航天器编队飞行分布式协同控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,越来越多的航天研究机构针对多个航天器编队飞行的空间任务展开研究。随着一致性算法在一阶和二阶线性积分动力学系统的分布式控制中的应用研究越来越成熟,如何将一致性算法应用到航天器编队系统的协同控制中,引起国内外专家学者的关注。本文在总结已有研究成果的基础上,对航天器编队飞行的姿态及相对位置协同控制进行研究。论文主要内容如下:
     针对多个航天器编队飞行的姿态协同控制问题展开研究,基于无向通信拓扑,根据一致性算法的思想,引入相互通信的航天器姿态及角速度信息设计姿态协同跟踪控制策略。并将此控制策略扩展到含时变权值协同控制系数、利用滑模估计器获得期望信息、面向有向通信拓扑的情况下,通过设计一系列控制算法来提高编队系统中航天器间相对姿态误差的控制精度及动态性能,减轻对地面站或主航天器的通信依赖。并通过设计控制策略使得编队航天器可在有限时间内快速协同收敛于期望姿态,以及克服航天器物理参数的不确定性及外干扰力矩的影响。通过仿真验证了相比于传统主从结构的航天器集中式控制,上述分布式控制策略能够更好地解决多个航天器的姿态协同问题,具有较好的鲁棒性。
     考虑到相互通信的航天器间存在不可避免的信息传递时间延迟现象,通过选取合适的Lyapunov函数,建立了面向通信时滞的变结构姿态协同跟踪控制策略,并找到不依赖时滞信息的稳定性条件。进一步,给出保证外干扰力矩对系统输出的影响满足L2增益性能指标的控制参数选取范围。另外,将此控制策略扩展到有向通信拓扑条件下,并考虑航天器间协同控制项的输入时滞,进而找到依赖时滞信息的稳定性条件,降低了对控制参数要求的保守性。最后,通过引入含通信时滞的滑模滤波器的状态信息来降低地面站或主航天器的通信压力。通过仿真验证了上述两种含时滞信息控制策略的可行性。
     考虑当航天器采用无角速度敏感器配置方案时,仅利用航天器绝对姿态及航天器间相对姿态信息设计输出反馈姿态协同控制算法,并通过引入含积分项的滤波器达到抑制常值外干扰力矩的作用,同时给出期望姿态信息仅对编队中部分航天器可知情况下无向通信拓扑需满足的条件。在上述面向通信时滞的姿态协同控制策略基础上设计无需角速度信息的姿态协同跟踪控制算法,同样将结果扩展到存在协同控制项输入时滞的情况下,并分别给出独立及依赖时滞信息的控制参数选取范围。仿真结果表明在无需航天器角速度测量的基础上,输出反馈分布式控制策略仍然能够使得多个编队航天器协同跟踪动态期望目标,并具有较好的控制精度。
     考虑到航天器的相对位置对姿态控制的影响,基于在主航天器轨道系中建立的从属航天器相对位置动力学方程给出分布式控制策略,并在有向通信拓扑条件下进行稳定性分析。根据具体通信测量任务的要求,给出一种利用航天器间的相对位置确定期望姿态与角速度的方法。类似于面向通信时滞的航天器姿态协同控制问题,在航天器速度信息不可测量情况下,设计了含时变通信时滞的自适应分布式控制策略。并通过仿真验证了上述控制策略对航天器相对位置控制的有效性。
In recent years, more and more aerospace research institutions develop thespace missions which are fulfilled by multiple spacecrafts formation flying.Meanwhile as the applications of the consensus algorithm to the distributed controllaws of the first and second order integral dynamical systems are becoming moreand more mature, how to apply the consensus algorithm to the cooperation controlof spacecrafts formation system gets more and more attention of the scholars andexperts at home and abroad. By surveying existing research results on thespacecrafts formation flying control and consensus algorithm, the dissertationmainly research on the coordinative attitude and relative position control laws of thespacecrafts formation system based on consensus theory. The main contents of thedissertation are as follows:
     In order to solve the coordinative attitude control problem of spacecraftsformation flying, the attitudes and angular velocities of the spacecrafts wereintroduced, by which the spacecrafts could communicate with each other, and then acooperative attitude control law is designed based on the consensus algorithm andundirected communication topology. Then extending this control law to thesituations that the controller contains time-varying weighted cooperation controlparameters, the desired states can be accepted by the sliding-mode estimator, and thedirected communication topology, several control algorithms are proposed toimprove the accuary and the dynamic performance of relative attitude errors, toreduce the communication pressure of the ground station or the leader spacecraft, tocooperatively converge to desired attitude in finite-time, and to overcome thespacecraft physical parameters uncertainty and external disturb torque. It isvalidated by the simulation results that the above distributed control strategies cansolve the spacecrafts formation attitude cooperative problem better and are morerobust, compared to the traditional centralized control of the leader-followerstructure.
     The time-delays of information transmission is usually inevitable among thespacecrafts which communicate with each other in the formation. Taking this intoaccount, proper Lyapunov function is chosen to propose a distributed variablestructure attitude cooperative control law, meanwhile the condition of thedelay-independent stability is found. Furthermore, the range of the controlparameters is given when the tracking performance is evaluated by L2-gain from thedisturbance input to the penalty output of the control system. In addition,considering the input time-delays of the relative control part, this control law is extend to the situation of the directed communication topology, a new distributedcontrol strategy is designed and the delay-dependent stability condition is found,thus the conservative of the delay-independent stability condition is reduced. Finally,a finite-time sliding-mode estimator is introduced in order to release the heavycommunication pressures of the earth station or the leader spacecraft. Simulationresults are presented to demonstrate the effectiveness of the two control schemeswith time-delays.
