基于成像激光雷达与双CCD复合的三维精细成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像激光雷达和双CCD立体视觉是两种不同的三维测量技术,论文根据成像激光雷达距离测量精度高而空间分辨率低以及双CCD立体视觉距离测量精度受纹理、光照、远近距离等因素影响严重而空间分辨高的特点,提出将这两种技术复合的三维精细成像技术,通过对二种技术获取数据的的匹配和融合处理,得到分辨率与CCD相当而距离精度与激光雷达相当的三维精细图像。
     论文主要工作如下:
     1)对基于成像激光雷达和双目立体视觉的三维精细成像技术的相关理论和关键技术进行了研究,提出成像激光雷达与双CCD立体视觉复合的系统实现方案。研究了双CCD立体视觉模型与基本原理,对双CCD三维测量精度影响因素进行了分析,根据成像激光雷达与双CCD的视场约束、精度约束关系,优化设计了复合系统的结构参数,并建立了一套成像激光雷达与双CCD立体视觉相融合的实验研究系统,为二者复合的三维精细成像理论研究与实验验证打下了基础。
     2)研究了摄像机参数标定方法和双摄像机坐标系匹配标定方法。在分析现有摄像机标定算法的基础上,引入镜头切向畸变,建立更完整的畸变模型,对平面模板标定法进行了改进;进一步研究了平面模板标定法对双CCD坐标系实现匹配标定的方法。
     3)根据三维成像激光雷达和摄像机坐标系标定的特点,提出了一种旋转参数与平移参数分离的变换矩阵求解方法,利用这种方法,只需变换3个平面标定靶位置即可计算出二者坐标系之间的变换关系,进而设计了一种由三个平面构成的三维立体标定靶,通过采用主成分分析法对三维靶平面进行拟合,降低了平面拟合误差。该方法只需三维靶的一个位置即可完成激光雷达与摄像机坐标系之间的标定,具有精度高速度快的特点。
     4)研究了基于动态规划的稠密立体匹配方法和激光雷达深度信息融入图像立体匹配的方法,在此基础上提出了利用激光雷达提供的视差信息引导稠密匹配的支点法,该方法能提高立体匹配的速度和精度,对无纹理区域和遮挡区域能有效处理,解决了立体匹配中的难题。仿真结果表明融合雷达数据的动态规划方法的误匹配率要分别低于雷达数据的误匹配率和动态规划方法的误匹配率,对真实场景的双摄像机图像进行视差计算,结果表明本文方法能对图像中的遮挡区域进行有效检测,对于雷达能够提供先验视差图的区域,不论是纹理丰富区域还是无纹理区域,该方法都可以得到较好的视差结果。
     5)通过对多种重建方法的比较,确定了在未进行校正的双目视觉系统中三维重建使用重投影误差最小法,在经过校正后在平行双目视觉系统中直接使用三角法进行重建。通过成像激光雷达与双CCD立体视觉复合实验系统对典型场景进行实测,得到了精细的三维重建结果,验证了基于激光雷达与CCD立体视觉复合的三维精细成像技术的有效性。
Imaging lidar and dual-CCD stereo vision are two different three-dimensionalmeasurement techniques, they have their owen traits, lidar measurement has the featureof high distance precision and low spatial resolution, dual-CCD stereo visionmeasurement has the feature of high spatial resolution and distance precision of whichmay be affected by texture, light, and the distance factors. According to the features ofthe two measurement techniques, the paper introduce a fine three-dimensional imagingtechnology which can fuse these two techniques, by matching and fusing of thethree-dimensional images measured by two kinds of technique, the technology can getfine three-dimensional image with spatial resolution of CCD and distance precision oflidar. The paper mainly contains the following:
     Firstly, the related theories and key technologies of the fine three-dimensionalimaging technology based on lidar and binocular stereo vision are researched; thecomposite system implementation of imaging lidar and dual-CCD stereo vision ispresented. The paper researchs on the model and basic principles of dual-CCD stereovision, analyses the accuracy affected factors the of dual-CCD three-dimensionalmeasurements. According to the field of view constraints and the accuracy constraintsof imaging lidar and dual-CCD, the optimal structural parameters of the compositesystem are designed and an experimental integration system of imaging lidar anddual-CCD is established, which lays the foundation for composite finethree-dimensional imaging theory and experimental verification.
