环氧树脂新型固化体系及其碳纳米管复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂固化物因具有优良的机械性能、电气性能、耐热性、耐化学药品性能而广泛应用于航空、航天、机械、电子等领域。然而,环氧树脂和固化剂分开存储的“两相体系”存在的弊端以及环氧固化物脆性大影响了其性能的发挥。本文研究了固化剂和增强相对环氧树脂性能的影响,从材料的制备、树脂固化物的力学性能、电学性能、固化动力学等方面进行了试验研究及理论分析。主要的研究工作分为两个部分:
     1)环氧树脂/微胶囊固化剂的研究
     针对环氧树脂两相固化体系的弊端,以2-乙基-4-甲基咪唑(EMI-2,4)固化剂为对象,研究了一种新型潜伏性固化剂——微胶囊固化剂,用以提高树脂体系的适用期。本文系统研究了固化剂的合成制备与优化、固化体系动力学和树脂固化物的力学性能。主要内容包括:
     为了提高咪唑固化剂的适用期、并降低其水溶性来满足它作为微胶囊芯材的条件,本文首先对EMI-2,4固化剂进行改性,以大分子丁基缩水甘油醚(BGE)为改性剂合成了咪唑改性物EMI-g-BGE,用FTIR、1HNMR、元素分析对合成产物进行了表征和分析。
     以热塑性聚醚酰亚胺(PEI)为壁材、采用乳液溶剂蒸发法将EMI-g-BGE包囊,研究表征了不同工艺条件与微胶囊的表面形貌、微胶囊的粒径及分布和微胶囊的芯材含量等的关联,获得了该体系的微胶囊最佳制备工艺:芯材壁材比为1:1、分散剂聚乙烯醇的浓度为8%、搅拌速度700rpm、溶剂蒸发温度36℃。
     用非等温DSC法研究了EMI-g-BGE和微胶囊固化剂的固化动力学,通过Kissinger微分法和Ozawa积分法得到了固化动力学参数。结果表明,两种固化体系都属于同一复杂反应、动力学模型均为自催化反应,包囊前后的反应动力学机理是一致的;表观活化能从72.61kJ/mol提高到89.55kJ/mol,说明微胶囊固化剂的反应活性降低。研究证实:将所制备的微胶囊固化剂与环氧树脂按芯材化学计量比混合均匀,该树脂体系可室温稳定存储10个月而粘度几乎不变。
     新固化体系固化物的性能研究表明:与EMI-2,4固化环氧树脂的性能相比,微胶囊固化树脂的冲击强度提高了一倍多,而弯曲强度和拉伸强度没有降低;热失重测试表明微胶囊的加入没有影响树脂固化物的热稳定性。
     2)碳纳米管/环氧树脂复合材料的研究
     针对环氧树脂固化物脆性大的缺点,本文将多壁碳纳米管(MWNT)引入到环氧树脂中,利用碳纳米管自身优异的力学、电学性能来提高复合材料的性能。论文对MWNT进行表面改性,首先用混酸超声氧化MWNT使其表面带有-COOH官能团,进一步酰氯化反应为-COOCl后用环氧树脂固化剂TETA进行胺化反应,得到表面带有胺基等极性基团的TETA-MWNT。FTIR、Raman图谱表明MWNT胺化反应成功并且没有改变其自身的石墨结构,“反滴定”法测试了酸化MWNT表面的羧基含量,元素分析法测试了TETA-MWNT表面N元素含量,由此计算了MWNT表面羧基的转化率为46.55%。
     将碳纳米管及其改性物应用到环氧树脂中,用超声分散法制备碳纳米管/环氧树脂复合材料。改性前后MWNT的复合材料的力学性能及其对比实验结果表明:胺化碳纳米管/环氧树脂复合材料(记为TETA-MWNT/EP)的力学性能远优于碳纳米管/环氧树脂(记为MWNT/EP)、酸化碳纳米管/环氧树脂(记为a-MWNT/EP)复合材料。其机理在于:1)TETA-MWNT在环氧树脂中的分散性提高,碳纳米管之间的缠结团聚现象大大降低, FESEM结果表明胺化后MWNT与树脂的界面结合性及相容性得到了提高;2)TETA-MWNT/EP固化物的红外光谱表明碳纳米管表面-NH2与环氧基发生了开环固化反应,导致TETA-MWNT/EP复合材料的性能大幅度提高。不同含量的碳纳米管的力学性能曲线表明:当TETA-MWNT添加量为0.75wt%时,复合材料的冲击强度和拉伸强度均达到最大值。
     应用“逾渗理论”研究了不同含量碳纳米管/环氧树脂复合材料的介电性能。当TETA-MWNT的体积含量小于4.14%时,材料的介电常数增加缓慢;而当TETA-MWNT含量大于4.14%时,介电常数增加迅速,呈现出突变,此时的含量在逾渗阈值附近。利用逾渗理论模型拟合,得到TETA-MWNT/EP复合材料的逾渗值fc为4.20%,与实验结果相符。在1kHz时,当碳纳米管含量为4.14%时,TETA-MWNT/EP复合材料的介电常数高达421,几乎是树脂基体的60倍,介电损耗为0.80,而MWNT/EP、a-MWNT/EP的介电常数为391、120,介电损耗为2.15、0.88。说明TETA-MWNT/EP的介电性能比较好。
     复合材料的热失重测试表明TETA-MWNT/EP的热稳定性较未改性树脂有所提高,其中初始分解温度提高了20℃,最大热分解温度提高了30℃。用非等温DSC研究了TETA-MWNT/EP的固化动力学。结果表明:胺化碳纳米管与环氧树脂反应出现了一个放热肩峰,表明碳纳米管表面胺基参与了固化反应,用Kissinger微分法和Ozawa积分法求得了固化动力学参数,表观活化能为64.82kJ/mol,反应级数结果表明反应动力学模型也属自催化反应。
Epoxy resin is one of the most important thermosetting polymers, widely used in the fields of aeronautics, astronautics, machine and electronics due to its excellent mechanical and electrical properties, high heat distortion temperature and good chemical resistance. However, there are some shotcomings of the“two-pot”resin composites with curing agent as well as the cured epoxy is brittle, which affect the properties of epoxy resin. The effect of curing agent and reinforcement on the properties of epoxy resin were investigated in this paper.In order to accomplish this work, firstly, the curing agents and the resin composites were prepared, and then the mechanics properties and the dielectric properties of the composites along with the cure kinetic of the resin systems were studied by experimental and theoretical methods. There are mainly two parts in the research as following.
