W型火焰锅炉燃烧检测与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展W型火焰锅炉高效低NOx的燃烧技术,优化炉内燃烧,是我国低挥发分煤的燃烧利用中一个急需解决的重要课题。详细的试验检测和准确的燃烧过程数值模拟是正确分析炉内的煤粉燃烧过程,揭示炉内NOx的生成机理,准确把握不同因素对炉内燃烧特性的影响的关键,能够为炉内的燃烧优化和发展新型W型火焰锅炉高效低NOx燃烧技术提供指导和依据。本文通过基于图像处理的燃烧检测技术对W型火焰锅炉内的燃烧进行检测,并对炉内燃烧过程进行详细的数值模拟分析,研究了优化炉内燃烧的技术,并在电站锅炉上通过改造进行了实践。本文的主要研究内容如下:
     W型火焰锅炉燃烧过程的检测研究。通过使用基于图像处理的炉内燃烧过程检测技术,对Foster Wheeler (FW)技术W型300MW和600MW级的锅炉进行检测。对一台300MW级W型火焰锅炉进行了沿炉膛高度方向的温度和火焰发射率的检测,得到了炉内火焰温度和发射率沿炉膛高度方向上分布的主要规律。对一台600MW级W型火焰锅炉进行三维温度场重建的研究,并将三维重建温度分布的信息与采用便携式图像温度检测系统以及红外高温计的检测结果进行了比较,结果显示检测结果的差别在10%以内,表明检测结果的可靠性。检测结果表明W型火焰锅炉目前存在的飞灰含碳量高,NOx排放超标等问题与实际燃烧过程中火焰中心偏上,煤粉停留时间不足,炉内空气分级燃烧不足有直接关系。
     对FW技术的W型火焰锅炉燃烧过程进行数值模拟研究并提出一种提高NOx预测准确性的方法。通过建立适合W型火焰锅炉特点的贴体网格,采用Computational Fluid Dynamics (CFD)方法对一台310MW W型火焰锅炉内的燃烧过程进行了模拟,得到了典型的炉内温度分布,速度场和颗粒轨迹等,并通过将模拟得到流场和沿炉膛高度方向的温度分布结果与试验结果进行对比,表明了模拟方法和结果的可靠性。以此为基础分析了目前炉内燃烧中存在的一些主要问题和原因。通过将CFD燃烧过程模拟得到燃烧器出口的升温曲线,结合具有氮释放预测能力的化学渗透脱挥发分(Chemical Percolation Devolatilization) CPD模型,计算得到煤粉在燃烧过程中挥发分氮和焦炭氮的比例,以及挥发分中NOx的前驱物HCN和NH3的份额。用这些参数取代传统的经验参数,取得了对NOx生成的预测的更高精度。
     在以上研究的基础上,对四种不同运行条件下的W型火焰锅炉燃烧优化开展了数值模拟研究。通过CFD数值模拟结合现场燃烧调整试验,研究了乏气比例的调整、C风(油枪风)比例调整和混煤掺烧方式调整对炉内燃烧过程和NOx排放的影响。研究不同燃烧调整方式对动量比、煤粉着火、火焰下冲深度、煤粉燃尽和NOx排放的影响,给出了优化运行的指导意见。由于常规的燃烧优化方式不能从根本上解决炉内空气分级不足造成NOx排放高的问题,通过数值模拟研究拱上燃尽风的实施方案,指出在拱上实施高速燃尽风,能够在保证煤粉燃尽的同时有效降低NOx排放。
     由于常规的燃烧优化方式对W型火焰锅炉的高效低NOx运行只能起到有限的作用,而且往往难以兼顾稳燃、高效和低NOx燃烧的要求,所以研究了在F层二次风风箱中加入下倾的导流叶片,使得占二次风60-70%的F风以一个下倾的角度进入下炉膛,从而改进炉内的燃烧。该技术可以在不改变拱上动量的情况下,增加向下/水平动量比,还能通过下倾的二次风对下行的一次风起到引射作用,这样可以保证主要的二次风不会直接水平冲击下冲的煤粉气流,使得二次风逐渐沿一次风火焰行程补充氧量,有利于延长火焰行程,扩大下炉膛还原区,有利于煤粉燃尽和降低NOx排放。通过燃烧过程数值模拟优化F层二次风下倾角度,得到最佳下倾角度为25。。该改造措施在电厂的实际应用效果表明,该项新技术的应用,可以有效降低飞灰含碳量,高负荷下提高燃烧效率超过1%,降低NOx排放超过20%。
The development of coal combustion technology to optimize the coal combustion to improve the efficiency and reduce NOx emission of arch fired boilers, is an important and urgent issue in the combustion utilization of low-volatile coal. Detailed tests and accurate numerical simulation of combustion process is the key point to accurate grasp coal combustion process in furnaces, reveale the mechanism of NOx formation, and comprehensively understand the effects of various factors on the combustion characteristics. They are the the guidance and basis to optimize the coal combustion and develop new high efficiency and low NOx emission combustion technology. This work, based on the analysis of combustion process in the arch fired furnaces by detailed flame detection technology employing image processing technology and numerical simulation, studied a pratical technology to improve the combustion in the arch fired furnace. The detailed description is as below:
     Combustion detection technology by image processing technique has been applied to study the combustion process in two typical Foster Wheeler (FW) technology arch fired furnaces, each of which is representive for 300MW and 600MW grade boilers. The measurements of the 300MW furnace, show general rules of temperature distribution and flame emissivity along the height of the furnace. Three-dimensional temperature field reconstruction study on a 600MW grade boiler has been performed. The three-dimensional temperature distribution measurements have been verified by a portable image temperature detection system and an infrared pyrometer test results. The comparison shows the temperature measurement differences between the three instruments are within 10%, which indicates the reliability of the mesurements. Numerical simulation method reliability and results are also confirmed by the temperature measurements. The analysis based on above results, shows that the high unburnt carbon and NOx emissions are mainly caused by the actual high flame center in the furnace, which reduce the residence time of pulverized coal and decrease the staged air combustion.