     Secongly, the camera calibration algorithm and two camera’s coordinate systemcalibration algorithm are researched. By analysing the existing camera calibrationalgorithm and introducing the lens tangential distortion, a more completed distortionmodel is established and the planar pattern calibration method is improved; further more,a dual-CCD coordinate system calibration algorithm based on planar pattern isresearched.
     Thirdly, based on the features of calibration of3D imaging lidar coordinate systemand camera coordinate system, a rotation and translation parameters separated methodfor solving transformation matrix is proposed, by using this method, the transformationmatrix can be solved only through changing the planar calibration target position threetimes. And then, the paper designes a three-dimensional calibration target which ismade up of three flat planes for solving transformation matrix, by using principalcomponent analysis on the plane of the three-dimensional target, the plane fitting errorcan be reduced. This method only needs one three-dimensional target position tocomplete the calibration of the lidar and the camera coordinate system, and has thefeatures of high precision and fast speed.
     Fourthly, the dense stereo matching method based on dynamic programming andthe method of merging lidar depth information into the image matching are researched.Base on the research, the paper proposes a pivoting method to fusing lidar data andCCD camera data, which use lidar disparity information as pivots to guide dense stereomatching. This pivoting method can improve the speed and accuracy of stereo matchingand can effectively deal with the textureless regions and occluded regions which areproblems in stereo matching. The simulation results show that the false match rate ofthis fusion method is lower than the lidar data and dynamic programming methodrespectively. In the real scene experiments, the results show that this method can detectoccluded regions in the image effectively, and in the region of lidar priori disparity canbe provided, this method can get a better disparity result regardless of the region istextured or textureless.
     Finally, through the comparison of a variety of reconstruction methods, the paperdecides using the minimum re-projection error method in unrectified binocular stereovision system and using the triangulation method in rectified binocular stereo visionsystem. By measuring the typical scene using composite system of imaging lidar anddual-CCD, a fine three-dimensional reconstruction result is got, and the effectiveness offine imaging technology is verified.
引文
[1]赵远,蔡喜平,陈锺贤等.成像激光雷达技术概述[J].激光与红外,2000,30(6):328~330.
    [2]隋婧,金为其.双目立体视觉技术的实现及其进展[J].电子技术应,2004:4~6.
    [3]杨春平,吴健,洪亮等.双摄像机系统在三维面型测量中的应用[J].半导体光电,2004,25(3):219~223.
    [4]倪树新,李一飞.军用激光雷达的发展趋势[J].红外与激光工程,2003,32(2):111~114.
    [5]周建民.制导和监视用激光雷达进展[J].应用光学,1994,15(1):1~5.
    [6]倪树新.未来的军用激光雷达[J].电光系统,2001,97(3):1~7.
    [7]陈湘君,陈自来,戴永江,萧泉.固体激光雷达的发展现状[J].红外与激光工程,1998,27(6):24~28.
    [8] Gustavson Robert L., Davis Thomas E. Diode Laser Radar for Low-costWeapon Guidance[C]. Proceedings of SPIE,1992,1633:21~32.
    [9] M.A. Albota, B.F. Aull, D.G. Fouche, R.M. Heinrichs,D.G. Kocher, R.M.Marino, J.G. Mooney, N.R. Newbury,M.E. O’Brien, B.E. Player, B.C. Willard, and J.J.Zayhowski. Three-Dimensional Imaging Laser Radars with Geiger-Mode AvalanchePhotodiode Arrays [R].Linc. Lab. J.13(2),2002, pp.351–370.
    [10] R.M. Marino, T. Stephens, R.E. Hatch, J.L. McLaughin, J.G. Mooney, M.E.O’Brien, G.S. Rowe, J.S. Adams, L. Skelly, R.C. Knowlton, S.E. Forman and W.R.Davis. A Compact3D Imaging Laser Radar System Using Geiger-Mode APD Arrays:System and Measurements[C]. Proc. SPIE5086,2003, pp.1–15.
    [11] R.M. Marino and W.R Davis. Jigsaw: A Foliage-Penetrating3D ImagingLaser Radar System[R]. Linc. Lab. J.15(1),2005, pp.23–35.
    [12] Peter Cho, Hyrum Anderson, Robert Hatch, and Prem Ramaswami.Real-Time3D Ladar Imaging [J]. Linc. Lab. J.16(1),2006, pp.147–164.