     1) The research on epoxy resin/microcapsule mold-curing agent system.
     To obtain a“one-pot”latent curing agent of epoxy resin, 2-ethyl-4-methyl imidazole (EMI-2,4) was imployed to prepare the microcapsule curing agent, which can improve the storage stability of resin system.The contents in our research include the preparation and optimization of the microcapsule agent, as well as curing kinetic and the mechanics of the resin composites.
     The EMI-2,4 was modified by an epoxide ring opening from the second-type ring nitrogen of EMI with the large molecule of butyl glycidyl ether (BGE). The product EMI-g-BGE can be an effective latent curing agent of epoxy resin and can reduce the hydrophilicity of the products. Elemental analysis, FTIR spectroscopy, and 1HNMR spectroscopy have been used to characterize EMI-g-BGE.
     EMI-g-BGE was encapsulated by evaporation emulsion method and with Polyether Imide thermoplastic resin (PEI) as the shell material. The surface morphology of microcapsules with the SEM photograph and particle size distribution along with the encapsulation efficiency has been investigated. The experimental results showed that the optimal microcapsules can be obtained with the ratio of core to shell being 1:1, the concentration of the dispersion agent 8%, the stirring speed 700rpm and the temperature 36℃.
     There are more than 10 months of storage time in room temperature of epoxy resin composites with microcapsule curing agent. The curing kinetic of epoxy resin with EMI-g-BGE or microcapsule curing agent as curing agent was studied by non-isothermal DSC technique at different heating rates. The Kissinger and Ozawa methods were adopted to calculate the kinetic parameters of the two systems, with which results showed that they were both the same complex reaction and the kinetic model was a two-parameter (m, n) autocatalytic model. The apparent activation energy Ea had increased from 72.61kJ/mol to 89.55kJ/mol, which indicated the shell material of the microcapsule curing agent prevented the activation of the curing reaction.
     The impact strength of the epoxy cured with microcapsule increased over one time more than that with EMI-2,4 curing agent, and the tensile strength and the flexural strength have not decreased. Thermogravimetic analysis (TGA) showed that the heat stability of the epoxy cured with microcapsules had not been affected.
     2) The research on epoxy resin/carbon nanotubes composites
     The mulltiwalled carbon nanotubes (MWNT) were introduced to improve the mechanical and electrical properties of epoxy resin. In our study, MWNT was modified with a mixture of H_2SO_4/HNO_3, and then the carboxylated MWNT (a-MWNT)was stirred using chloride. The obtained acyl chlorination MWNT was reacted with epoxy curing agent triethylene-tetramine (TETA). Finally, TETA-MWNT was obtained. The modified MWNT was testified by FTIR、Ramon analysis, and the titration test and the elemental analysis showed the reaction ratio from–COOH to–NH2 was 46.55%.
