多形态聚吡咯的制备与吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁波吸收材料在电磁屏蔽、隐身技术等方面具有重要应用。具有吸收强、频带宽、质量轻等优良综合性能的吸波材料的是当前研发的重点。导电高聚物是一种重要的吸波剂,其中聚吡咯(PPy)由于其密度小、合成方便、电导率可控、形貌多样等优点作为吸波剂大有作为。本研究旨在合成不同形貌的聚吡咯,在使用不同掺杂剂和控制不同掺杂程度的条件下所得到PPy的结构和性能,并以PPy为吸波剂制成了吸波复合材料,研究了这些吸波复合材料的吸波性能、探讨了其吸波机理。
     采用乳液聚合法制备了球粒状的聚吡咯,并使用十二烷基苯磺酸钠(SDBS)、二(2-乙基己基)琥珀磺酸钠(AOT)、对甲苯磺酸钠(pTSNa)、樟脑磺酸(CSA)对其进行掺杂。研究发现不同的掺杂剂能使聚吡咯的形貌、电导率、热稳定性等发生变化。其中使用SDBS为掺杂剂的聚吡咯其热性能最佳,电导率也达到10’S/cm。随后采用SDBS为掺杂剂制备了不同掺杂程度的聚吡咯,测试结果表明聚吡咯的电导率先随着掺杂率的增加而升高,至SDBS与吡咯单体的摩尔比为0.2(SDBS/Py=0.2)时达到最大值,然后随掺杂剂含量增加电导率下降。
     将不同掺杂剂掺杂的球粒状聚吡咯作为吸波剂制备吸波复合材料,对复合材料的电磁参数测量结果表明:介电损耗与掺杂聚吡咯的电导率和掺杂剂阴离子的大小有关,SDBS掺杂的聚吡咯的介电损耗最大。遂以SDBS掺杂聚吡咯为吸波剂,测量不同掺杂程度PPy为吸波剂时复合材料的电磁参数,结果表明介电常数的变化规律与电导率随掺杂率变化相似,即介电常数随掺杂率增加而增大,到SDBS/Py=0.2时达到最大值,然后随掺杂率的增加而下降。通过电磁参数对复合材料吸波性能进行计算得到的结果表明:对于SDBS/Py为0.2的聚吡咯,当其在复合材料中的含量为20wt%时吸波性能最好;亦即在X波段内,厚度为2.3mm的样品其雷达波反射损耗低于-10dB的频率范围为9.5GHz~11.6GHz,最大反射损耗达到-14.8dB。
     通过原位聚合法以三氯化铁为氧化剂制备了一系列蒙脱土(MMT)含量不同的蒙脱土/聚吡咯(MMT/PPy)纳米复合材料,并对MMT/PPy纳米复合材料进行了结构性能表征。X射线衍射分析表明:MMT/PPy纳米复合材料中PPy分子链插入到MMT片层间导致MMT层间距离明显扩大,从而形成一种典型的插层型纳米复合材料。通过FTIR分析证实,与纯PPy相比,纳米复合材料中PPy的特征吸收峰发生迁移,据此推断MMT与PPy之间存在相互作用。利用SEM观察了MMT/PPy的形貌,发现它们呈现片层状结构,且用HF酸完全蚀刻掉MMT后,留下的PPy仍呈现片层结构的形貌。PPy与蒙脱土复合后,热稳定性大大提高。MMT/PPy的电导率随PPy含量增加而增大,逾渗值为20wt%;同时发现当PPy含量大于50wt%时,MMT/PPy的电导率高于纯PPy电导率数值。
     以SDBS掺杂的MMT/PPy为吸波剂制备了吸波复合材料。利用HP8722ES网络矢量分析仪测定了复合材料的电磁参数,发现不同MMT/PPy含量的复合材料在X波段范围内的介电常数的实部与虚部都随吸波剂含量的增加而增大,而且与球粒状PPy-SDBS为吸波剂的复合材料相比其虚部值更大。由电磁参数对复合材料吸波性能的模拟计算结果表明MMT/PPy吸波剂具有更加优良的吸波性能:当样品厚度为2.8mm,最低反射损耗出现在10.5GHz且峰值为-33dB,低于-10dB的频宽为9~12.4GHz。
     以小分子2-蒽-9-基亚甲基-丙二腈(AYM)自组装的纳/微米线为硬膜板,液相条件下制备了PPy与AYM复合物,经溶剂脱除AYM后制得管状聚吡咯。Py与AYM的摩尔比对得到的聚吡咯形貌有影响,当Py与AYM两者之间的比例维持在合理的水平时,可以获得长度达到几十甚至上百微米,直径300nm左右甚至更小的管状聚吡咯。Py含量过低时,产物呈带状和管状混杂的形貌结构;而当单体含量过高时,模板的作用不再明显,产物开始大量团聚,表现出本体聚合时的形貌。
     以管状PPy为吸波剂制备石蜡复合材料,测试其电磁参数。发现复合材料的复介电常数的实部和虚部随着管状聚毗咯在复合材料中含量的增加而增大,且其磁导损耗并没有明显的增加,变化也没有规律。通过计算发现复合材料的吸波性能在聚吡咯微管含量20wt%时最好,当样品厚度为2mm时,最小反射损耗为-29.5dB,低于-10dB的带宽为12.4~18GHz。