    [13] F. Amzajerdian, M. Vanek, L. Petway, D. Pierrottet, G. Busch, A. Bulyshev.Utilization of3-D Imaging Flash Lidar Technology for Autonomous Safe Landing onPlanetary Bodies[C]. SPIE Proceeding Vol.7608,80(2010).
    [14] Hirai Akihito.Development of long range, real time, high-resolution3-Dimaging LADAR[C]. Proceedings of SPIE,2011.
    [15] Zhao Yuan. Research on small scale Risley prism scanning imaging lidarsystem[C]. Proceedings of SPIE,2011.
    [16]周富强.双目立体视觉检测的关键技术研究[D].北京:北京航空航天大学博士学位论文,2002.
    [17] Roberts L G. Machine perception of three-dimensional solids[M]. Cambridge:MIT Press,1965.
    [18] Marr D. Vision[M]. W.H Freeman and Company,1982.
    [19] Bornard S T, Fischler M A. Computional stereo[J]. ACM Comp.Surveys,1982,14(4):553~572.
    [20] C.Lei, J.Selzer, and Y.Yang. Region-tree based stereo using dynamicprogramming optimization[J]. CVPR2006.
    [21] Y.Deng and X.Lin. A fast line segment based dense stereo algorithm usingtree dynamic programming[J]. ECCV2006.
    [22] H.Hirschmüller. Stereo vision in structured environments by consistentsemi-global matching[J]. CVPR2006, PAMI30(2):328-341,2008.
    [23] V.Kolmogorov and R.Zabih. Computing visual correspondence withocclusions using graph cuts[J]. ICCV2001.
    [24] V.Kolmogorov and R.Zabih. Multi-camera scene reconstruction via graphcuts[J]. ECCV2002.
    [25] M.Bleyer and M.Gelautz. A layered stereo algorithm using imagesegmentation and global visibility constraints[J]. ICIP2004.
    [26] A.Klaus, M.Sormann and K.Karner. Segment-based stereo matching usingbelief propagation and a self-adapting dissimilarity measure[J]. ICPR2006.
    [27] Q.Yang, L.Wang, R.Yang, S.Wang, M. Liao, and D. Nistér. Real-time globalstereo matching using hierarchical belief propagation [J]. BMVC2006.
    [28] S.Larsen, P.Mordohai, M.Pollefeys, and H. Fuchs. Temporally consistentreconstruction from multiple video streams using enhanced belief propagation[J]. ICCV2007.
    [29] T.Yu, R.S.Lin, B.Super, and B.Tang. Efficient message representations forbelief propagation[J]. ICCV2007.
    [30]Q.Yang, L.Wang, R.Yang, H.Stewénius, and D.Nistér. Stereo matching withcolor-weighted correlation, hierarchical belief propagation and occlusion handling[J].PAMI2008.
    [31] T.Montserrat, J.Civit, O.Escoda, and J.L.Landabaso. Depth estimation basedon multiview matching with depth/color segmentation and memory efficient beliefpropagation[J]. ICIP2009.
    [32] Riadh Tebourbi, Ziad Belhadj, Mehrez Zribi, et al.3-D soil reconstructionfrom binocular disparity[J]. IEEE,2000:847~849.
    [33] Clark F. Olson,Habib Abi-Rached, Ming Ye, et al. Wide-Baseline StereoVision For Mars Rovers[J].Proceedings Of The2003IEEE/RSJ Intl. Conference OnIntelligent Robots And Systerms, October2003:1302~1307.
    [34] Thomas T.Lu and Tien-Hsin Chao. A high-resolution and high-speed3Dimaging system and its aPPlication on ATR[C]. Proc. of SPIE,2006,6245(62450L):1~10.
    [35] K. Sumioka, S.Takahashi and S.hata. New Method for Three-dimensionalMeasurement by Using the Relative Stereo Method[C]. Proceedings of SPIE-IS&TElectronic Imaging,2004,5303:195~202.
    [36] Naohide Uchida, Takuma Shibahara, Takafumi Aoki, et al.3D FaceRecognition Using Passive Stereo Vision[J]. IEEE,2005.
    [37] http://www.ptgrey.com.
    [38] http://www.videregesign.
    [39]介鸣,尹航,黄显林.月球探测器自主软着陆中的三维重构技术研究[J].宇航学报,2007,28(4):966~971.
    [40]宋丽梅.双目立体机器视觉检测系统极其应用[J].西南科技大学学报,2006,21(1):30~34.