     An output feedback attitude cooperation tracking control law is proposed byonly using the absolute and relative attitude measurements when there are noangular velocity sensors, and the constant disturbance torque can be overcomed bydesigning the filters with integral term. In addition, the condition of the underictedcommunication topology is proved when the desired attitude only can access to apart of spacecrafts. Based on the above attitude coordination control law withtime-delay, an attitude cooperation tracking control law is proposed without usingexplicit angular velocity, the results of which are also extended to the situation thatcontains the input time-delays of the relative control part, then thedelay-independent and delay-dependent stability conditions are given respectively.The simulation results show that the distributed output feedback control laws canmake multiple formation spacecrafts to track the dynamic desired target and havegood accuracy even without the angular velocity measurements.
     Based on the relative position dynamics in the orbit reference of the leaderspacecraft, a distributed position cooperation tracking control law is designed,taking into account the effect of the attitude control due to the relative positionamong the spacecrafts in the formation. The stability analysis of the formationsystem is performed under the dericted communication topology. Further more,using the relative positions among the spacecrafts, the desired attitude quaternionand angular velocity can be determined for the requirement of thespecific communication measurement task. Like the above case of attitude controlwith time-delay, a distributed adaptive cooperation control law with communicationtime-varying delays is proposed without any velocity measurements. Numericalsimulation results are presented to show the effectiveness of the proposedcontrollers for the relative position of the spacecrafts in the formation.
引文
[1]吴云华.编队卫星相对轨道与姿态耦合控制方法研究[D].哈尔滨工业大学,博士学位论文,2009
    [2]张育林,曾国强,王兆魁等.分布式卫星系统理论及应用[M].科学出版社,2008
    [3] Shaw G, Miller D, Hastings D. Generalized Characteristics of Communication,Sensing, and Navigation Satellite Systems[J]. Journal of Spacecraft and Rockets.2000,37(6):801-811
    [4] Caceres M. The Emerging Nanosatellite Market[J]. Aerospace America.2001,39(2):16-18
    [5] Shan J. Synchronized Attitude and Translational Motion Control for SpacecraftFormation Flying[C]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2009,223(6):749-768
    [6]林来兴.分布式小卫星系统的技术发展与应用前景[J].航天器工程,2010,19(1):60-66
    [7]林来兴,车汝才.分布式空间系统和航天器编队飞行辨析–兼谈航天器知识编队和精确编队飞行应用实例[J].航天器工程,2008,17(4):24-29
    [8] Inalhan G, Tillerson M and Jonathan P. Relative Dynamics and Control ofSpacecraft Formations in Eccentric Orbits[J]. Journal of Guidance, Control, andDynamics.2002,25(1):48-59
    [9] Ahn C, Kim Y. Point Targeting of Multisatellites via Virtual StructureFormation Flight Scheme[J]. Journal of Guidance, Control and Dynamics.2009,32(4):1330-1344
    [10]徐劼.小卫星编队飞行关键技术及发展趋势分析[J].航天电子对抗.2007,23(6),24-27
    [11] Lindensmith C. Tessestrial Planet Finder: Technology Development Plans andProgress[C]. Proceedings of Aerospace Conference,2004,6:4186-4189
    [12]刘豪,梁巍.美国国防高级研究计划局F6项目发展研究[J].航天器工程.2010,19(2):92-98
    [13] Lafleur J, Saleh J. Exploring the F6Fractionated Spacecraft Trade Space withGT-FAST[C]. AIAA SPACE2009Conference and Exposition, Pasadena,California,2009:14-17
    [14]林来兴.自主空间交会对接飞行演示与验证-美国“轨道快车”计划[J].控制工程.2005,3:1-15
    [15] Matinez J S L, Castellani L T. PROBA-3Formation Flying SystemPerspectives[C].3rd International Symposium on Formaiton Flying, Missionsand Technologies,2008,654:1-8
    [16] Vivès S, Lamy P and Koutchmy S. ASPIICS, A Giant Externally OccultedCoronagraph for the PROBA-3Formation Flying Mission[J]. Advances in SpaceResearch.2009,43(6):1007-1012
    [17] Cockell C S, Herbst T and Léger A, et al. Darwin—An ExperimentalAstronomy Mission to Search for Extrasolar Planets[J]. ExperimentalAstronomy.2008,23(1):435-461
    [18] Cockell C S, Léger A and Fridlund M, et al. Darwin—A Mission to Detect andSearch for Life on Extrasolar Planets[J]. Astrobiology.2009,9(1):1-22
    [19] Giulicchi L, Wu S and Fenal T. Attitude and Orbit Control Systems for theLISA Pathfinder Mission[J]. Aerospace Science and Technology.2011, in press
    [20] Racca G D, McNamara P W. The LISA Pathfinder Mission Tracing Einstein’sGeodesics in Space[J]. Space Science Reviews.2010,151(1-3):159-181
    [21] Bodin P, Larsson R and Nilsson F, et al. PRISMA: An In-Orbit Test Bed forGuidance, Navigation, and Control Experiments[J]. Journal of Spacecraft andRockets.2009,46(3):615-623
    [22] Gill E, D'Amico S and Montenbruck O. Autonomous Formation Flying for thePRISMA Mission[J]. AIAA Journal of Spacecraft and Rockets,2007,44(3):671-681