     A numerical simulation is applied to a FW technology arch fired boiler combustion process, and a method to improve the prediction of NOx emission is presented as well. By the establishment of body-fitted grid of a 310MW FW arch fired furnace, the CFD method is performed to simulate the combustion characteristics in the furnace, and the typical furnace temperature distribution, velocity field and particle trajectory have been presented. The comparison of simulated flow field and temperature distribution along the furnace height with the experimental results, shows the reliability of the simulation methods and results, and the prediction reveal the reasons account for the bad combustion in the furnace. By the CFD combustion results, the heating progress of coal particles in the furnace can be account to predict the nitrogen release by Chemical Percolation model for Devolatilization (CPD) model. Then, the volatile nitrogen and char nitrogen ratio and the proportion of volatile NOx precursors in form of HCN and NH3 are able to be calculated for the actual combustion process in the furnace. Using these computed parameters instead of the traditional experiential parameters, the NOx emission prediction accuracy is improved.
     On the basis of the above results, four combustion optimization methods for FW arch fired furnace are researched by numerical modeling and field tests. The effects of the proportion adjustments of vent air, C air (oil gun air) and the method to burn blended coal in the furnace on coal combustion process and NOx emission are studied, by comparasions of the momentum ratio, coal igniton, flame depth, coal burnout and NOx emission variations, and optimal operation are suggested. As the conventional combustion optimization methods are not able to fundamentally solve the shortage of the high NOx emission as a reason of lack air-staged combustion. So deep air combustion method by the independent over fire air (OFA) set above the arch of furnace is presented. The numerical simulation is employed to study the effects of the independent OFA strategy on the combustion characteristic, and introduce high-speed OFA above the arch to guarantee the coal burnout with effective reduction of NOx emission.
     As the conventional optimization methods not only play a limited role to improve combustion efficiency and reduce NOx emission for the arch fired furnace, but also hard to maintain stable combustion while achieve high efficiency and low NOx emission. So a technology to improve the combustion is studied by set guide vanes in the F layer secondary air box to decline the 60-70% secondary air with a certain angle into the furnace. The method is able to increase the downward/horizontal momentum ratio without any change of the flow on the arch. The declination of the secondary air also plays an injection effect on the down-flow primary air, this ensures that the main secondary air gradually offer oxygen for the coal flame along the flame path, not directly impacts the down-flowing primary air. As a result, the flame path is extended and the reduction zone in the down furnace is enlarged, which improve the coal burnout and reduce the NOx emission. Numerical simulation of combustion optimization of different F layer secondary declined angles shows the best angle is 25°. The industrial application of this technology on a FW furnace shows that this method effectively reduces unburnt carbon in fly ash, and increases combustion efficiency more than 1% with more than 20% NOx emission reduction on high load.
引文
[1]BP Statistical Review of World Energy 2008.2008.
    [2]BP Statistical Review of World Energy 2009.2009.
    [3]中华人民共和国国家统计局.中国统计年鉴2007.北京:中国统计出版社,2007.
    [4]张云洲,张凤营,李德波.我国未来煤炭供应能力预测研究.中国电力.2007,40(11):9-15.
    [5]中国首现燃“煤”之急发展新能源应成强国战略.2010,http://www.ceppea.net/txtlstvw.aspx?LstID=29429200-5dcc-4ac7-8c5a-8e6d4cd0b291.
    [6]国际能源网.电力行业发展概况.2009,http://www.in-en.com/china60/power60.html.
    [7]吴式瑜,王美丽.煤炭在中国能源的地位.煤炭加工与综合利用.2006,(15):2-8.
    [8]张晓鲁.中国的电力结构调整与技术发展趋势.电气技术.2006,(11):1-4.
    [9]寇新,李金峰.煤炭是我国能源节约的重点.煤炭经济研究.2004,(08):12-13.
    [10]陆延昌.努力实现节能降耗新突破.电力设备.2007,8(7):1-3.
    [11]王鑫,傅德黔,努丽亚.NOx排放统计方法综述.中国环境监测.2008,24(04):57-60.
    [12]唐飞,董斌,赵敏.超超临界机组在我国的发展及应用.电力建设.2010,31(01):80-82.
    [13]葛正翔,孙薇,梁芙翠.优化能源消费结构提高能源使用效率.中国电力.2008,41(2):1-4.
    [14]方庆艳.低挥发份煤及其混煤燃烧数值模拟与试验研究:[博士论文].能源与动力工程学院,华中科技大学,2007.
    [15]戴和武,李瑞,李连仲等.我国动力煤利用的若干问题.中国煤炭.1997,23(09):12-16.
    [16]车丹,马小霞.无烟煤在W型火焰锅炉中的燃烧特性与存在问题的探讨.中国科技信息.2009,(06):21-22.
    [17]郭玉泉.W火焰锅炉燃烧及运行特性试验研究:[硕士论文].动力工程,山东大学,2006.
    [18]王庆一.中国能源现状与前景.中国煤炭.2005,31(2):22-27.
    [19]王庆一.中国的能源效率及国际比较.节能与环保.2005,(6):10-13.
    [20]付融冰,张慧明.中国能源的现状.能源环境保护.2005,19(1):8-12.
    [21]曾汉才,姚斌,程俊峰等.关于我国大型锅炉NOx排放评价及其排放标准修订的建议.锅炉制造.2001,(04):1-5.
    [22]车刚,郝卫东,郭玉泉.W型火焰锅炉及其应用现状.电站系统工程.2004,20(1):38-40.
    [23]周怀春,方庆艳,张志国.煤粉射流吸热着火稳燃机理及新型稳燃技术的探讨.动力工程.2006,26(1):101-107.
    [24]许传凯,许云松.我国低挥发分煤燃烧技术的发展.热力发电.2001,(5):2-8.