    [41]蒋焕煜,彭永石,应义斌.双目立体视觉技术在果蔬采摘机器人中的应用[J].浙江大学学报(自然科学版),2008,29(5):377~380.
    [42]张小苗,曹勇,于起峰.基于双目视觉的返回舱着陆横向速度测量[J].航天返回与遥感,2007,28(3):1~5.
    [43] C. Beder, B. Bartczak, and R. Koch. A combined approach for estimatingpatchlets from pmd depth images and stereo intensity images [J]. Pattern Recognition,29th DAGM Symposium,2007.
    [44] P. Gurram, H. Rhody, J. Kerekes, S. Lach, and E. Saber.3d scenereconstruction through a fusion of passive videoand lidar imagery [J]. AIPR2007.36thIEEE,2007, pp.133–138.
    [45] Kuhnert, K.D. and Stommel, M. Fusion of stereo-camera and pmd-cameradata for realtime suited precise3D environment reconstruction[C]. Intelligent Robotsand Systems,2006IEEE/RSJ International Conference, pp.4780–4785.
    [46] K. Nickels, A. Castano, and C. M. Cianci,“Fusion of lidar and stereo rangefor mobile robots”[C]. Int. Conf. on Advanced Robotics,2003.
    [47] U. Hahne and M. Alexa, Combining time-of-flight depth and stereo imageswithout accurate extrinsic calibration [J]. Int. J. Intell. System. Technol. Appl., vol.5,no.3/4, pp.325–333,2008.
    [48] W. F. Oberle and L. Davis. Toward high resolution, ladarquality3-d worldmodels using ladar-stereo data integration and fusion[R]. Army Research LabAberdeen Providing Ground, Tech. Rep. ARL-TR-3407,2005.
    [49] C. Mutto, P. Zanuttigh, and G. Cortelazzo. A probabilistic approach to tof andstereo data fusion[C].3DPVT10,2010.
    [50] Megyesi Z, Megyesi Z, Chetverikov D. Enhanced surface reconstruction fromwide baseline images[J].2004.
    [51] Radim S. Finding the Largest Unambiguous Component of Stereo Matching.Springer-Verlag[J],2002.
    [52] Cech J, Sara R. Efficient Sampling of Disparity Space for Fast and AccurateMatching[J].2007.
    [53] Amold R D. Local Context in Matching Edges for Stereo Vision[J].1978.
    [54] Steven W. Zuker G L. Geometry of Contour-based Coorespondence forStereo[J].2002.
    [55] Guan Ye-peng, Wei-kang G. A Mathcing Algorithm Based on HybridMatrices Consisting of Reference Difference and Disparities[J]. Journal of ZhejiangUniversity SCIENCE,2004.
    [56] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-framestereo correspondence algorithms[J]. IJCV2002.
    [57] Stan Birchfield and Carlo Tomasi. A Pixel Dissimilarity Measure that isInsensitive to Image Sampling, IEEE Transactions on Pattern Analysis and MachineIntelligence[J].1998,20(4),41-46.
    [58] Hirschmuller H, Scharstein D. Evaluation of Cost Functions for StereoMatching[J].2007.
    [59] Bobick A F, Intille S S. Large Occlusion Stereo[J]. Int.J. Comput. Vision.1999,33(3):181~200.
    [60] Kanade T, Okutomi M. A Stereo Matching Algorithm with An AdaptiveWindow: Theory and Experiment[J].1991.
    [61] Kuk-jin Y, In-so K. Locally Adaptive Support-weight Approach for VisualCoorespondence Search[J].2005.
    [62] Wang L, Gong M, et al. How Far Can We Go With Local Optimization inReal-Time Stereo Matching[J].2006.
    [63] Szeliski R. Prediction Error as a Quality Metric for Motion and Stereo[J],IEEE Computer Society.1999.
    [64] Szeliski R, Zabih R. An Experimental Comparision of Stereo Algorithms,Springer-Verlag[J].2000.
    [65] Geman D. StochasticRelaxation, Gibbs Distributions, and the BayesianRestoration of Images: Readings in Uncertain Reasoning[M]. Morgan KaufmannPublishers Inc,1990,452-472.
    [66] Yichen Wei. Fast Segmentation-Based Dense Stereo From Quasi-DenseMatching[J]2004.
    [67] C.Strecha, T.Tuytelaars, L.V Gool. Dense Matching of MultipleWide-Baseline Views[C]. Proceedings of International Conference on Computer Vision,2003, pp.1194-1201.