    [23] Persson S, Veldman S and Bodin P. PRISMA—A Formation Flying Project inImplementation Phase[J]. Acta Astronautica2009,65(9-10):1360-1374
    [24] Buckreuss S, Zink M. The Missions TerraSAR-X and TanDEM-X: Status,Challenges, Future Perspectives[C]. General Assembly and ScientificSymposium,2011:1-1
    [25] LoBosco D M, Cameron G E. The Pleiades Fractionated Space SystemArchitecture and the Future of National Security Space[C]. AIAA Space2008Conference and Exposition, San Diego, California,2008:9-11
    [26]李志,分布式天基雷达卫星编队与波束形成技术研究[D].电子科技大学,硕士学位论文,2011
    [27]楼良盛,汤晓涛,黄启来.基于卫星编队InSAR方向向基线影响分析[J].武汉大学学报,2007,32(1):59-61
    [28]张锦绣,曹喜滨,董晓光,王继河. Drag-free卫星编队的发展现状和趋势研究[J].哈尔滨工业大学学报,2010,42(5):673-677
    [29] Reynolds C W. Flocks, Herds, and Schools: A Distributed Behavioral Model[J].Computer Graphics.1987,21(4):25-34
    [30] Vicsek T, Czirok A and Jacob E B, et al. Novel Type of Phase Transitions in aSystem of Self-Driven Particles[J]. Physical Review Letters.1995,75(6):1226-1229
    [31] Jadbabaie A, Lin J and Morse A S. Coordination of Groups of MobileAutonomous Agents Using Nearest Neighbor Rules[J]. IEEE Transactions onAutomatic Control.2003,48(6):988-1001
    [32] Olfati-Saber R, Fax J A and Murray R M. Consensus and Cooperation inNetworked Multi-Agent Systems[J]. Proceedings of the IEEE.2007,95(1):215-233
    [33] Ren W, Beard R W and Atkins E M. Information Consensus in MultivehicleCooperative Control: Collective Group Behavior through Local Interaction[J].IEEE Control Systems Magazine.2007,27(2):71-82
    [34] Olfati-Saber R, Murray R M. Consensus Problems in Networks of Agents withSwitching Topology and Time-Delays[J]. IEEE Transactions on AutomaticControl.2004,49(9):1520-1533
    [35] Moreau L. Stability of Multi-agent Systems with Time-DependentCommunication Links[J]. IEEE Transactions on Automatic Control.2005,50(2):169-182
    [36] Ren W, Beard R W. Consensus Seeking in Multi-Agent Systems underDynamically Changing Interaction Topologies[J]. IEEE Transactions onAutomatic Control.2005,50(5):655-661
    [37] Hatano Y, Mesbahi M. Agreement over Random Networks[J]. IEEETransactions on Automatic Control.2005,50(11):1867-1872
    [38] Tahbaz-Salehi A, Jadbabaie A. A Necessary and Sufficient Condition forConsensus over Random Networks[J]. IEEE Transactions on Automatic Control.2008,53(3):791-795
    [39] Cao M, Morse A S and Anderson B D O. Agreeing Asynchronously[J]. IEEETransactions on Automatic Control.2008,53(8):1826–1838
    [40] Xiao F, Wang L. Consensus Protocols for Discrete-Tme Multi-Agent Systemswith Time-Varying Delays Agreeing Asynchronously[J]. Automatica.2008,4(10):2577-2582
    [41] Fang L, Antsaklis P J. Asynchronous Consensus Protocols using NonlinearParacontractions Theory[J]. IEEE Transactions on Automatic Control.2008,53(10):2351-2355
    [42] Ren W, Atkins E M. Distributed Multi-Vehicle Coordinated Control via LocalInformation Exchange[J]. International Journal of Robust and Nonlinear Control.2007,17(10-11):1002-1033
    [43] Xie G, Wang L. Consensus Control for a Class of Networks of DynamicAgents[J]. International Journal of Robust and Nonlinear Control.2007,17(10-11):941-959
    [44] Hayakawa T, Matsuzawa T and Hara S. Formation Control of Multi-AgentSystems with Sampled Information[C]. In Proceedings of the IEEE Conferenceon Decision and Control, San Diego, CA,2006:4333-4338
    [45] Cao Y, Ren W. Multivehicle Coordination for Double-Integrator Dynamics in ASampled Data Setting[J]. International Journal of Robust and Nonlinear Control.2009,20(9):987-1000
    [46] Cao Y, Ren W. Sampled-Data Discrete-Time Consensus Algorithms forDouble-Integrator Dynamics under Dynamic Directed Interaction[J].International Journal of Control.2010,83(3):506-515
    [47] Yu W, Chen G and Cao M, et al. Second-Order Consensus for Multi-AgentSystems with Directed Topologies and Nonlinear Dynamics[J]. IEEETransations on Systems, Man and Cybernetics, Part B: Cybernetics.2010,40(3):881-891
    [48] Zhu J, Tian Y and Kuang J. On the General Consensus Protocol of Multi-AgentSystems with Double-Integrator Dynamics[J]. Linear Algebra and ItsApplications.2009,431(5-7):701-715
    [49] Cao Y, Li Y and Ren W, et al. Distributed Coordination of NetworkedFractional-Order Systems[J]. IEEE Transactions on Systems, Man andCybernetics, Part B: Cybernetics.2009,40(2):362-370
    [50] Cortes J. Finite-Time Convergent Gradient Flows with Applications to NetworkConsensus[J]. Automatica.2006,42(11):1993-2000.
    [51] Jiang F, Wang L. Finite Time Information Consensus for Multi-Agent Systemswith Fixed and Swithing Topologies[J]. Physica D.2009,238(16):1550-1560
    [52] Wang L, Xiao F. Finite-Time Consensus Problems for Networks of DynamicAgents[J]. IEEE Transactions on Automatic Control.2010,55(4):950-955.