    [25]Longwell, J. P., Rubin, E. S., Wilson, J. Coal:Energy for the future. Progress in Energy and Combustion Science.1995,21(4):269-360.
    [26]岑可法,樊建人.燃烧流体力学.北京:水利电力出版社,1991.
    [27]许传凯.低挥发分煤的燃烧与“W”型火焰锅炉若干问题研究.中国电力.2004,37(7):37-40.
    [28]毕玉森,陈国辉.低挥发分煤种与W型火焰锅炉.热力发电.2005,(07):7-11.
    [29]车刚,沈永庆.滇东电厂2028t/h W型火焰锅炉的技术特点.锅炉技术.2008,39(4):53-57.
    [30]张海,吕俊复,徐秀清等.w型火焰锅炉燃烧问题的分析和解决方法.动力工程.2005,25(5):268-273.
    [31]宋豪杰.基于支持向量机的协调系统辨识:[工程硕士论文].能源与动力工程,华北电力大学,2008.
    [32]Winkin, P, J., Garcia-Mallol, et al. Anthracite firing in large utility arch fired boilers. in:Proceedings of the American Power Conference:vol.52,1997.1166-1174.
    [33]李端开,李争起,顾宇等.旋流燃烧器W型火焰锅炉特点及研究进展.节能技术.2009,27(155):195-200.
    [34]徐琳,宋成香.W型火焰锅炉燃烧特性研究.能源研究与利用.2009,(04):26-30.
    [35]柳宏刚,白少林.现役各类w火焰锅炉NOx排放对比分析研究.热力发电. 2007,(3):1-5.
    [36]许传凯,袁颖.大型燃煤电厂锅炉运行现状分析.中国电力.2003,36(1):1-5.
    [37]樊泉桂,周健,仇田根.引进W形火焰锅炉燃烧效率及启动特性的分析.中国电力.1996,29(6):3-6.
    [38]单凤玲,王新华.W火焰双拱燃烧锅炉燃用无烟煤燃尽率低的原因分析.热力发电.2003,(4):21-24.
    [39]白少林,李宗绪,张建生等.提高大型低挥发分煤锅炉运行经济性研究.中国电力.2006,39(9):79-83.
    [40]袁颖,相大光.我国W火焰双拱锅炉燃烧性能调查研究.中国电力.1999,32(11):1-6.
    [41]苗长信,王卫东,王建伟.MBEL"W"火焰锅炉燃烧特性试验研究.山东电力技术.2004,(1):6-12.
    [42]Fan, J. R., Jin, J., Liang, X. H., et al. Modeling of coal combustion and NOx formation in a W-shaped boiler furnace. Chemical Engineering Journal.1998,71(3): 233-242.
    [43]Fan, J. R., Liang, X. H., Xu, Q. S., et al. Numerical simulation of the flow and combustion processes in a three-dimensional, w-shaped boiler furnace. Energy. 1997,22(8):847-857.
    [44]Fan, J. R., Zha, X. D., Cen, K. F. Study on coal combustion characteristics in a W-shaped boiler furnace.Fuel.2001,80(3):373-381.
    [45]孙保民,陆肖马,徐旭常.W型火焰煤粉锅炉炉内冷态流场的试验研究及数值模拟.燃烧科学与技术.1995,1(1):79-83.
    [46]孙保民,徐旭常.W型火焰煤粉锅炉炉内过程的综合数值模拟及流场的实验研究.中国电机工程学报.1996,16(4):230-235.
    [47]薛宁,白少林,相大光.W火焰炉低负荷稳燃问题的数值模拟研究.热力发电.2003,(11):28-31.
    [48]王笃奎.鄂州电厂W型火焰锅炉的燃烧流场与运行研究:[硕士论文].能源与动力工程学院,华中科技大学,2002.
    [49]姚斌.大型低挥发份煤锅炉燃烧运行问题的研究:[博士论文].能源与动力工程学院,华中科技大学,2005.
    [50]方庆艳,周怀春,汪华剑等.W火焰锅炉结渣特性数值模拟.中国电机工程学报.2008,28(23):1-7.
    [51]Fueyo, N., Gambon, V., Dopazo, C., et al. Computational evaluation of low NOx operating conditions in arch-fired furance. Journal of Engineering for Gas Turbines and Power.1999,121(3):735-731.
    [52]郑昌浩,徐旭常,唐庆.非正交贴体网格体系模拟炉内燃烧过程.工程热物理学报.2003,24(2):231-234.
    [53]赵坚行.燃烧的数值模拟.北京:科学出版社,2002.
    [54]张杰,余战英,谭厚章等.W型火焰锅炉的热态试验研究.动力工程.2003,23(5):2632-2635.
    [55]Ren, F.,Li, Z., Jing, J., et al. Influence of the adjustable vane position on the flow and combustion characteristics of a down-fired pulverized-coal 300 MWe utility boiler. Fuel Processing Technology.2008,89(12):1297-1305.
    [56]Li, Z., Ren, F., Zhang, J., et al. Influence of vent air valve opening on combustion characteristics of a down-fired pulverized-coal 300 MWe utility boiler. Fuel.2007, 86(15):2457-2462.
    [57]余战英,谭厚章,张杰等.W型火焰分级燃烧的热态试验研究.燃烧科学与技术.2004,10(4):314-317.
    [58]Fan, J. R., Liang, X. H., Chen, L. H., et al. Modeling of NOx emissions from a W-shaped boiler furnace under different operating conditions. Energy.1998,23(12): 1051-1055.
    [59]Hill, S. C., Smoot, D. L. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science.2000,26(4-6): 417-458.
    [60]Jones, J. M., Patterson, P. M., Pourkashanian, M., et al. Modelling NOx formation in coal particle combustion at high temperature:an investigation of the devolatilisation kinetic factors. Fuel.1999,78(10):1171-1179.