    [68] M. Lhuillier, L. Quan. A Quasi-Dense Approach to Surface Reconstructionfrom Uncalibrated Images[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2005, Vol.27, No.3,pp.418-433.
    [69] Qingxiong Yang, Kar-Han Tan, Bruce Culbertson, et al. Fusion of Active andPassive Sensors for Fast3D Capture[J]. IEEE International Workshop on MultimediaSignal Processing (MMSP).2010.
    [70] Yajun Fang, Ichiro Masaki and Berthold Horn. DePth-Based TargetSegmentation for Intelligent Vehicles: Fusion of Radar and Binocular Stereo[J]. IEEETransactions On Intelligent TransPortation Systems,2002:3(3).
    [71]李赣华.基于摄像机和二维激光测距仪的三维建模关键技术研究[D].长沙:国防科技大学工学博士学位论文,2006.
    [72]胡春生.脉冲半导体激光器高速三维成像激光雷达研究[D].长沙:国防科技大学工学博士学位论文,2005.
    [73]于起峰,尚洋.摄像测量学原理与应用研究[M].北京:科学出版社,2009.
    [74]马颂德,张正友.计算机视觉—计算理论与算法基础[M].北京:科学出版社,1998.
    [75] Juyang Weng, Paul Cohen, Marc Herniou. Camera Calibration with DistortionModels and Accuracy Evaluation[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,1992,14(10):965~980.
    [76] R.Y.Tsai. An Efficient and Accurate Camera Calibration Technique For3DMachine Vision[J]. Proceedings of Conference on Computer Vision and PatternRecognition, IEEE,1986:364~374
    [77]尚洋.基于视觉的空间目标位置姿态测量方法研究[D].长沙:国防科技大学工学博士学位论文,2006.
    [78]颜树华,黄锐,吕海宝等.双摄像机视觉传感器测量分辨率和有效视场的理论研究[J].光电子.激光,1998,9(1):61~63.
    [79] Yubo Guo, Yu Yao and Xiaoguang Di. Research on Structural ParameterOptimization of Binocular Vision Measuring System for Parallel Mechanism[C].Proceedings of the IEEE International Conference on Mechatronics and Automation,2006,5:1131~1135.
    [80] Qiong Liu, Xiangsheng Qin, Shenshun Yin, et al. Structural ParametersOptimal Design and Accuracy Analysis for Binocular Vision Measure System[C].Proceedings of the2008IEEE/ASE International Conference on Advanced IntelligentMechatronics,2008,5:156~161.
    [81]吴彰良,卢荣胜,胡鹏浩等.双目立体视觉传感器精度分析与参数设计[J].郑州轻工业学院学报(自然科学版),2006,21(3):32~35.
    [82]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2000.
    [83]颜树华,吕海宝,周卫红等.双摄像机视觉传感器的建模及优化设计[J].光电工程,2000,27(4):30~34.
    [84]杨华勇,吕海宝.双摄像机交汇测量系统结构参数的优化设计[J].光学技术,2001,27(4):348~351.
    [85] R.Y.Tsai. A Versatile Camera Calibration Technique for high accuracy3DMachine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses[J]. IEEEJournal of Robotics and Automation,1987,3(4):323~344.
    [86] Jong-Soo Lee and Yu-Ho Jeong. Camera Calibrations and Projection ErrorAnalysis[J]. IEEE,2000,4:50~55.
    [87]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,2000,26(1):43~55.
    [88] Paolo Grattoni, Giuseppe Pettiti and Fabrizio Pollastri. Geometric CameraCalibration: A Comparisons of Methods[J]. IEEE,1991,06:1775~1779.
    [89] R.K.Lenz and R.Y.Tsai. Techniques for Calibration of the Scale Factor andImage Center for High Accuracy3-D Machine Vision Metrology[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,1988,10(5):713~720.
    [90] S.D.Ma. A self-calibration technique for active vision system[J]. IEEE Trans.on Robot Automation,1996,12(1):114~120.
    [91] Zhengyou Zhang. A Flexible New Technique for Camera Calibration[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2000,20(11):1330~1334.
    [92]Wei Sun, Jeremy R.Cooperstock. Requirements for Camera Calibration: MustAccuracy Come with a High Price?[C]. Proceedings of the Seventh IEEE Workshop onApplications of Computer Vision,2005,8.
