, B. H. Kong, H. Kim and H. K. Cho, J. Electrochem. Soc.2011,158: H170.
    1. F. H. Dulin and D. E. Rase, Phase Equilibria in the System ZnO-TiO2, J. Am. Ceram. Soc.1960,43:125.
    2. S. F. Bartram and R. A. Slepetys, Compound Formation and Crystal Structure in the System ZnO-TiO2, J. Am. Ceram. Soc.1961,44:493.
    3. H. T. Kim, S. Nahm, and J. D. Byun, Low-Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate-Rutile Mixtures Using Boron J. Am. Ceram. Soc.1999,82:3043.
    4. H. T. Kim, J. D. Byun, and Y. Kim, Low-Fired (Zn, Mg) TiO3 Microwave Dielectrics, Mater. Res. Bull.1998,33:963.
    5. X. C. Liu, F. Gao, L. L. Zhao, and C. S. Tian, Low-temperature sintering and phase transition of zinc titanateceramics with V2O5 and B2O3 addition, J. Alloys Compd. 2007,436:285.
    6. H. Obayashi, Y. Sakurai, and T. Gejo, Perovskite-type oxides as ethanol sensors, J. Solid State Chem.1976,17:299.
    7. C. Ye, S. S. Pan, X. M. Teng, T. H. Fan, and G. H. Li, Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system, Appl. Phys. A 2008, 90:375.
    8. R. P. Gupta, S. K. Gangwal, and S. C. Jain, U.S. Patent No.5,1998,714,431.
    9. Y. L. Chai, Y. S. Chang, G. J. Chen, and Y. J. Hsiao, The effects of heat-treatment on the structure evolution and crystallinity of ZnTiO3 nano-crystals prepared by Pechini process, Mater. Res. Bull.2008,43:1066.
    10. A. Chaouchi, S. d'Astorg, S. Marinel, and M. Aliouat, ZnTiO3 ceramic sintered at low temperature with glass phase addition for LTCC applications, Mater. Chem. Phys. 2007,103,106.
    11. A. R. Phani, M. Passacantando, and S. Santucci, Synthesis of nanocrystalline ZnTiO3 perovskite thin films by sol-gel process assisted by microwave irradiation, J. Phys. Chem. Solids,2007,68:317.
    12. S. F. Wang, F. Gu, M. K. Lu, C. F. Song, D. Xu, D. R. Yuan, and S. W. Liu, Photoluminescence of sol-gel derived ZnTiO3:Ni2+ nanocrystals, Chem. Phys. Lett. 2003,373:223.
    13. S. F. Wang, F. Gu, M. K. Lu, W. G. Zou, S. W. Liu, D. Xu, D. R. Yuan, and G. J. Zhou, Photoluminescence characteristics of ZnTiO3:Bi3+ nanocrystals, J. Phys. Chem. Solids,2004,65:1243.
    14. S. F. Wang, M. K. Lu, F. Gu, C. F. Song, D. Xu, D. R. Yuan, G. J. Zhou, and Y. X. Qi, Photoluminescence characteristics of Pb2+ ion in sol-gel derived ZnTiO3 nanocrystals, Inorg. Chem. Commun.2003,6:185.
    15. M. R. Mohammadi, and D. J. Fray, Low temperature nanostructured zinc titanate by an aqueous particulate sol-gel route:Optimisation of heat treatment condition based on Zn:Ti molar ratio, J. Euro. Cera. Soc.2010,30:94.
    16. Z. X. Chen, A. Derking, W. Koot, and M. P. van Dijk, Dehydrogenation of Isobutane over Zinc Titanate Thin Film Catalysts, J. Catal.1996,161:730.
    17. J. S. Jung, Y.H. Kim, S. K. Gil, and D. H. Kang, Dielectric properties of zinc titanate thin films prepared by Rf magnetron sputtering, J. Electroceram.2009,23: 272.
    18. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, High-Speed Spatial Atomic-Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation, Adv. Mater.2010,22:3564.
    19. M. Leskela, M. Ritala, and O. Nilsen, Novel materials by atomic layer deposition and molecular layer deposition, MRS Bull.2011,36,877.
    20. L. Borgese, E. Bontempi, L. E. Depero, P. Colombi, and I. Alessandri, Tailoring phase and composition at the nanoscale:atomic layer deposition of Zn-Ti-O thin films, Cryst. Eng. Comm.2011,13,6621.
    21. M. Vehkamaki, T. Hatanpaa, M. Ritala and M. Leskela, Bismuth precursors for atomic layer deposition of bismuth-containing oxide films, J. Mater. Chem.2004,14: 3191.
    22. P. R. Moses, L. M. Wier, J. C. Lennox, H. O. Finklea, F. R. Lenhard, and R. W. Murray, X-ray photoelectron spectroscopy of alkylaminesilanes bound to metal oxide electrodes, Anal. Chem.1978,50:576.
    23. E. C. Onyiriuka, Zinc phosphate glass surfaces studied by XPS, J. Non-cryst. Solids,1993,163:268.
    24. M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R.F. Huang, and L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Appl. Surf. Sci.2000,158:134.
    25. H. T. Kim, Y. Kim, M. Valant and D. Suvorov, Titanium incorporation in Zn2TiO4 spinel ceramics, J. Am. Ceram. Soc.2001,84:1081.
    26. Y. C. Lee, Y. L. Huang, W. H. Lee, and F. S. Shieu, Formation and transformation of ZnTiO3 prepared by sputtering process, Thin Solid Films 2010,518: 7366.
    27.孔继周,几种纳米粉末与纳米复合薄膜的制备及其光催化和磁性能的研究,南京大学博士论文,2011.
    28. C. Ye, Y. Wang, Y. Ye, J. Zhang, and G. H. Li Preparation and photoluminescence of undoped ZnTiO3 thin films, J. Appl. Phys.2009,106:033520.
    29. A. Fortuny, C. Bengoa, J. Font, and A. Fabregat, Bimetallic catalysts for continuous catalytic wet air oxidation of phenol, Journal of Hazard Materials,1999, 64:181.
    30. S. Rana, J. Rawat, M.M. Sorensson, R.D.K. Misra, Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles:A biomaterial system, Acta Biomaterialia,2006,2:421.