    [53] Xiao F, Wang L and Jia Y. Fast Information Sharing in Networks ofAutonomous Agents[C]. In Proceedings of Amenrican Control Conference,Seattle, WA,2008:4388-4393.
    [54] Wang X, Hong Y. Finite-Time Consensus for Multi-Agent Networks withSecond-Order Agent Dynamics[C]. In Proceedings of IFAC world congress.Korea,2008:15185-15190
    [55] Lin P, Jia Y. Multi-Agent Consensus with Diverse Time-delays andJointly-connected Topologies[J]. Automatica.2011,47(4):848-856
    [56] Yu J, Wang L. Group Consensus in Multi-Agent Systems with SwitchingToplogies and Communication Delays[J]. Systems&Control Letters.2010,59(6):340-348
    [57] Zhang Y, Tian Y. Consensus of Date-Sampled Multi-agent Systems withRandom Communication Delay and Packet Loss[J]. IEEE Transactions onAutomatic Control.2010,55(4):939-943
    [58] Cepeda-Gomez R, Olgac N. Consensus of a Group of Second Order Agentswith Switching Irregular Communication Topologies and Time-delay[C].49thIEEE Conference on Decision and Control. Atlanta, GA,2010:5474-5478
    [59] Yang H, Wang F and Zhang S. Consensus of Second-Order Multi-AgentSystems with Nonsymmetric Interconnection and Heterogeneous Delays[J].International Journal of Automation and Computing.2011,8(4):421-428
    [60] Hong Y, Hu J and Gao L. Tracking Control for Multi-agent Consensus with anActive Leader and Variable Topology[J]. Automatica.2006,42(7):1177-1182
    [61] Hong Y, Chen G and Bushnell L. Distributed Observers Design forLeader-following Control of Multi-Agent Networks[J]. Automatica.2008,44(3):846-850
    [62] Ren W. Multi-vehicle Consensus with a Time-varying Reference State[J].Systems&Control Letters.2007:56(7-8):474-483
    [63] Cao Y, Ren W and Li Y. Distributed Discrete-Time Coordinated Tracking with aTime-Varying Reference State and Limited Communication[J]. Automatica.2009,45(5):1299-1305
    [64] Ren W. On Consensus Algorithms for Double-Integrator Dynamics[J]. IEEETransactions on Automatic Control.2008,53(6):1503-1509
    [65] Peng K, Yang Y. Leader-following Consensus Problem with A Varying-velocityLeader and Time-Varying Delays[J]. Physica A.2009,388(2-3):193-208
    [66] Liu S, Xie L and Zhang H. Distributed Consensus for Multi-Agent Systemswith Delays and Noises in Transmission Channels[J]. Automatica.2011,47(5):920-934
    [67] Sun Y, Zhao D and Ruan J. Consensus in Noisy Environments with SwitchingTopology and Time-Varying Delays[J]. Physica A,2010,389(19):4149-4161
    [68] Zhu W, Cheng D. Leader-Following Consensus of Second-Order Agents withMultiple Time-Varying Delays[J]. Automatica.2010,46(12):1994-1999
    [69] Meng Z, Ren W and Cao Y, et al. Some Stability and Boundedness Conditionsfor Sencond-Order Leaderless and Leader-Following Consensus withCommunicaiton and Input Delays[C]. American Control Conference. Baltimore,MD, USA.2010:574-579.
    [70] Hu J, Hong Y. Leader-Following Coordination of Multi-Agent System withCoupling Time Delays[J]. Physica A.2007,374(2):853-863
    [71] Xiao F, Wang L and Chen J, et al. Finite-time Formation Control forMulti-agent Systems[J]. Automatica.2009,45(11):2605-2611
    [72] Khoo S, Xie L and Man Z. Robust Finite-time Consensus Tracking Algorithmfor Multirobot Systems.[J] IEEE/ASME Transactions on Mechatronics.2009,14(2):219-228
    [73] Cao Y, Ren W and Meng Z. Decentralized Finite-time Sliding Mode Estimatorsand Their Applications in Decentralized Finite-time Formation Tracking[J].Systems&Control Letters.2010,59(9):522-529
    [74] Olfati-Saber R. Flocking for Multi-Agent Dynamic Systems: Algorithms andTheory[J]. IEEE Transactions on Automatic Control.2006,51(3):401-420
    [75] Su H, Wang X and Lin Z. Flocking of Multi-agents with A Virtual Leader[J].IEEE Transactions on Automatic Control.2009,54(2):293-307
    [76] Shi H, Wang L and Chu T. Flocking of Multi-agent Systems with A DynamicVirtual Leader[J]. International Journal of Control.2009,82(1):43-58
    [77] Yao J, Ordonez R, and Gazi V. Swarm Tracking Using Artificial Potentials andSliding Mode Control[J]. Journal of Dynamic Systems, Measurement andControl.2007,129(5):749-754
    [78] Cao Y, Ren W. Distributed Coordinated Tracking with Reduced Interaction viaA Variable Structure Approach[J]. IEEE Transactions on Automatic Control,2012,57(1):33-48.
    [79] Ji M, Ferrari-Trecate G and Egerstedt M, et al. Containment Control in MobileNetworks[J]. IEEE Transactions on Automatic Control.2008,53(8):1972-1975
    [80] Dimarogonasa D V, Tsiotrasb P and Kyriakopoulosc K J. Leader-FollowerCoorperative Attitude Control of Multiple Rigid Bodies[J]. System&ControlLetters.2009,58(6):429-435
    [81] Meng Z, Ren W and You Z. Distributed Finite-Time Attitude ContainmentControl for Multiple Rigid Bodies[J]. Automatica.2010,46(12):2092-2099.