    [93]贾云德.机器视觉[M].北京:科学出版社,2000.
    [94] R.I.Hartley. In defence of the8-point algorithm[C]. Proc. Fifth InternationalConference on Computer Vision,1995:1064~1070.
    [95] Z.Zhang. A Flexible New Technique for Camera Calibration[R]. TechnicalReport MSR-TR-98-71, Microsoft Research,http://research.microsoft.com/~zhang/Calib/1998.
    [96]全厚德,闫守成,张洪才.最优化方法在摄像机标定中的应用[J].火力与指挥控制,2006,31(7):46~48.
    [97] D.C.Brown. Lens distortion for close-range photogrammetry[J]. PhotometricEngineering,1971,37(8):855~866.
    [98] Songxiang Gu, Joseph E McNamara, Karen Johnson, et al. CalibrationAccuracy Evaluation with Stereo Reconstruction[C]. Fourth International Conferenceon Image and Graphics, IEEE,2007,1:7~12.
    [99] http://research.microsoft.com/~zhang/Calib.
    [100]毛剑飞,邹细勇,诸静.改进的平面模板两步法标定摄像机[J].中国图象图形学报,2004,9(7):846~852.
    [101]杨必武郭晓松.摄像机镜头非线性畸变校正方法综述[J].中国图象图形学报,2005,10(3):269~274.
    [102]陆宏伟,邱志强,于起峰.一种摄像系统定量评定方法[J].计量技术,2004,10:13~16.
    [103]谢凤英等. Visual C++数字图像处理[M].北京:电子工业出版社,2008.
    [104]张辉,张艳丽,陈江等.基于平面模板自由拍摄的双目立体测量系统的现场标定[J].航空学报,2007,28(3):695~701.
    [105] Li Ganhua, Liu Yunhui, Li Dong. An algorithm for extrinsic parameterscalibration of a camera and a laser range finder using line features [C]. Proceedings ofthe2007IEEE/RSJ International Conference on Intelligent Robots and Systems. SanDiego: IEEE,2007:385423859.
    [106] Scarramuzza D, Harati A, Siegwart R. Extrinsic self calibration of a cameraand a3D laser range finder from natural scenes[C]. Proceedings of the2007IEEE/RSJInternational Conference on Intelligent Robots and Systems. San Diego: IEEE,2007:416424169.
    [107] Bauermann I, Steinbach E. Joint calibration of a range and visual sensor forthe acquisition of RGBZ concentric Mosaics Erlangen[C]. Proceedings of VMV2005.Erlangen: Elsevier,2005:6662672.
    [108]张奇. ALV中三维视觉处理与多传感器信息融合的研究[D].杭州:浙江大学,1997.
    [109]项志宇,郑路.摄像机与3D激光雷达联合标定的新方法[J].浙江大学学报,2009,43(8):1401~1405.
    [110] Hongwei Gao, Chengdong Wu, Lifu Gao, et al. An Improved Two-StageCamera Calibration Method[C]. Proceedings of the6th World Congress on IntelligentControl and Automation, IEEE,2006,4:9514~9518.
    [111]全厚德,闫守成,张洪才.计算机视觉中摄像机标定精度评估方法[J].测绘科学技术学报,2006,23(3):222~224.
    [112]张昉.平面度误差的最小二乘法分析[J].机械制造与研究,2002,3:17~19.
    [113] Jolliffe, I. T., Principal Component Analysis[M],2nd edition, Springer,2002.
    [114] Chen Yuan, Zhao Zhimin, Chen Zhen. The Improvement of ExtrinsicCalibration of Laser Rangefinder with Camera and its Applications [J]. AppliedLaser,2008,28(3):219-222.
    [115] Woom, Neider J, Davis T, et al. OpenGL Programming Guide [M].Massachusetts:Addison-Wesley2001.
    [116] Qilong Zhang, Robert Pless. Extrinsic calibration of a camera and laser rangefinder(improves camera calibration)[J].IEEE International Conference on IntelligentRobots and Systems (IROS),2004,3:2301-2306.
    [117]陈远,赵志敏,陈震.激光雷达和摄像机外部标定方法的改进及其应用研究[J].应用激光,2008,28(3):219-222.
    [118] Zhengyou Zhang. Flexible camera calibration by viewing a plane fromunknown orientations[C]. Proc. International Conference on Computer Vision,September1999.