    [61]Arenillas, A., Backreedy, R. I., Jones, J. M., et al. Modelling of NO formation in the combustion of coal blends. Fuel.2002,81(5):627-636.
    [62]Diez, L. I., Cortes, C., Pallares, J. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation. Fuel. 2008,87(7):1259-1269.
    [63]Su, S., Xiang, J., Sun, L., et al. Numerical simulation of nitric oxide destruction by gaseous fuel reburning in a single-burner furnace. Proceedings of the Combustion Institute.2007,31(2):2795-2803.
    [64]Glarborg, P., Jensen, A. D., Johnsson, J. E. Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science.2003,29(2):89-113.
    [65]Muzio, L. J., Quartucy, G. C. Implementing NOx control:Research to application. Progress in Energy and Combustion Science.1997,23(3):233-266.
    [66]Smoot, L. D. Fundamentals of coal combustion for clean and efficient use. The Netherlands Amsterdam,1993.
    [67]Kelemen, S. R., Gorbaty, M. L., Kwiatek, P. J., et al. Nitrogen Transformations in Coal during Pyrolysis. Energy Fuels.1998,12(1):159-173.
    [68]Wojtowicz, M. A., Pels, J. R., Moulijn, J. A. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel.1995,74(4):507-516.
    [69]Thomas, K. M. The release of nitrogen oxides during char combustion. Fuel.1997, 76(6):457-473.
    [70]Visona, S. P., Stanmore, B. R. Modelling NO formation in a swirling pulverized coal flame. Chemical Engineering Science.1998,53(11):2013-2027.
    [71]Wang, W., Brown, S. D., Hindmarsh, C. J., et al. NOx release and reactivity of chars from a wide range of coals during combustion. Fuel.1994,73(9):1381-1388.
    [72]Wang, W., Brown, S. D., Thomas, K. M., et al. Nitrogen release from a rank series of coals during temperature programmed combustion. Fuel.1994,73(3):341-347.
    [73]Spinti, J. P., Pershing, D. W. The fate of char-N at pulverized coal conditions. Combustion and Flame.2003,135(3):299-313.
    [74]Fan, J. R., Sun, P., Zheng, Y. Q., et al. Numerical and experimental investigation on the reduction of NOx emission in a 600 MW utility furnace by using OFA. Fuel. 1999,78(12):1387-1394.
    [75]Li, K., Thompson, S., Peng, J. Modelling and prediction of NOx emission in a coal-fired power generation plant. Control Engineering Practice.2004,12(6): 707-723.
    [76]Solomon, P. R., Hamblen, D. G, Carangelo, R. M., et al. General model of coal devolatilization. Energy Fuels.1988,2(4):405-422.
    [77]Eaton, A. M., Smoot, L. D., Hill, S. C., et al. Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Progress in Energy and Combustion Science.1999,25(4):387-436.
    [78]Niksa, S. FLASHCHAIN Theory for Rapid Coal Devolatilization Kinetics.6. Predicting the Evolution of Fuel Nitrogen from Various Coals. Energy & Fuels. 1995,9(3):467-478.
    [79]Perry, S. T., Fletcher, T. H., Solum, M. S., et al. Modeling Nitrogen Evolution during Coal Pyrolysis Based on a Global Free-Radical Mechanism. Energy Fuels. 2000,14(5):1094-1102.
    [80]Genetti, D., Fletcher, T. H. Modeling Nitrogen Release during Devolatilization on the Basis of Chemical Structure of Coal. Energy & Fuels.1999,13(5):1082-1091.
    [81]Antonio, G.-M. J., Kukoski, A. E., Winkin, J. P., Anthracite Firing Design for Central. Stations:Ignition and Emissions Aspects, International Pittsburgh Coal Conference,1997:Taiyuan, Shanxi. p.1-13.
    [82]Eberle, J. S., Antonio, G.-M. J., Simmerman, R. N., Advanced FW arch firing:NOx reduction in central power station, Pittsburgh Coal Conference,2002:Pittsburgh, Pennsylvania, p.1-21.
    [83]Garcia-Mallol, J. A., Steitz, T., Chu, C.-Y., et al., Ultra-Low NO Advanced FW Arch Firing:Central Power Station Applications,2nd U.S.-China NOx and SO2 Control Workshop,2005:Dalian, Liaoning, P. R. China, p.1-25.
    [84]Sonnichsen, T. W. NOx emission form pulverized-coal arch-fired boilers. [Report]. Electric Power Research Institute, Coal Combustion Systems Division.1982.
    [85]Burdett, N. A. The effects of air staging on NOx emissions from a 500 MW(e) down-fired boiler. J Inst Energy.1987, LX:103-107.
    [86]Donald, P. M., Kurt, E. E., Jason, D. L. Coal slagging and reactivity testing. [report]. 2003.
    [87]毕玉森,陈国辉.煤粉细度的合理选择.中国电力.2004,37(01):40-42.
    [88]朱光明,段学农,姚斌等.直吹式制粉系统“W”型火焰锅炉无烟煤混煤掺烧优化试验研究.中国电力.2009,42(4):18-21.
    [89]段学农,朱光明,焦庆丰等.电厂锅炉混煤掺烧技术研究与实践.中国电力.2008,41(06):51-54.
    [90]王力,丘纪华.浅论“W”型火焰锅炉直吹式制粉系统烟煤无烟煤分磨分烧方式.中国科技信息.2008,(16):133-135.
    [91]车刚,徐通模,惠世恩.W型火焰锅炉空气动力场的研究.山东电力技术.2007, (05):20-25.
    [92]苗长信,王建伟,车刚.600MW“W”火焰锅炉降低NOx的调试分析.山东电力技术.2004,(2):6-10.
    [93]马斌,徐齐胜,李乃钊等.韶关电厂1025t/h W型火焰锅炉调试.热力发电.2004,(5):25-28.
    [94]马晓伟,杜云华,王勇等.金竹山600MW“W”型火焰锅炉调试及性能试验研究.东方电气评论.2009,23(92):20-26.