     MWNT/EP composites were prepared by ultrasonicated dispersion method. The mechanical test showed that the composites of TETA-MWNT/EP had excellent properties than MWNT/EP and a-MWNT/EP composites. TEM graphs showed the dispersion of TETA-MWNT in epoxy matrix had been better than MWNT or a-MWNT, meanwhile, the morphology of fractured compositions showed the compatibility of TETA-MWNT in epoxy matrix improved greatly. IR analysis showed the reaction of amido group in TETA-MWNT with epoxy, which explained the good property of TETA-MWNT/EP composites.Mechanical test with different contents of TETA-MWNT showed that the best content was about 0.75 percent.
     The dielectric properties of epoxy resin with different contents MWNT were researched according to the scaling law, with the theoretical percolation threshold of epoxy resin composites filled with TETA-MWNTs was 4.20%. The value of the relative dielectric constant of resin composites was as high as 421 with the TETA-MWNT content of 4.14vol% at 1kHz, which was almost 60 times higher than that of epoxy matrix and the dielectric loss was 0.80. The relative dielectric constant of MWNT/EP and a-MWNT/EP were 391 and 120, while the dielectric loss was 2.51 and 0.88 with the same MWNT contents as TETA-MWNT/EP. The results showed that the dielectric properties of TETA-MWNT/EP were well.
     TGA tests of the composites indicated that the TETA-MWNT/EP composites had more heat stability than the pure resin. Comparing with the pure epoxy resin, the starting decomponded temperature of the composites increased 20℃, and the maximal decomponded temperature increased 30℃. The curing kinetic of TETA-MWNT/EP/EMI-2,4 system was studied with non-isothermal DSC technique at different heating rates. The results showed that there was a small peak in the DSC curve due to the reaction of TETA-MWNT with epoxy group. The kinetic parameters were obtained by Kissinger and Ozawa method, with the apparent activation energy Ea was 64.82kJ/mol and a two-parameter (m, n) autocatalytic model was found with the resin system.
引文
[1] Park SJ, Jin FL. Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride [J]. Polymer Degradation and Stability, 2004, 86(3): 515~520.
    [2] Lapprand A, Arribas C, Salom C, et al. Epoxy resins modified with poly(vinyl acetate) [J]. Journal of Materials Processing Technology, 2003, 143–144: 827~831.
    [3]王汝敏,蓝立文.先进复合材料用热固性树脂基体的发展[J].热固性树脂, 2001, 16(1): 36~38.
    [4] Papargyris DA, Day RJ, Nesbitt A, et al. Comparison of the mechanical and physical properties of a carbon fibre epoxy composite manufactured by resin transfer moulding using conventional and microwave heating [J]. Composites Science and Technology, 2008, 7-8(68): 1854~1861.
    [5]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社, 1999, 03: 2~6.
    [6] Dang WR, Kubouchi M, Yamamoto S, et al. An approach to chemical recycling of epoxy resin cured with amine using mitric acid [J].Polymer, 2002, 43(10): 2953~2958.
    [7] Mimura K, Ito H. Characteristics of epoxy resin cured with in situ polymerized curing agent [J].Polymer, 2002, 43(26): 7559~7566.
    [8]王伟.环氧树脂固化技术及其固化剂研究进展[J].热固性树脂, 2001, 16(3): 29~33.
    [9] Luo YL, Li ZQ, Lan WX. Response behavior of an epoxy resin/amine curing agent/carbon black composite film to various solvents [J]. Materials Science and Engineering B, 2007, 139(1): 105~113.
    [10] Maity T, Samanta BC, Dalai S, et al. Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluation [J]. Materials Science and Engineering A, 2007, 464(1-2): 38~46.
    [11] John MB, Lan H, Brendan JH, et al. Studies of cure schedule and final property relationships of a commercial epoxy resin using modified imidazole curing agents [J]. Polymer, 1998, 39(10): 1929~1937.
    [12] Thomas JD. A Comparision of some Imidazole Catalysts as Epoxy Curing Agents [J]. Journal of Applied Polymer Science, 1970, 14(6): 1615~1626.
    [13] Farkas A, Strohm PF. Imidazole catalysis in the curing of epoxy resins [J]. Journal of Applied Polymer Science, 1968, 12(1): 159~168.
    [14] Russell JV, Wendy T. Toughening of an epoxy anhydride resin system using an epoxidizedhyperbranched polyme r [J]. Polymer International, 2004, 53(1): 69~77.
    [15]朱铭铮,王钧.改性酸酐固化环氧树脂耐湿热性能研究[J].热固性树脂, 2004, 19(1): 18~21.
    [16]张春玲,孙国恩,张莉,等.新型环氧树脂固化剂的性能[J].吉林大学学报, 2007, 37(2): 353~357.