    [82] Scharf D P, Hadaegh F Y and Ploen S R. A Survey of Spacecraft FormationFlying Guidance and Control, Part Ⅱ: Control[C]. Proceedings of the AmericanControl Conference, Boston,2004:2976-2985
    [83] Wang P K C. Navigation Strategies for Multiple Autonomous Mobile RobotsMoving in Formation[J]. Journal of Robotic Systems.1991,8(2):177-195
    [84] Wang P K C, Hadaegh F Y and Lau K. Synchronized Formation Rotation andAttitude Control of Multiple Free-Flying Spacecraft[J]. AIAA Journal ofGuidance, Control and Dynamics.1991,22(1):28-35
    [85] Wang P K C, Hadaegh F Y. Coordination and Control of MultipleMicrospacecraft Moving in Formation[J]. Journal of the Astronautical Sciences.1996,44(3):315-355
    [86] Desai, J P, Ostrowski J and Kumar V. Controlling Formations of MultipleMobile Robots[C]. Proceedings of IEEE International Conference on Roboticsand Automation. Leuven, Belgium,1998:2864-2869
    [87] Mesbahi M, Hadaegh F Y. Formation Flying Control of Multiple Spacecraft viaGraphs, Matrix Inequalities, and Switching[J]. Journal of Guidance, Control andDynamics.2000,24(2):369-377
    [88] Kristiansen R, Nicklasson P J and Gravdahl J T, et al. Formation Modelling and6DOF Spacecraft Coordination Control[C]. American Control Conference. NewYork, NY,2007:4690-4696
    [89] Kristiansen R, Nicklasson P J and Gravdahl J T. Spacecraft CoordinationControl in6DOF: Integrator Backstepping vs Passivity-Based Control[J].Automatica,2008,44(11):2896-2901.
    [90] Kristiansen R, Nicklasson P J. Spacecraft Formation Flying: A Review and NewResults on State Feedback Control[J]. Acta Astronautica.2009,65(11-12):1537-1552
    [91] Lv Y, Hu Q and Ma G, et al.6DOF Synchronized Control for SpacecraftFormation Flying with Input Constraint and Parameter Uncertainties[J]. ISATransactions.2011,50(4):573-580
    [92] Wang J, Sun Zhaowei.6-DOF Robust Adaptive Terminal Sliding Mode Controlfor Spacecraft Formation Flying[J]. Acta Astronautica.2012,73:76-87
    [93] Liu H, Shan J and Sun D. Adaptive Synchronization Control of MultipleSpacecraft Formation[J]. Journal of Dynamic Systems, Measurement, andControl.2007,129(3):337-342
    [94] Shan J.6-DOF Synchronization Control for Spacecraft Formation Flying[J].AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu,Hawaii,2008:18-21
    [95] Arkin R C. Motor Schema Based Mobile Robot Navigation[J]. TheInternational Journal of Robotics Research.1989,8(4):92-112
    [96] Brooks R A. A Robust Layered Control System for A Mobile Robot[J]. IEEEJournal of Robotics and Automation.1986,2(1):14-23
    [97] Schlanbusch R, Kristiansen R and Nicklasson P J. Spacecraft FormationReconfiguration with Collision Avoidance[J]. Automatica.2011,47(7):1443-1449.
    [98] Lawton J, Young B and Beard R. A Decentralized Approach to ElementaryFormation Maneuvers[C]. Proceedings of IEEE International Conference onRobotics and Automation.2000,3:2728-2733
    [99] Lawton J, Beard R W. Synchronized Multiple Spacecraft Rotations[J].Automatica.2002,38(8):1359-1364
    [100]Lawton J, Beard R W. Elementary Attitude Formation Maneuver viaLeader-Following and Behavior-Based Control[C]. AIAA Guidance, Navigationand Control Conference. Denver, Colorado,2000:1-11
    [101]VanDyke M C, Hall C D. Decentralized Coordinated Attitude Control with inA Formation of Spacecraft[J]. Journal of Guidance, Control and Dynamics.2006,29(5):1101-1109
    [102]Chang I, Park S Y and Choi K H. Decentralized Coordinated Attitude Controlfor Satellite Formation Flying via the State-Dependent Riccati EquationTechnique[J]. International Journal of Nonlinear Mechanics.2009,44(8):891-904
    [103]毕鹏,罗建军,张博.基于网络同步的航天器编队飞行姿态控制方法[J].中国空间科学技术.2010,2(1):46-51
    [104]Ren W. Distributed Attitude Alignment in Spacecraft Formation Flying[J].International Journal of Adaptive Control and Signal Processing.2007,21(2-3):95-113
    [105]Dimarogonas D V, Tsiotras P and Kyriakopoulos K J. Laplacian CooperativeAttitude Control of Multiple Rigid Bodies[C]. In Proceedings of the IEEEInternational Symposium on Intelligent Control. Munich, Germany,2006:3064-3069.