    [95]苗长信,车刚,刘志超.菏泽发电厂300MW“W”火焰锅炉燃烧调整及运行特性分析.中国电力.2002,35(7):13-18.
    [96]侯国威,李金锋,刘永军.“W”火焰锅炉双进双出球磨机和对应燃烧器布置方案选择探讨.中国电力.2003,36(2):67-70.
    [97]余战英,谭厚章,徐通模等.W型火焰燃烧的实验研究.工程热物理学报.2004,25(增刊):233-236.
    [98]王笃奎,曾汉才.W型火焰炉冷态试验及最佳配风方式的研究.华中电力.2001,14(3):18-21.
    [99]樊险峰,徐宝山,周传平等.W型火焰炉冷态空气动力场试验研究及评价.锅炉制造.2002,(2):1-6.
    [100]周昊,池作和,岑可法.采用旋流拱顶燃烧器的W型锅炉炉内流动特性.热能动力工程.2000,15(11):611-616.
    [101]周昊,池作和,李凤瑞等.W型锅炉拱顶燃烧器采用旋流和直流时气相流动特性对比.热力发电.1999,(6):57.
    [102]Ren, F., Li, Z., Zhang, Y., et al. Influence of the Secondary Air-Box Damper Opening on Airflow and Combustion Characteristics of a Down-Fired 300-MWe Utility Boiler. Energy Fuels.2007,21(2):668-676.
    [103]Li, Z., Ren, F., Chen, Z., et al. Influence of declivitous secondary air on combustion characteristics of a down-fired 300-MWe utility boiler. Fuel.2010,89(2):410-416.
    [104]孙锐,孙绍增,李争起等.煤粉浓缩器内气固两相流动特性的数值模拟.机械工程学报.2004,40(03):35-40.
    [105]陈智超,李争起,孙锐等.适用于1025t/h燃煤锅炉的浓淡旋流煤粉燃烧技术的研究.中国电机工程学报.2004,24(04):189-194.
    [106]李争起,陈智超,孙锐等.适用于燃用贫煤1025t/h锅炉的中心给粉旋流燃烧器.机械工程学报.2006,42(03):221-226.
    [107]方庆艳,姚斌,江瑞宝等.W型火焰锅炉炉内燃烧过程检测实验研究.热能动力工程.2005,20(4):361-365.
    [108]Fang, Q.-y., Zhou, H.-c., Wang, H.-j., et al. Flexibility of a 300 MW Arch Firing Boiler Burning Low Quality Coals. Journal of China University of Mining and Technology.2007,17(4):566-571.
    [109]姚斌,姜志伟,周怀春等.W型火焰锅炉炉膛温度场的可视化试验研究.热能动力工程.2006,21(1):35-39.
    [110]于鹏峰,姜志伟,姚斌等.基于数字图像处理对W型锅炉燃烧状况的诊断.湖北电力.2007,31(1):39-40.
    [111]Fang, Q., Wang, H., Wei, Y., et al. Numerical simulations of the slagging characteristics in a down-fired, pulverized-coal boiler furnace. Fuel Processing Technology.2010,91(1):88-96.
    [112]毕玉森,陈国辉.控制电厂锅炉NOx排放的对策和建议.中国电力.2004,37(06):37-41.
    [113]Fan, S., Li, Z., Yang, X., et al. Influence of outer secondary-air vane angle on combustion characteristics and NOx emissions of a down-fired pulverized-coal 300 MWe utility boiler. Fuel. In Press, Corrected Proof.
    [114]新井纪男.燃烧生成物的发生与抑制技术.赵黛青等译.北京:科学出版社,2001.
    [115]Huang, Q.-x., Wang, F., Liu, D., et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography. Combustion and Flame.2009,156(3):565-573.
    [116]Cheung, K. Y, Zhang, Y. Stereo imaging and analysis of combustion process in a gas turbine combustor. Measurement Science and Technology.2006,17(12): 3221-3228
    [117]Huang, H.-W., Zhang, Y Flame colour characterization in the visible and infrared spectrum using a digital camera and image processing. Measurement Science and Technology.2008,19(8):1-9.
    [118]Gilabert, G, Gang, L., Yong, Y. Three-Dimensional Tomographic Reconstruction of the Luminosity Distribution of a Combustion Flame. Instrumentation and Measurement, IEEE Transactions on.2007,56(4):1300-1306.
    [119]Brisley, P. M., Lu, G, Yan, Y., et al. Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera. IEEE Transactions on Instrumentation and Measurement.2005,54(4):1417-1421.
    [120]Godoy, S. M., Lockwood, F. C. Development of a two-colour infrared pyrometer for coal particle temperature measurements during devolatilisation. Fuel.1998, 77(9-10):995-999.
    [121]Panagiotou, T., Levendis, Y, Delichatsios, M. Measurements of Particle Flame Temperatures Using Three-Color Optical Pyrometry. Combustion and Flame.1996, 104(3):272-287.
    [122]Correia, D. P., Ferrao, P., Caldeira-Pires, A. Flame three-dimensional tomography sensor for in-furnace diagnostics. Symposium (International) on Combustion.2000, 28(1):431-438.
    [123]Huang, Y, Yan, Y, Riley, G. Vision-based measurement of temperature distribution in a 500-kW model furnace using the two-colour method. Measurement.2000, 28(3):175-183.
    [124]Beckstead, M. W., Puduppakkam, K., Thakre, P., et al. Modeling of combustion and ignition of solid-propellant ingredients. Progress in Energy and Combustion Science. 2007,33(6):497-551.
    [125]Zhou, H.-C., Lou, C., Cheng, Q., et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace. Proceedings of the Combustion Institute.2005,30(1):1699-1706.
    [126]Zhou, H.-C., Han, S.-D., Sheng, F., et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images:numerical studies. Journal of Quantitative Spectroscopy and Radiative Transfer.2002,72(4):361-383.