    [119]焦宏伟,秦石乔,胡春生等.一种脉冲激光雷达与摄像机标定方法的研究[J].中国激光,2011,38(1):0108006(1-5).
    [120] Waltz,R.A., J.L.Morales, J.Nocedal, D.Orban. An interior algorithm fornonlinear optimization that combines line search and trust region steps[J].Mathematical Programming, Vol107,No.3,pp.391-408,2006.
    [121] Ayache N, Lustman F. Trinocular stereo vision for robotics[J]. IEEE TransPattern Anal Mach Intell,1991,13:73–85.
    [122] Fusiello A, Trucco E, Verri A. Rectification with unconstrained stereogeometry. Research Memorandum RM/98/12, CEE Dept., Heriot-Watt University,Edinburgh, UK. ftp://ftp.sci.univr.it/pub/Papers/Fusiello/RM-98-12.ps.gz
    [123] Hartley R. Theory and practice of projective rectification[J]. Int J ComputVision,1999,35(2):1–16.
    [124] Pollefeys M, Koch R, VanGool L. A simple and efficient rectificationmethod for general motion[C]. In: ICCV99, Corfu, Greece, pp496–501.
    [125] Andrea Fusiello, Emanuele Trucco, Alessandro Verri. A compact algorithmfor rectification of stereo pairs[J]. Machine Vision and Applications.2000,12:16–22
    [126] Sh D M,Poggio T.Cooperative computation of disparity:Neurocomputing:foundations of research[M].MIT Press,1988259~267.
    [127] Szeliski R, Golland P. Stereo Matching with Transparency and Matting[J].IEEE Computer Society,1998.
    [128] Belhumeur P N. A Bayesian approach to binocular stereopsis[J]. Int. J.Comput. Vison,1996,19(3):237~260.
    [129] Belhumeur P N, Mumford D. A Bayesian treatment of the stereocorrespondence problem using half-occluded regions[J],1992.
    [130] Geiger D, Ladendorf B, Yuille A. Occlusions and binocular stereo[J]. Int. J.Comput. Vison,1995,14(3):211~226.
    [131] Ishikawa H, Geiger D. Occlusions, Discontinuities, and Epipolar Lines inStereo[J]. Springer-Verlag,1998.
    [132] Bobick A F, Intille S S. Large Occlusion Stereo[J]. Int. J. Comput.Vison,1993,33(3):181~200.
    [133] Sing B K, Szeliski R, Jinxiang C. Handling occlusions in dense multi-viewstereo[J].2001.
    [134] Sun J, Li Y, Kang S B, et al. Symmetric Stereo Matching for OcclusionHandling[J]. IEEE Computer Society,2005.
    [135] Hammersley J, Clifford P. Markov field on finite graphs andlattices[M]:1971.
    [136] Li Z, Hu G. Analysis of Disparity Gradient Based Cooperative Stereo[J].IEEE Transactions on Image Processing,1996.
    [137] M.Z.Brown, D.Burschka, Advances in computational stereo[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2003,25(8).
    [138] Megyesi Z, Kos G, Chetverikov D. Dense3D reconstruction from images bynormal aided matching[J]. Machine Graphics&Vision Intemational Journal,2006,15(1):3~28.
    [139] Zeng G, Paris S, Quan L, et al. Surface Reconstruction by Propagating3DStereo Data in Multiple2D Images[J].2004.
    [140] Habbecke M, Habbecke M, Kobbelt L. A Surface-Growing Approach toMulti-View Stereo Reconstruction[J].2007.
    [141] Cech J, Sara R. Efficient Sampling of Disparity Space for Fast and AccurateMatching[J].2007.
    [142] Zitnick C L, Kanade T. A Cooperative Algorithm for Stereo Matching andOcclusion Detection[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,2000,22(7).
    [143] Nasrabadi N M. A Stereo Vision Technique Using Curve-Segments andRelaxation Matching. IEEE Trans[J]. Pattern Anal. Mach. Intell.,1992,14(5):566~572.
    [144] Le H J, Lei W L. Region matching and depth finding for3D objects in stereoaerial photographs[J]. Pattern Recogn.,1990,23(1-2):81~94.
    [145] Zhan Y, Kambhamettu C. Stereo Matching with Segmentation-BasedCooperation[J]. Springer-Verlag,2002.
    [146] Ohta L Y, Kanade T. Stereo by Intra-and Inter-Scanline Search UsingDynamic Programming[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1985,7:139-154.