    [17] Kim WG, Ji Y, Lee JY, et al. Curing reaction of o-cresol novolac epoxy resin according to hardener change [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31(3): 633~639.
    [18] Pawet GP, Magdalena K, Gabriel R. New hyperbranched polyether containing cyclic carbonate groups as a toughening agent for epoxy resin [J]. Polymer, 2007, 48(7): 1857~1865.
    [19]宜兆龙,易建政,杜仕国.环氧树脂增韧改性研究进展[J].材料导报, 2006, 20(11): 443~447.
    [20]陈莉,陈苏.聚氨酯互穿网络聚合物的研究进展[J].粘接, 2002, 23(4): 27~30.
    [21] Mimura K, Ito H, Fujioka H. Improvement of thermal and mechanical properties by control of morphologies in PES modified epoxy resins [J].Polymer, 2000, 41(12): 4451~4459.
    [22]王惠民,梁伟荣.聚醚砜环氧树脂复合体系的研究[J].高分子材料科学与工程, 1999, 15(6): 155~157.
    [23] Biolley N, Pascal T, Sillion B. Improvement of thermal and mechanical properties by control of morphologies in PI modified epoxy resins [J]. Polymer, 1994, 35(3): 558~564.
    [24]甘文君,余英丰,李善君.热塑性PEI改性TGDDM环氧树脂的相分离研究[J].工程塑料应用, 2003, 31(1): 5~8.
    [25]甘文君,李华,李善君.温度效应对氟链封端聚醚酰亚胺改性环氧树脂相分离的影响[J].高等学校化学学报, 2004, 25(11): 2161~2165.
    [26] Hourston D J, Lane J M. Preparation of PEI/EP composites [J]. Polymer, 1992, 33(7): 1397.
    [27] Sultan J, Garry M. Epoxy resins toughened by CTBN [J]. Polymer Engineering and Science, 1973, 13(1): 291~305.
    [28] Vercher D, Pascantt J, Santereau H. Toughening of epoxy resin using ETBN modifiers [J]. Journal of Applied Polymer Science, 1991, 42(2): 293~305.
    [29]黄增芳,谭松庭,王霞瑜.热致性液晶聚酯的合成及与环氧树脂共混物的性能研究[J].中国塑料, 2003, 17(12): 32~35.
    [30] Lee JY, Jang JS. IR study of hydrogen bonding in novel liquid crystalline epoxy/DGEBA blends [J].Polymer Bull, 1997, 38(4): 439~445.
    [31] Harani H, Fellahi S, Bakar M. Epoxy/polyurethane interpenetrating polymer networks [J].Journal of Applied Polymer Science, 1998, 70(13): 2603~2618.
    [32] Pinnavaia TJ, Lan T, Wang Z. Clay-reinforced epoxy nanocomposites synthesis, properties and mechanism of formation [J]. Journal of the American Chemistry Science, 1996, 17: 251~261.
    [33] Don YJ. Epoxy coating containing nanophase particulates [J].Coating, 2001, 41: 226.
    [34] Boogh L, Perrersson B, Manson J. Dendritic hyperbranched polymers as tougheners for epoxy resins [J]. Polymer, 1999, 40: 2249~2261.
    [35]常鹏善.环氧树脂增韧研究进展[J].材料导报, 2002, 16(2): 54~60.
    [36]刘野,杜明.环氧树脂增韧改性技术研究进展和新方法及其机理[J].化学与黏合, 2007, 29(3): 197~202.
    [37]范宏,王建黎. PBA/PMMA核壳弹性粒子增韧环氧树脂研究[J].高分子材料科学与工程, 2001, 17(1): 121~124.
    [38] Sultan J, Garry M. Epoxy resins toughened by CTBN [J]. Polymer Engineering and Science, 1973, 13(1): 291~305.
    [39] Kurnoskin AV. Structure of the epoxy-chelate metal-containing matrices: Theoretical aspects [J]. Journal of Applied Polymer Science, 1993, 48(4): 639~658.
    [40] Pearce PJ, Ennis BC. Aging and performance of structural film adhesives. IV. A modified epoxy with improved ambient temperature shelf life [J]. Journal of Applied Polymer Science, 1993, 47(8): 1401~1409.
    [41]王善琦,申从祥.中温固化高强度环氧基体及其复合材料性能研究[J].复合材料学报, 1993, 10(3): 43~50.
    [42] Lee FW, Baron KS. Modified imidazole latent epoxy resin catalysts and systems comprising them [P]. United States, US 4742148, 1988.
    [43] Beitchman, Burton DZ, Philip J. Isocyanate blocked imidazoles and imidazolines for epoxy powder coating [P]. United Stated, US 4335228, 1982.