    [127]Lou, C., Zhou, H.-C. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation. Combustion and Flame.2005,143(1-2):97-105.
    [128]Yang, C., Zhou, H.-c., Huang, Z.-f. Visualization of 3-D temperature distribution in a 300 MW twin-furnace coal-fired boiler. Journal of China University of Mining and Technology.2008,18(1):33-37.
    [129]Jiang, Z.-W., Luo, Z.-X., Zhou, H.-C. A simple measurement method of temperature and emissivity of coal-fired flames from visible radiation image and its application in a CFB boiler furnace. Fuel.2009,88(6):980-987.
    []30]周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社,2005.
    [131]娄春.煤粉炉内三维温度场及颗粒辐射特性重建:[博士论文].能源与动力工程学院,华中科技大学,2007.
    [132]Zhou, H.-C., Cheng, Q., Huang, Z.-F., et al. The influence of anisotropic scattering on the radiative intensity in a gray, plane-parallel medium calculated by the DRESOR method. Journal of Quantitative Spectroscopy and Radiative Transfer. 2007,104(1):99-115.
    [133]Zhou, H.-C., Chen, D.-L., Cheng, Q. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method. Journal of Quantitative Spectroscopy and Radiative Transfer.2004,83(3-4):459-481.
    [134]Zhou, H.-C., Han, S.-D. Simultaneous reconstruction of temperature distribution, absorptivity of wall surface and absorption coefficient of medium in a 2-D furnace system. International Journal of Heat and Mass Transfer.2003,46(14):2645-2653.
    [135]Zhou, H.-C., Hou, Y.-B., Chen, D.-L., et al. An inverse radiative transfer problem of simultaneously estimating profiles of temperature and radiative parameters from boundary intensity and temperature measurements. Journal of Quantitative Spectroscopy and Radiative Transfer.2002,74(5):605-620.
    [136]Zhou, H.-C., Shu-Dong Han, Lou, C., et al. A new model of radiative image formation used in visualization of 3-D temperature distributions in large-scale furnaces. Numerical Heat Transfer Part B:Fundamentals.2002,42(3):243-258.
    [137]孙亦鹏,娄春,姜志伟等.彩色CCD摄像机三基色代表波长的试验研究.华中科技大学学报(自然科学版).2009,37(02):108-111.
    [138]Modest, M. F. Radiative Heat Transfer (Second Edition). New York:The Pennsylvania State University Academic Press,2002.
    [139]Ohtake, K., Okazaki, K. Optical ct measurement and mathematical prediction of multi-temperature in pulverized coal combustion field. International Journal of Heat and Mass Transfer.1988,31(2):397-405.
    [140]Lou, C., Zhou, H.-C., Yu, P.-F., et al. Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation. Proceedings of the Combustion Institute. 2007,31(2):2771-2778.
    [141]Luo, Z., Zhou, H.-C. A combustion-monitoring system with 3-D temperature reconstruction based on flame-image processing technique. IEEE Transactions on Instrumentation and Measurement.2007,56(5):1877-1882.
    [142]Wang, H.-J., Huang, Z.-f., Wang, D.-d., et al. Measurements on flame temperature and its 3-D distribution in a 660 MWe arch-fired coal combustion furnace by visible image processing and verification by using an infrared pyrometer. Measurement Science and Technology 2009,20:1-12.
    [143]王军.东方w型火焰锅炉燃烧调整方法.热力发电.2004,(12):37-40.
    [144]Smoot, L. D. A decade of combustion research. Progress in Energy and Combustion Science.1997,23(3):203-232.
    [145]Stephenson, P. L. Mathematical modelling of semi-anthracite combustion in a single burner furnace. Fuel.2003,82(15-17):2069-2073.
    [146]Shim, H.-S., Valentine, J. R., Davis, K., et al. Development of fireside waterwall corrosion correlations using pilot-scale test furnace. Fuel.2008,87(15-16): 3353-3361.
    [147]Vamvuka, D., Woodburn, E. T., Senior, P. R. Modelling of an entrained flow coal gasifier.1. Development of the model and general predictions. Fuel.1995,74(10): 1452-1460.
    [148]Sheng, C., Moghtaderi, B., Gupta, R., et al. A computational fluid dynamics based study of the combustion characteristics of coal blends in pulverised coal-fired furnace. Fuel.2004,83(11-12):1543-1552.
    [149]Zhou, Y., Xu, T., Hui, S., et al. Experimental and numerical study on the flow fields in upper furnace for large scale tangentially fired boilers. Applied Thermal Engineering.2009,29(4):732-739.
    [150]Yin, C., Rosendahl, L., Condra, T. J. Further study of the gas temperature deviation in large-scale tangentially coal-fired boilers. Fuel.2003,82(9):1127-1137.
    [151]Fan, J., Qian, L., Ma, Y, et al. Computational modeling of pulverized coal combustion processes in tangentially fired furnaces. Chemical Engineering Journal. 2001,81(1-3):261-269.
    [152]Xu, M., Azevedo, J. L. T., Carvalho, M. G. Modeling of a front wall fired utility boiler for different operating conditions. Computer Methods in Applied Mechanics and Engineering.2001,190(28):3581-3590.
    [153]Vuthaluru, R., Vuthaluru, H. B. Modelling of a wall fired furnace for different operating conditions using FLUENT. Fuel Processing Technology.2006,87(7): 633-639.
    [154]Tan, Y., Chui, E., Douglas, M., et al. Oxy-fuel coal burner design:From CFD modeling to pilot scale testing. in. Greenhouse Gas Control Technologies 7, Oxford: Elsevier Science Ltd; 2005.
    [155]Skodras, G, Kaldis, S. P., Sakellaropoulos, G P., et al. Simulation of a molten bath gasifier by using a CFD code. Fuel.2003,82(15-17):2033-2044.