    [147] Gong M, Yang Y. Fast Unambiguous Stereo Matching UsingReliability-Based Dynamic Programming[J]. PAMI,2005.
    [148] Kim J C, Lee K M, Choi B T, et al. A Dense Stereo Matching UsingTwo-Pass Dynamic Programming with Generalized Ground Control Points[J].2005.
    [149] Hirschmuller H. Accurate and Efficient Stereo Processing by Semi-GlobalMatching and Mutual Information[J]. IEEE Computer Society,2005.
    [150]Veksler O. Stereo Correspondence by Dynamic Programming on a Tree[J].2005.
    [151] Deng Y, Lin X. A Fast Line Segment Based Dense Stereo Algorithm UsingTree Dynamic Programming[J]. Computer Vision ECCV2006,2006,201~212.
    [152] Mattoccias S, Tombari F, Stefano L. Stereo Vision Enabling Precise BorderLocalization Within a Scanline Optimization Framework[J], Springer,2007.
    [153] Lavest J M, Viala M, Dhome M. Do We Really Need an AccurateCalibration Pattern to Achieve a Reliable Camera Calibration?[J]. Springer-Verlag,1998.
    [154] Hirschmuller H. Stereo Vision in Structured Environments by ConsistentSemi-Global Matching. Computer Vision and Pattern Recognition[J]. IEEE ComputerSociety Conference,2006,(2):2386~2393.
    [155] Schreer O, Brandenburg N, Askar S, et al. Hybrid Recursive Matching andSegmentation-Based Postprocessing in Real-Time Immersive Video Conferencing[J].2001.
    [156] Kim H, Min D B, Sohn K. Real-Time Stereo Using ForegroundSegmentation and Hierarchical Disparity Estimation[J].2005.
    [157]Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and theBayesian restoration of images: Readings in uncertain reasoning[M]. Morgan KaufmannPublishers Inc,1990,452~472.
    [158] Greig D, Porteous B, Seheult A. Exact Maximum a Posteriori Estimation forBinary Images[J].1989,48.
    [159] Vladimir Kolmogorov, Ramin Zabih. What Energy Functions Can BeMinimized via Graph Cuts?[J]. PAMI,2004.
    [160] Jian Sun, Heung-yeung Shum A N Z. Stereo Matching Using BeliefPropagation[J].2002.
    [161] Hai T, Sawhney H S. Global Matching Criterion and Color SegmentationBased Stereo[J].2000.
    [162] Klaus A, Sormann M, et al. Segment-Based Stereo Matching Using BeliefPropagation and a Self-Adapting Dissimilarity Measure[J].2006.
    [163] Yang Q, Wang L, Yang R, et al. Stereo Matching with Color-WeightedCorrelation, Hierarchical Belief Propagation and Occlusion Handling[J].2006.
    [164] Hong L, Chen G. Segment-Based Stereo Matching Using Graph Cuts[J].2004.
    [165] Bleyer. Segmentation-Based Stereo and Motion with Occlusions[D].2006.
    [166] G.Van Meerbergen, M.Vergauwen, M.Pollefeys, L.Van Gool.A HierarchicalSymmetric Stereo Algorithm using Dynamic Programming[J]. International Journal ofComputer Vision,2002(47):275-285.
    [167] M. Okutomi and T. Kanade, A Locally AdaptiveWindow for SignalProcessing[J]. International Journal of Computer Vision,1992(7):143-162.
    [168] Stan Birchfield, Depth and Motion Discontinuities[D]. Dept. of ElectricalEngineering, Stanford University,1999.P.H.S.T or andA. Crimi nisi
    [169] P. H. S. Torr, A. Criminisi. Dense Stereo Using Pivoted DynamicProgramming[C]. BMWC.2002(4):14-23.
    [170] D Geiger, B. Ladendorf, and A. Yuille. Occlusions and binocular stereo[J].IJCV.1985(14):211.226.
    [171] http://vision.middlebury.edu/stereo
    [172] R. I. Hartley and P. Sturm, Triangulation[J]. Comput. Vision ImageUnderstand,68-2(1997-11),146-157.
    [173] K.Kanatani, Y.Sugava, H.Niitsuma. Triangulation from Two ViewsRevisited: Hartley-Sturm VS. Optimal Correction[C].19th British Machine VisionConference.2008,173-182.