    [106]Liang H, Wang J and Sun Z. Robust Decentralized Coordinated AttitudeControl of Spacecraft Formation[J]. Acta Astronautica.2011,69(5-6):280-288
    [107]Ren W. Formation Keeping and Attitude Alignment for Multiple Spacecraftthrough Local Interactions[J]. Journal of Guidance, Control and Dynamics.2007,30(2):633-638
    [108]Ren W. Distributed Cooperative Attitude Synchronization and Tracking forMultiple Rigid Bodies[J]. IEEE Transactions on Control Systems Technology,2010,18(2):383-392
    [109]Ren W. Distributed Attitude Synchronization for Multiple Rigid Bodies withEuler-Lagrange Equations of Motion[C].46th IEEE Conference on Decision andControl. New Orleans, LA,2007:2363-2368
    [110]Tan K H, Lewis M A. Virtual Structures for High-Precision CooperativeMobile Robotic Control[C]. Proceedings of the1996IEEE/RSJ InternationalConference. Osaka, Japan,1996:132-139
    [111]Beard R W, Lawton J R, Hadaegh F Y. A Feedback Architecture for FormationControl[C]. Proceedings of the American Control Conference. Chicago, IL,2000,6:4087-4091
    [112]Beard R W, Lawton J R, Hadaegh F Y. A Coordination Architecture forSpacecraft Formation Control[J]. IEEE Transactions on Control SystemsTechnology.2001,9(6):777-790
    [113]Kang W, Yeh H. Coordinated Attitude Control of Multi-Satellite System[J].International Jounal of Rubust and Nonlinear Control.2002,12(2-3):185-205
    [114]Ren W, Beard R W. Formation Feedback Control for Multiple Spacecraft viaVirtual Structures[J]. IEE Proceedings: Control Theory and Applications.2004,151(3):357-368
    [115]Ren W, Beard R W. Virtual Structure Based Spacecraft Formation Control withFormation Feedback[C]. AIAA Guidance, Navigation, and Control Conferenceand Exhibit, Monterey, California,2002:1-8
    [116]Young B, Beard R and Kelsey J. A Control Scheme for ImprovingMulti-Vehicle Formation Maneuvers[C]. Proceedings of the American ControlConference. Arlington, VA,2001,2:704-709
    [117]Malla R, Watkins J and Piper G. Study of Pointing Maneuvers for a SpacecraftVirtual Structure Formation[C]. The38th Southeastern Symposium on SystemTheory. Cookeville, TN,2006:99-103.
    [118]Ren W, Beard R W. A Decentralized Scheme for Spacecraft Formation Flyingvia the Virtual Structure Approach[C]. Proceedings of the American ControlConference. Denver, Colorado,2003,2:1746-1751
    [119]Ren W, Beard R W. Decentralized Scheme for Spacecraft Formation Flying viathe Virtual Structure Approach[J]. Journal of Guidance, Control and Dynamics.2004,27(1):73-82
    [120]Cong B, Liu X and Chen Z. Distributed Attitude Synchronization of FormationFlying via Consensus-Based Virtual Structure[J]. Acta Astronautica.2011,68(11-12):1973-1986
    [121]章仁为.卫星轨道姿态动力学与控制[M].北京航空航天大学出版社,1998
    [122]Shuster M D. A Survey of Attitude Representations[J]. The Journal of theAstronautical Sciences,1993,41(4):439-517
    [123]Ickes B P. A New Method for Performing Digital Control System AttitudeComputation using Quaternion[J]. AIAA Journal.1970,8(1):13-17
    [124]Hughes P C. Spacecraft Attitude Dynamics[M]. John Wiley&Sons, New York,1986
    [125]Wie B. Space Vehicle Dynamics and Control. Reston[M]. VA: AIAA EducationSeries,1998
    [126]Wen J T Y, Delgado K K. The attitude control problem[J]. IEEE Transactionson Automatic Control.1991,36(10):1148-1162
    [127]Costic B T, Dawson D M and De Queiroz M S, et al. A Quaternion-BasedAdaptive Attitude Tracking Controller without Velocity Measurements[C].Proceedings of the39th IEEE Conference on Decision and Control.2000,3:2424-2429
    [128]Battin R H. An Introduction to the Mathematics and Methods ofAstrodynamics[M]. Revised Edition, AIAA Education Series, American Instituteof Aeronautics and Astronautics, Reston, VA,1999
    [129]Kristiansen R, Gr tli E and Nicklasson P J. A Model of Relative Translationand Rotation in Leader-Follower Spacecraft Formations[J]. Modeling,Identification and Control.2007,28(1):3-13
    [130]Royle G, Godsil C. Algebraic Graph Theory[M]. New York: Springer GraduateTexts in Mathematics,2001
    [131]Biggs N. Algebraic Graph Theory[M]. U.K.: Cambridge University Press,Cambridge Tracts in Mathematics,1993
    [132]Ren W, Beard R W. Distributed Consensus in Multi-Vehicle CooperativeControl[M]. London: Springer-Verlag,2008
    [133]Ren W, Cao Y. Distributed Coordination of Multi-agent Networks[M]. London:Springer-Verilag,2011
    [134]Agaev R, Chebotarev P. The Matrix of Maximum Out Forests of a Digraph andIts Applications[J]. Automation and Remote Control.2000,61:1424-1450
    [135]Khalil H K. Nonlinear Systems[M].3rd Edition. Upper Saddle River, NJ:Prentice, Hall,2002
    [136]Slotine J E, Li W. Applied Nonlinear Control[M]. Prentice-Hall, Upper SaddleRiver, NJ,1991
    [137]Bhat S P and Bernstein D S. Finite-Time Stability of Continuous AutonomousSystems[J]. SIAM Journal on Control and Optimization.2000,38(3):751-766
    [138]Sastry S, Bodson M. Adaptive Control: Stability, Convergence, andRobustness[M]. Prentice Hall,1989:18-19
    [139]史荣昌,魏丰.矩阵分析(第二版)[M].北京理工大学出版社.2005.
    [140]Qian C and Lin W. A Continuous Feedback Approach to Global StrongStabilization of Nonlinear Systems[J]. IEEE Transations on Automatic Control.2001,46(7):1061-1079
    [141]Hardy G, Littlewood J and Polya G. Inequalities[M]. Cambridge UniversityPress, Cambridge,1952
    [142]吕建婷,曹喜滨,高岱.卫星编队飞行的相对姿态控制[J].哈尔滨工业大学学报.2010,42(1):9-12
    [143]He B, Murat A and Wen J. Rigid Body Attitude Coordination without InertialFrame Information[J]. Automatica.2008,44(12):3170-3175
    [144]Ren W. Consensus Tracking Under Directed Interaction Topologies:Algorithms and Experiments[J]. IEEE Transactions on Automatic Control.2010,18(1):230-237.