    [156]Chen, C., Horio, M., Kojima, T. Numerical simulation of entrained flow coal gasifiers. Part Ⅱ:effects of operating conditions on gasifier performance. Chemical Engineering Science.2000,55(18):3875-3883.
    [157]Chen, C., Horio, M., Kojima, T. Numerical simulation of entrained flow coal gasifiers. Part I:modeling of coal gasification in an entrained flow gasifier. Chemical Engineering Science.2000,55(18):3861-3874.
    [158]Cooper, S., Coronella, C. J. CFD simulations of particle mixing in a binary fluidized bed. Powder Technology.2005,151(1-3):27-36.
    [159]王志刚,禚玉群,陈昌和等.四角切圆锅炉流场伪扩散效应网格的研究.中国电机工程学报.2007,27(5):22-28.
    [160]周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社,1994.
    [161]韩才元,徐明厚,周怀春等.煤粉燃烧.北京:科学出版社,2001.
    [162]Smoot, L. D., Smith, P. J. Coal combustion and gasification. New York:Plenum Press,1985.
    [163]Su, J. Numerical simulation of the carbon burnout process in solid fuel combustion: [Ph.D thesis]. Brown University,2000.
    [164]Zhang, H. Nitrogen Evolution and Soot Formation during Secondary Coal Pyrolysis: [Ph.D thesis]. Chemical Engineering, Chemical Engineering,2001.
    [165]Matzakos, A. N. Fundamental mechanisms of coal pyrolysis and char combustion: [Ph.D thesis]. Chemical Engineering, Rice University,1992.
    [166]Veynante, D., Vervisch, L. Turbulent combustion modeling. Progress in Energy and Combustion Science.2002,28(3):193-266.
    [167]Hurt, R., Sun, J.-K., Lunden, M. A Kinetic Model of Carbon Burnout in Pulverized Coal Combustion. Combustion and Flame.1998,113(1-2):181-197.
    [168]Stopford, P. J. Recent applications of CFD modelling in the power generation and combustion industries. Applied Mathematical Modelling.2002,26(2):351-374.
    [169]Sathyanathan, V. T., Mohammad, K. P. Prediction of unburnt carbon in tangentially fired boiler using Indian coals. Fuel.2004,83(16):2217-2227.
    [170]Zheng, C., Liu, Z., Duan, X., et al. Numerical and experimental investigations on the performance of a 300 MW pulverized coal furnace. Proceedings of the Combustion Institute.2002,29(1):811-818.
    [171]Niksa, S., Liu, G.-s., Hurt, R.H. Coal conversion submodels for design applications at elevated pressures. Part I. devolatilization and char oxidation. Progress in Energy and Combustion Science.2003,29(5):425-477.
    [172]Pallares, J., Arauzo, I., Williams, A. Integration of CFD codes and advanced combustion models for quantitative burnout determination. Fuel.2007,86(15): 2283-2290.
    [173]帕坦卡.传热与流体流动的数值计算.北京:科学出版社,1984.
    [174]Shih, T.-H., Liou, W. W., Shabbir, A., et al. A new k-e eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids.1995,24(3):227-238.
    [175]傅维镳.煤燃烧理论及其宏观通用规律.北京:清华大学出版社,2003.
    [176]Yu, J., Lucas, J. A., Wall, T. F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:A review. Progress in Energy and Combustion Science.2007,33(2):135-170.
    [177]Grant, D. M., Pugmire, R. J., Fletcher, T. H., et al. Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuels.1989,3(2): 175-186.
    [178]Fletcher, T. H., Kerstein, A. R., Pugmire, R. J., et al. Chemical percolation model for devolatilization.2. Temperature and heating rate effects on product yields. Energy Fuels.1990,4(1):54-60.
    [179]Fletcher, T. H., Kerstein, A. R., Pugmire, R. J., et al. Chemical percolation model for devolatilization.3. Direct use of carbon-13 NMR data to predict effects of coal type. Energy Fuels.1992,6(4):414-431.
    [180]Arenillas, A., Rubiera, F., Pevida, C., et al. A comparison of different methods for predicting coal devolatilisation kinetics. Journal of Analytical and Applied Pyrolysis. 2001,58-59:685-701.
    [181]Niksa, S., Kerstein, A. R. On the role of macromolecular configuration in rapid coal devolatilization. Fuel.1987,66(10):1389-1399.
    [182]Niksa, S., Kerstein, A. R. The distributed-energy chain model for rapid coal devolatilization kinetics. Part I:Formulation. Combustion and Flame.1986,66(2): 95-109.
    [183]Niksa, S. The distributed-energy chain model for rapid coal devolatilization kinetics. Part II:Transient weight loss correlations. Combustion and Flame.1986,66(2): 111-119.
    [184]Niksa, S., Kerstein, A. R. FLASHCHAIN theory for rapid coal devolatilization kinetics.1. Formulation. Energy & Fuels.1991,5(5):647-665.
    [185]Niksa, S. FLASHCHAIN theory for rapid coal devolatilization kinetics.2. Impact of operating conditions. Energy & Fuels.1991,5(5):665-673.
    [186]Niksa, S. FLASHCHAIN theory for rapid coal devolatilization kinetics.3. Modeling the behavior of various coals. Energy & Fuels.1991,5(5):673-683.
    [187]Williams, A., Pourkashanian, M., Jones, J. M. Combustion of pulverised coal and biomass. Progress in Energy and Combustion Science.2001,27(6):587-610.
    [188]Smoot, L. D. International research centers' activities in coal combustion. Progress in Energy and Combustion Science.1998,24(5):409-501.
    [189]Laurendeau, N. M.. Heterogeneous kinetics of coal char gasification and combustion. Progress in Energy and Combustion Science.1978,4(4):221-270.
    [190]傅培舫,方庆艳,周怀春.基于简单碰撞理论煤粉燃烧动力学模型的研究——PART Ⅲ:氧气可达比表面积.工程热物理学报.2006,27(1):171-173.