    [44]韩丽洁,陈平.稀土有机化合物做酸酐/环氧树脂体系潜伏性促进剂的研究[J].中国胶粘剂, 1995, 4(4): 20~22.
    [45]陈平,宋永贤.酸酐固化环氧树脂潜伏性促进体系的研究[J].纤维复合材料, 1995, 10(1): 1~6.
    [46]袁知舜,吕凌.潜伏性二酰肼固化剂的研制及应用[J].河南化工, 1997, 11: 11~13.
    [47] Parveen K, Narula AK. Curing and thermal behavior of diglycidyl ether of bisphenol A in the presence of a mixture of amines [J]. Journal of Applied Polymer Science, 2003, 90(7): 1739~1747.
    [48]洪宗国,杨政险.三氟化硼微胶囊热固化环氧树脂胶粘剂研究[J].粘接, 2000, 21(6):7~10.
    [49]胡玉明,吴良义.固化剂[M].北京:化学工业出版社, 2004: 379~381.
    [50]管蓉,艾昭全,李建宗.高分子材料在微胶囊新技术中的应用[J].高分子材料科学与工程, 1997, 13(5): 134~138.
    [51]王毓明.微胶囊技术[J].涂料工业, 1999, 29(5): 33~36.
    [52]刘晓庚,谢亚桐.微胶囊制备方法的比较[J].粮食与食品工业, 2005, 12(1): 28~32.
    [53] Arshady R. Microspheres and Microcapsules: A Survey of Manufacturing Techniques. PartⅡ: Coacervation [J].Polymer Engineering and Science, 1990, 30(15): 905~915.
    [54] Nagai T, Yamazaki H. Production of microcapsule [P]. Japan, JP61120632.
    [55] Jiang J, Ronald FC. Mathematical model for encapsulation by interfacial polymerization [J]. Membrane Science, 2001, 192(1-2): 55~70.
    [56] Arshady R. Microspheres and Microcapsules: A Survey of Manufacturing Techniques. PartⅠ: Suspension Cross-Linking [J]. Polymer Engineering and Science, 1989, 29(24): 1746~1759.
    [57] Hong K, Park S. Melamine resin microcapsule containing fragrant oil: synthesis and characterization [J]. Material Chemistry and Physics, 1999, 58(1): 128~131.
    [58] Determan H, Wieland T. Ein perlf?rmiges cellulosegel für die chromatographie [J]. Macromolecular Chemistry and Physics, 1968, 114(1): 263~274.
    [59] Arshady R. Microspheres and Microcapsules: A Survey of Manufacturing Techniques. PartⅢ: Solvent Evaporation [J]. Polymer Engineering and Science, 1990, 30(15): 915~925.
    [60] Liu R, Ma GH, Meng FT, et al. Preparation of uniform-sized PLA microcapsules by combining Shirasu Porous Glass membrane emulsification technique and multiple emulsion-solvent evaporation method [J]. Journal of controlled release, 2005, 103(3): 31~43.
    [61] Kiyoyama S, Shiomori K, Kawano Y, et al. Entrapment efficiency of inorganic salts into biodegradable microcausules prepared by the solvent evaporation method [J]. Journal of Chemical Engineering of Japan, 2003, 36(10): 1276~1281.
    [62] Zydowicz N, Nzimba GE. PMMA microcapsules containing water-soluble dyes obtained by double emulsion solvent evaporation technique [J]. Polymer Bulletin, 2002, 47(5): 457~463.
    [63] Lubetkin S, Mulqueen P, Paterson E. A novel route for the preparation of narrow particle size distribution emulsions and microcapsules [J]. Pesticide Science, 1999, 55(11): 1123~1125.
    [64] Amperiadou A, Georgarakis M. Controlled release salbutamol sulphate microcapsules prepared by emulsion solvent-evaporation technique and study on the release affected parameters [J]. International journal of pharmaceutics, 1995, 115(1): 1~8.
    [65] Hong K, Park S. Morphologies and release behavior of polyurea microcapsules from differentpolyisocyanates [J]. Journal of Materials Science, 1999, 34(13): 3161~3164.
    [66]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社, 2002, 178~184.
    [67]郝松涛,于洁.微胶囊技术在环氧固化剂中的应用[J].贵州化工, 2006, 31(6): 31~34.
    [68] Robert O, Lussow. Curing epoxide resins with encapsulated shielded catalysts [P]. United States, US3384680, 1968.
    [69] Sawaoka R, Kouchi S, Muraki T. Microcapsule-type curing agent, method for producing the same, thermosetting resin composition, prepreg and fiber resinforced composition material [P]. United States, US5589523, 1996.
    [70] Toshitsugu H. Microcapsular curing agent and epoxy resin composition using the same [P]. Japan, JP2000-351830, 2000.