    [145]Ren W. Distributed Coordination Architecture for Multi-Robot FormationControl[J]. Robotics and Autonomous Systems.2008,56(4):324-333
    [146]Mei J, Ren W and Ma G. Distributed Coordinated Tracking with A DynamicLeader for Multiple Euler-Lagrange Systems[J]. IEEE Transactions onAutomatic Control.2010,56(6):1415-1421
    [147]Wu S, Radice G and Gao Y, et al. Quaternion-Based Finite Time Control forSpacecraft Attitude Tracking[J]. Acta Astronautica,2011,69(1-2):48-58
    [148]胡敏,曾国强.卫星编队飞行有限时间控制方法[J].空间控制技术与应用.2012,38(1):23-28
    [149]袁长清,李俊峰,张威泰,周昊[J].航天器编队飞行多目标姿态跟踪终端滑模控制.空间控制技术与应用.2010,36(5):18-24
    [150]Min H, Sun F and Wang S, et al. Attitude Synchronization of SpacecraftFormation using Neural Network[J]. IEEE International Conference onCognitive Informatics,2010,83-89
    [151]Min H, Sun F and Wang S, et al. Spacecraft Coordination Control in6DOFBased on Neural Network[C]. The2010International Joint Conference onNeural Networks.2010:1-6
    [152]Meng J, Magnus E. Distributed Coordination Control of Multiagent SystemsWhile Preserving Connectedness[J]. IEEE Transactions on Robotics.2007,23(4):693-703
    [153]Jin E, Jiang X and Sun Z. Robust Decentralized Attitude Coordination Controlof Spacecraft Formation[J]. Systems&Control Letters.2008,57(7):567-577
    [154]Jungnickel, D. Graphs, Networks and Algorithms, Algorithms andComputation in Mathematics[M], Vol5,2nd edition, Spring,2005
    [155]Sarlettea A, Sepulchrea R and Leonard N E. Autonomous Rigid Body AttitudeSynchronization[J]. Automatica,2009,45(2):572-577
    [156]Cai W, Liao X and Song Y. Indirect Robust Adaptive Fault-Tolerant Controlfor Attitude Tracking of Spacecraft[J]. Journal of Guidance, Control andDynamics.2008,31(5):1456-1463
    [157]Hale J K, Verduyn Lunel S M. Introduction to Functional DifferentialEquation[M]. Springer, New York,1993.
    [158]Sun Y, Wang L and Xie G. Average Consensus in Networks of Dynamic Agentswith Switching Topologies and Multiple Time-Varying Delays[J], Systems&Control Letters.2008,57(2):175-183
    [159]Liu C, Liu F. Consensus Problem of Coupled Dynamic Agents withCommunication Delay[C]. Proceedings of the29th Chinese Control Conference.Beijing, China.2010,4501-4505
    [160]Lin P, Jia Y. Average Consensus in Networks of Multi-Agents with BothSwitching Topology and Coupling Time-Delay[J]. Physica A,2008,387:303-313
    [161]李向舜.网络化群体系统编队与一致性控制[D].华中科技大学博士学位论文,2009
    [162]Moreau L. Stability of Continuous Time Distributed Consensus Algorithms[C].In Proceedings of the IEEE Conference on Decision and Control, ParadiseIsland, Bahamas,2004:3998-4003
    [163]Tian Y, Liu C. Consensus of Multi-Agent Systems with Diverse Input andCommunication Delays[J]. IEEE Transactions on Automatic Control,2008,53(9):2122-2128
    [164]Xiao F, Wang L. Asynchronous Consensus in Continuous-Time Multi-AgentSystems With Switching Topology and Time-Varying Delays[J]. IEEETransactions on Automatic Control.2008,53(8):1804-1816
    [165]Münz U, Papachristodoulou A and Allg wer F. Delay Robustness in ConsensusProblems[J]. Automatica.2010,46(8):1252-1265
    [166]Liu C, Liu F. Consensus of Sencond-Order Multi-Agent Systems underCommunication Delay[C]. Proceedings of the29th Chinese Control Conference.Beijing, China.2010,739-744
    [167]彭科.带领导者的多智能体系统中的一致性问题研究[D].上海交通大学博士学位论文,2009
    [168]Hu Q L, Ma G F. Adaptive variable structure controller for spacecraft vibrationreduction[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(3):861-876
    [169]Hu Q L. Robust Adaptive Backstepping Attitude and Vibration Control withL2-Gain Performance for Flexible Spacecraft under Angular VelocityConstraint[J]. Journal of Sound and Vibration,2009,327(3-5):285-298.
    [170]吕建婷,曹喜滨,高岱.编队飞行卫星的自适应姿态协同控制[J].宇航学报.2009,30(4):1516-1536
    [171]Schaft A J. L2-Gain and Passivity Techniques in Nonlinear Control[M].London: Springer-Verlag,2000.