    [191]傅培舫,方庆艳,姚斌等.基于简单碰撞理论煤粉燃烧动力学模型的研究——PART Ⅰ:理论建模与热重实验.工程热物理学报.2005,26(2):131-134.
    [192]傅培舫,方庆艳,周怀春.基于简单碰撞理论煤粉燃烧动力学模型的研究—PART Ⅱ:颗粒表面的氧气浓度分布模型.工程热物理学报.2005,26(4):701-704.
    [193]肖三霞,方庆艳,傅培舫等.煤的热天平燃烧反应动力学特性的研究.工程热物理学报.2004,25(5):891-893.
    [194]Smith, I. W. The intrinsic reactivity of carbons to oxygen. Fuel.1978,57(7): 409-414.
    [195]Smith, I. W. The combustion rates of coal chars:A review. Symposium (International) on Combustion.1982,19(1):1045-1065.
    [196]余娜.粉煤燃烧过程中氧气可达比表面积和有效反应比表面积的试验研究:[硕士论文].热能工程,华中科技大学,2007.
    [197]Mitchell, R. E. An intrinsic kinetics-based, particle-population balance model for char oxidation during pulverized coal combustion. Symposium (International) on Combustion.2000,28(2):2261-2270.
    [198]Mitchell, R. E., Ma, L., Kim, B. On the burning behavior of pulverized coal chars. Combustion and Flame.2007,151(3):426-436.
    [199]Pallares, J., Arauzo, I., Diez, L. I. Numerical prediction of unburned carbon levels in large pulverized coal utility boilers. Fuel.2005,84(18):2364-2371.
    [200]Backreedy, R. I., Jones, J. M., Ma, L., et al. Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends. Fuel.2005, 84(17):2196-2203.
    [201]Cloke, M., Wu, T., Barranco, R., et al. Char characterisation and its application in a coal burnout model*. Fuel.2003,82(15-17):1989-2000.
    [202]岑可法,姚强,骆仲泱等.燃烧理论与污染控制.北京:机械工业出版社,2004.
    [203]Chen, S. L., Heap, M. P., Pershing, D. W., et al. Fate of coal nitrogen during combustion. Fuel.1982,61(12):1218-1224.
    [204]Zeldovich, T. B. The oxidation of nitrogen in combustion explosions. Acta Physicochim. U.S.S.R.1946,21:577-628.
    [205]Wiinning, J. A., Wunning, J. G. Flameless oxidation to reduce thermal no-formation. Progress in Energy and Combustion Science.1997,23(1):81-94.
    [206]De Soete, G. G. Overall reaction rates of NO and N2 formation from fuel nitrogen. Symposium (International) on Combustion.1975,15(1):1093-1102.
    [207]Hanson, R. K., Salimian, S. Survey of Rate Constants in H/N/O Systems. In W. C. Gardiner, editor, Combustion Chemistry.1984:page 361.
    [208]Westbrook, C. K., Dryer, F. L. Chemical kinetic modeling of hydrocarbon combustion. Progress in Energy and Combustion Science.1984,10(1):1-57.
    [209]Choi, C. R., Kim, C. N. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler. Fuel. 2009,88(9):1720-1731.
    [210]Lockwood, F. C., Romo-Millanes, C. A. Mathematical modeling of fuel-NO emissions from PF burners. Journal of the Institute of Energy 1992,65(64464): 144-152.
    [211]Genetti, D. B. An Advanced Model of Coal Devolatilization Based on Chemical Structure [Master of Science thesis]. Department of Chemical Engineering Brigham Young University,1999.
    [212]Fletcher, T. H., Solum, M. S., Grant, D. M., et al. Chemical structure of char in the transition from devolatilization to combustion. Energy Fuels.1992,6(5):643-650.
    [213]池作和,罗卫红,朱珍锦等.W型火焰炉配风方式的研究.动力工程.1994,14(03):16-18.
    [214]魏小林,徐通模,惠世恩.W型火焰锅炉冷态模型试验及数值计算.动力工程.1994,14(01):27-33.
    [215]周怀春,韩曙东,郑楚光.两种辐射温度图象监测方法的模拟比较分析及其适用性评价.中国电机工程学报.2002,22(06):109-114.
    [216]Field, M. A. Rate of combustion of size-graded fractions of char from a low-rank coal between 1200°K and 2000°K. Combustion and Flame.1969,13(3):237-252.
    [217]Molina, A., Eddings, E. G, Pershing, D. W., et al. Char nitrogen conversion: implications to emissions from coal-fired utility boilers. Progress in Energy and Combustion Science.2000,26(4-6):507-531.
    [218]曾汉才.燃烧与污染.武汉:华中理工大学出版社,1992.
    [219]Gera, D., Mathur, M., Freeman, M. Parametric Sensitivity Study of a CFD-Based Coal Devolatilization Model. Energy & Fuels.2003,17(3):794-795.
    [220]Sivathanu, Y. R., Faeth, G M. Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames. Combustion and Flame.1990,82: 211-230.
    [221]方庆艳,黄来,姚斌等.采用双混合分数/PDF方法模拟混煤在四角切圆锅炉内的燃烧.动力工程.2006,26(2):185-190.
    [222]哈尔滨工业大学.一种具有二次风分风室倾斜装置的W形火焰炉.中国,发明专利,CN101008486,2007.1-16.
    [223]Li, Z., Ren, F., Chen, Z., et al. Experimental Investigations into Gas/Particle Flows in a Down-Fired Boiler:Influence of Down-Draft Secondary Air. Energy & Fuels. 2009,23(12):5846-5854.
    [224]娄春,周怀春,朱国良等.煤粉炉内颗粒辐射特性的检测与分析.工程热物理学报.2007,28(增刊2):217-200.
    [225]娄春,周怀春,姜志伟.燃煤锅炉中火焰黑度的在线检测与分析.中国电机工程学报.2006,26(4):6-9.