    [71] Brandys. Ambient-temperature-stable, one-part curable epoxy adhesive [P]. United Stated, US6506494, 2001.
    [72] Gilleo. Releasable microcapsule and adhesive curing system using the same [P]. United Stated, US6936644, 2005.
    [73]童速玲,张兴华,丁新平.环氧树脂固化促进剂的微胶囊化及其应用[J].广东化工, 2004, 31(6): 41~44.
    [74]邢素丽,曾竟成,肖加余,等.改性2-乙基-4-甲基咪唑固化剂的微胶囊化研究[J].功能材料, 2006, 6 (37): 936~940.
    [75] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56~58.
    [76] Birkett PR, Cheetham AJ, Eggen BR, et al. Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter [J]. Chemical Physics Letters, 1997, 281(1~3): 111~114.
    [77] Cai K, Cao CB, Zhu HS. Deposition of diamond-like carbon films on aluminum in the liquid phase by an electrochemical method [J].Carbon, 1999, 37(9): 1860~1862.
    [78] Lyu SC, Liu BC, Lee SH. Large-scale synthesis of high-quality double-walled carbon nanotubes by catalytic decomposition of n-hexane [J]. Physical Chemistry B, 2004, 108(7): 2192~2194.
    [79] Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Physic Review Letter, 2000, 84: 4613~4616.
    [80] Colbert DT, Smalley RE. Electric effects in nanotube growth [J].Carbon, 1995, 33(7): 921~924.
    [81] Bandow S, Asaka S, Zhao X, et al. Purification and magnetic properties of carbon nanotubes [J]. Applied Physic A, 1998, 67(11): 23~26.
    [82] Huria H, Ebbesen TW. Opening and purification of carbon nanotubes in high yield [J].Advanced Materials, 1995, 7(8): 275~279.
    [83] Takashi K, Nakazaki S, Xu WH, et al. Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation [J]. Carbon 2001, 39(5): 782~785.
    [84] Zhu J, Peng H, Rodriguez-Macias F, et al. Reinforcing Epoxy Polymer Composites through Covalent Integration of Functionalized Nanotubes [J]. Advanced Function Materials, 2004, 14(7): 643~648.
    [85] Yoon KR, Kim WJ, Choi IS. Functionalization of shortened Single-Walled Carbon Nanotubes with poly(p-dioxanone) by grafting-from approach [J]. Macromolecular Chemistry and Physics, 2004, 205(9): 1218~1221.
    [86] Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites [J]. Applied Physics Letters, 1998, 73(26): 3842~3844.
    [87] Puglia D, Valentini L, Kenny JM. Analysis of the Cure Reaction of Carbon Nanotubes/Epoxy Resin Composites through Thermal Analysis and Raman Spectroscopy [J]. Journal of Applied Polymer Science, 2003, 88(2): 452~458.
    [88] Ren Y, Li F, Cheng HM, et al. Fatigue behaviour of unidirectional single-walled carbon nanotube reinforced epoxy composite under tensile load [J]. Advanced Composites Letters, 2003, 12 (1): 19~24.
    [89] Gojny FH, Wichmann MHG, Kopke U, et al. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content [J]. Composites Science and Technollogy, 2004, 64(15): 2363~2371.
    [90] Yeh MK, Hsieh TH, Tai NH. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites [J]. Materials Science and Engineering A, 2008, 483-484: 289~292.
    [91]王国建,郭建龙,屈泽华.碳纳米管的氨基化对环氧树脂力学性能的影响[J].工程塑料应用, 2006, 34(12): 8~12.
    [92]郑亚萍,陈青华,陈立新,等.碳纳米管/环氧树脂纳米复合材料的研究[J].高分子材料科学与工程, 2006, 22(4): 216~218.
    [93]王安之,陈龙,侯薇,等.碳纳米管对环氧树脂固化反应和力学性能的影响[J].高分子材料科学与工程, 2007, 23(2): 157~161.
    [94] Guo XS, Yu D, Gaol Y, et al. Dielectric properties of filled carbon nanotubes/epoxy composites with high dielectric constant [J]. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006, 1: 18~21.
    [95]刘全文,陈连喜,田华,等.咪唑类环氧树脂固化剂研究进展[J].国外建材科技, 2006,37(3): 4~7.
    [96]邓亚萍,宁荣昌,党小龙,等.环氧/咪唑固化体系性能研究[J].工程塑料应用, 2000, 28(9): 13~15.
    [97] Farkas A, Strohm PF. Imidazole catalysis in the curing of Epoxy Resins [J]. Journal of Applied Polymer Science, 1968, 12: 159~168.