    [172]Wong H, Queiroz M S and Kapila V. Adaptive Tracking Control UsingSynthesized Velocity from Attitude Measurements[C]. Proceedings of theAmerican Control Conference, Chicago, Illinois,2000:1572-1576
    [173]Subbarao K, Akella M R. Differentiator-Free Nonlinear Proportional-IntegralControllers for Rigid-Body Attitude Stabilization[J]. Journal of Guidance,Control and Dynamics,2004,27(6):1092-1096
    [174]Xian B, Huang M, Li D, Cui C J. Output Feedback Attitude Tracking Controlfor A Rigid Spacecraft with Dynamic Uncertainty. Proceedings of the27thChinese Control Conference[C], Kunming, China,2008:464-468
    [175]Zou A M, Kumar K D, Hou Z G. Quaternion-Based Adaptive Output FeedbackAttitude Control of Spacecraft Using Chebyshev Neural Networks[J]. IEEETransactions on Neural Networks,2010,21(9):1457-1471
    [176]Kristiansen R. Dynamic Synchronization of Spacecraft: Modeling andCoordinated Control of Leader-Follower Spacecraft Formation[D]. NorwegianUniversity of Science and Technology, Ph.D. Thesis.2008.
    [177]Tayebi A. Unit Quaternion-Based Output Feedback for the Attitude TrackingProblem[J]. IEEE Transactions on Automatic Control.2008,53(6):1516-1520
    [178]Abdessameud A, Tayebi A. Decentralized Attitude Alignment Control ofSpacecraft within A Formation without Angular Velocity Measurement[C].Proceedings of the17th International Federation of Automatic Control WorldCongress, Seoul, Korea,2008:1766-1771
    [179]Abdessameud A, Tayebi A. Attitude Synchronization of A SpacecraftFormation without Velocity Measurement[C]. Proceedings of the47th IEEEConference on Decision and Control, Cancun, Mexico,2008:3719-3724
    [180]Wu B, Wang D and Poh E K. Decentralized Attitude Coordinated Controlwithout Velocity Measurements for Spacecraft Formation[C]. The8th IEEEInternational Conference on Control and Automation. Xiamen, China,2010:667-672
    [181]郭海波,曹喜滨,张世杰,张安惠,陈健,王峰.基于输出反馈的编队卫星姿态同步和跟踪控制.宇航学报.2011,32(5):1086-1092
    [182]张保群,宋申民,陈兴林.编队飞行挠性航天器的输出反馈姿态协同控制[J].系统工程与电子技术.2011,33(7):1595-1602
    [183]Caccavale F, Villani L. Output Feedback Control for Attitude Tracking[J].Systems&Control Letters,1999,38(2):91-98
    [184]Ramakrishnan K, Ray G. Delay-Range-Dependent Stability Criterion forInterval Time-Delay Systems with Nonlinear Perturbations[J]. InternationalJournal of Automation and Computing.2011,8(1):141-146.
    [185]Vali A R, Nikravesh S K Y. Lyapunov-Krasovskii Approach forDelay-Dependent Stability Analysis of Nonlinear Time-Delay Systems[J].Scientia Iranica.2007,14(6):586-590.
    [186]Nadjim M H, Kristian U K and Phil P, et al. Relative Attitude Dynamics andControl for A Satellite Inspection Mission[J]. Acta Astronautica.2012,71:109-118
    [187]Young W P, Hyochoong B. Attitude Controller Design for Orbital TargetTracking of Geostationary Satellite under Avoidance Constraint OriginalResearch Article[J]. Acta Astronautica.2011,68(7-8):830-842
    [188]Schlanbusch R, Kristiansen R, Nicklasson P J. Attitude Reference Generationfor Leader-Follower Formation with Nadir Pointing Leader[C]. AmericanControl Conference, Baltimore, MD,2010:1599-1604
    [189]Liu H, Li J. Terminal Sliding Mode Control for Spacecraft Formation Flying.Aerospace and Electronic Systems[J]. IEEE Transactions on Aerospace andElectronic Systems.2009,45(3):835-846
    [190]Liu X, Kumar K D. Model-Based Coordination Control of NetworkedSpacecraft Formations by Integrator Backstepping[C].30th Chinese ControlConference, Yantai, China,2011:4645-4650
    [191]Dong X, Cao X and Zhang J, et al. Nonlinear Adaptive Control for Low EarthOrbit Formation Flying[C]. Second International Conference on DigitalManufacturing and Automation, Zhangjiajie, China,2011:775-779.
    [192]Wong H, Kapila V and Sparks A G. Adaptive Output Feedback TrackingControl of Spacecraft Formation[J]. International Journal of Robust andNonlinear Control,2002,12(2-3):117-139.
    [193]梅杰,马广富.近距离航天器相对轨道的鲁棒自适应控制[J].宇航学报.2010,31(10):2276-2282
    [194]Zhang B, Song S, Decentralized Coordinated Control for Multiple SpacecraftFormation Maneuvers[J]. Acta Astronautica.2012,74:79-97
    [195]Liu X, Kumar K D. Formation Control of Spacecraft Flying withNetwork-Induced Delays and Packet Dropouts[C].8th IEEE InternationalConference on Control and Automation,2010,(9-11):480-485
    [196]Min H, Wang S and Sun F, et al. Distributed Six Degree of Freedom SpacecraftFormation Control with Possible Switching Topology[J]. IET Control Theory&Applications.2011,5(9):1120-1130
    [197]Horn R A, Johnson C R. Matrix Analysis [M]. Cambridge: CambridgeUniversity Press,1985.
    [198]Cheng L, Hou Z G and Tan M. Decentralized Adaptive Leader-followerControl of Multimanipulator System with Uncertain Dynamics[C]. Proceedingsof the34th Annual Conference of the IEEE Industrial Electronics Society.Orlando,2008:1608-1613
    [199]Qian C, Lin W. A Continuous Feedback Approach to Global StrongStabilization of Nonlinear Systems[J]. IEEE Transactions on Automatic Control.2001,46(7):1061-1079