    [98]公瑞煜,熊万斌.环氧树脂/咪唑衍生物潜伏性固化体系的研究[J].材料保护, 2001, 6(34): 34~36.
    [99] Brown J, Hamerton L, Howlin BJ. Preparation, characterization, and thermal properties of controllable metal-imidazole complex curing agents for epoxy resins [J]. Journal of Applied Polymer Science, 1999, 75 (2): 201~217.
    [100]潘煜怡.咪唑类环氧树脂固化剂的改性方法及其应用[J].热固性树脂, 2001, 4(16): 21~25.
    [101]郝松涛,于洁.微胶囊技术在环氧固化剂中的应用[J].贵州化工, 2006, 31(6): 31~33.
    [102]陈连喜,张惠玲,雷家珩.环氧树脂潜伏性固化剂研究进展[J].化工新型材料, 2004, 32(7): 29~32.
    [103] Arshady R. Microspheres and Microcapsules: A Survey of Manufacturing Techniques. PartⅢ: Evaporation [J]. Polymer Engineering and Science, 1990, 30(15): 915~925.
    [104] Torres D, Boado L, Blanco D, et al. Comparison between aqueous and non-aqueous solvent evaporation methods for microencapsulation of drug-resin complexes [J]. International Journal of Pharmaceutics, 1998, 173(1): 171~182.
    [105] Ge HX, Hu Y, Yang SC, et al. Preparation, characterization, and drug release of drug-loadedε-caprolactone/L-lactide copolymer Nanoparticles [J]. Journal of Applied Polymer Science, 2000, 75(7): 874~882.
    [106] Van Zyl AJP, De Wet-Roos D, Sanderson RD, et al. The role of surfactant in controlling particle size and stability in the miniemulsion polymerization of polymeric nanocapsules [J]. European Polymer Journal, 2004, 40(12): 2717~2725.
    [107]杨伟伟,骆广生,伍方昱,等.溶剂挥发法制备萃取剂微胶囊[J].高分子学报, 2005, 2(4): 207~212.
    [108] Zhu YY, Zhang GY, Hong XL. Influence of Emulsifiers on the Synthesis of Insulin-loaded Nanocapsules in Double Emulsion [J]. Chinese Journal of Chemistry, 2006, 24(1): 109~113.
    [109] Liu R, Ma GH, Wan YH, et al. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsificationtechnique and double emulsion-solvent evaporation method [J]. Colloids and Surfaces B: Biointerfaces, 2005,45(3-4): 144~153.
    [110] Li VC, Lim YM, Chan YW. Feasibility study of a passive smart self-healing cementitious composite [J]. Composites Part B, 1998, 29(6): 816~827.
    [111]于伯龄,姜胶东.实用热分析[M].纺织工业出版社, 1990: 27~28.
    [112] Zhao H, Gao J, Li Y, Shen S. Curing kinetics and thermal property characterization of Bisphenol-Fepoxy resin and MeTHPA system [J]. Journal of Thermal Analysis and Calorimetry, 2003, 74(1): 227~236.
    [113] Macan J, Brnardi? I, Ivankovi? M, et al. DSC study of cure kinetics of dgeba-based epoxy resin with poly(oxypropylene) diamine [J]. Journal of Thermal Analysis and Calorimetry, 2005, 81(2): 369~373.
    [114] Málek J. Kinetic analysis of crystallization processes in amorphous materials [J]. Thermochimica Acta, 2000, 447(1-2): 131~140.
    [115] Sbirrazzuoli N, Vyazovkin S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data [J]. Thermochim Acta, 2002, 388(1-2): 289~298.
    [116] Ishida H, Rodriguez Y. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry [J]. Polymer, 1995, 36(16): 3151~3158.
    [117]胡照会,王荣国,扬帆.复合材料压力容器的树脂体系的固化动力学研究[J].玻璃钢/复合材料, 2007, 25 (6): 6~9.
    [118] Sbirrazzuoli N, Girault Y, Elegant L. Simalations for evaluation of kinetic methods in differential scanning calorimetry.Part 3-Peak maximum evolution methods and isoconversional methods [J]. Thermochim Acta, 1997, 293(1): 25~37.
    [119] Málek J. The kinetic analysis of non-isothermal data [J]. Thermochim. Acta, 1992, 200(2): 257~269.
    [120] Ro?u D, Ca?caval CN, Must?t? F,et al. Curing kinetics of epoxy resins studied by non-isothermal DSC data [J]. Thermochim Acta, 2002, 383(1-2): 119~127.
    [121] Senum G I, Yang R T. Rational approximations of the integral of the Arrhenius function [J]. Journal of Thermal Analysis and Calorimetry, 1977, 11(3): 445~447.
    [122] Ozawa T. Critical investigation of methods for kinetics analysis of thermoanalytical data [J]. Journal of Thermal Analysis, 1975, 7(3): 601~617.
    [123] Lee JY, Shim MJ, Kim SW. Thermal decomposition kinetics of an epoxy resin with rubber-modified curing agent [J]. Journal of Applied Polymer Science, 2001, 81(2): 479~485.
    [124] Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data [J]. Thermochim. Acta, 1989, 138(1-2): 337~346.
    [125] Ryan ME, Dutta A. Kinetics of epoxy cure: a rapid technique for kinetic parameter estimation [J].Polymer, 1979, 20(2): 203~206.
    [126]胡兵.改性聚醚醚酮增韧环氧树脂的研究[博士学位论文].武汉,武汉理工大学, 2007, 07: 42~45.
    [127] Farkas A, Strohm PF. Imidazole catalysis in the curing of epoxy resins [J]. Journal of Applied Polymer Science, 1968, 12(1): 159~168.
    [128] Barton JM, Shepherd PM. The curing reaction of an epoxide resin with 2-ethyl-4-methylimidazole, a calorimetric study of the kinetics of formation of epoxide-imidazole adducts [J]. Macromolecular Chemistry and Physics, 1975, 176(4): 919~930.
    [129] Jin AK, Dong GS, Tae JK, et al. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites [J]. Carbon, 2006, 44(10): 1898~1905.
    [130]陈宪宏,林明,陈振华.多壁碳纳米管功能化及其增韧环氧树脂的研究[J].材料导报, 2007, 5(21): 121~124.
    [131] Sandler J, Shaffer MSP, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties [J]. Polymer, 1999, 40(21): 5967~5971.
    [132] Shen JF, Huang WS, Wu LP, et al. Study on amino-functionalized multiwalled carbon nanotubes [J]. Materials Science and Engineering A, 2007, 464(1-2): 151~156.
    [133]高新春.多壁碳纳米管/环氧树脂复合材料的制备及其力学性能研究[硕士学位论文].北京,北京化工大学, 2006, 6: 49~50.
    [134] Yao SH, Dang ZM, Jiang MJ, et al. Influence of aspect ratio of carbon nanotube on percolation threshold in ferroelectric polymer nanocomposite [J]. Applied Physic Letter, 2007, 91(21): 212901~212904.
    [135] Sandler J, Shaffer M S P, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties [J]. Polymer, 1999, 40(21): 5967~5971.
    [136] Dalmas F, Dendievel R, Chazeau L, et al. Carbon nanotube-filled polymer of electrical conductivity in composites. Numerical simulation three-dimensional entangled fibrous networks [J]. Acta Material, 2006, 54(11):2923~2931.
    [137] Huang Y, Li N, Ma YF, et al. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites [J]. Carbon, 2007, 45(8):1614~1621.
    [138] Zallen R. The Physics of Amorphous Solids [M]. Willey, New York, 1983.
    [139] Zhang R, Baxendale M, Peijs T. Universal resistivity–strain dependence of carbon nanotube/polymer composites [J]. Physic Review B, 2007, 76(19):1~3.
    [140] Huang C, Zhang QM. All-organic dielectric-percolative three-component composite materials with high electromechanical response [J]. Applied Physic Letter, 2004, 84(22): 4391~4393.
    [141] Chen Q, Du PY, Jin L, et al. Percolative conductor /polymer composite films with significant dielectric properties [J]. Applied Physic Letter, 2007, 91(2): 022912~022915.
    [142] Seanoe DA. Electrical Properties of Polymers [M]. Academic Press: New York, 1982.
    [143] Ahmad K, Pan W, Shi SL. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites [J]. Applied Physic Letter, 2006, 89(13):133122.
    [144] Krause S, Bohon K. Electromechanical Response of Electrorheological Fluids and Poly(dimethylsiloxane) Networks [J]. Macromolecules, 2001, 34(20): 7179~7189.
    [145] Huang C, Zhang QM. High-dielectric-constant all-polymer percolative composites [J]. Applied Physic Letter, 2003, 82(20): 3503~3506.
    [146] Pecharroman C, Esteban-Betegon F, Bartonlome J F, et al. New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant [J]. Advanced Materials, 2001, 13(20): 1541~1544.
    [147] Li JY, Huang C, Zhang QM. Enhanced electromechanical properties in all-polymer percolative composites [J]. Applied Physic Letter, 2004, 84(16): 3124~3126.
    [148] Su J, Zhang QM, Ting RT. Space-charge-enhanced electromechanical response in thin-film polyurethane elastomers [J]. Applied Physic Letter, 1997, 71(3): 386~388.
    [149]陈平,王德中.环氧树脂及其应用[M].北京:化学工业出版社, 2004: 74~79.