     本论文还重点研究了PPy形貌对复合材料吸波性能的影响。首先,考察了分别在乙醇/水(体积比1:1)和水介质中制备的聚吡咯的吸波性能,前者的粒径为100-200nm,后者为400-800nm。将相同含量的此两种粒径PPy作为吸波剂时,粒径小的PPy为吸波剂的复合材料的介电损耗角正切值大于相同含量下粒径大的PPy为吸波剂的复合材料。因此,发现粒径小的PPy的吸波性能更优,当样品的厚度为3mm,最低反射损耗发生在9.7GHz且峰值为-15.7dB,低于-10dB的反射损耗的频率范围为8.5GHz~11.2GHz。
     此外,基于考虑形状的等效电磁参数理论计算了球状、管状、片状PPy的吸收截面和散射截面面积,发现在相同的体积分数下,片状PPy的吸收截面最大,管状次之,而球状PPy吸收截面最小,从理论上阐述了PPy的形貌对吸波性能的影响。从电磁波在不同形貌吸波剂复合材料中传播路径的变化,也可以解释吸波性能的差异。
Microwave absorbing materials have shown great potential in the fields of electromagnetic shielding and stealth technology. At the present time, the researching interests have focused on the materials with strong absorbing, wide frequency band and light weight. Conductive polymers were known as one of the important microwave absorbing materials, among which polypyrrole (PPy) has been proved to be a promising absorbing agent due to its low density, easy synthesis, controllable conductivity and multi-morphologies. In this paper, PPy with multi-morphologies were prepared and made into microwave absorbing composites after doped with different dopants and doping degrees. Furthermore, the absorbing properties and mechanisms of those composites were investigated.
     First of all, spherulitic PPys were synthesized via emulsion polymerization with the sodium dodecyl benzene sulfonate (SDBS), ferric chloride (FeCl3), bis (2-ethylhexyl) sulfosuccinate sodium salt (AOT), sodium p-toluenesulfonate (p-TSNa), camphor sulfonic acid (CSA) as the dopants, respectively. The testing result showed that the morphologies, the conductivities and the thermostabilities of those variously doped PPys were changed with the different dopant. The thermostabillity of PPy doped with SDBS was the best and its conductivity could reach 101S/cm. The conductivities of SDBS doped PPys with varied doping degrees were measured and it has been found that the conductivity increased with the increasing SDBS concentration, and reached the maximum when the molar ratio of SDBS/Py was 0.2, then the conductivity values reduced with the further SDBS loading.
     The microwave absorbing composites were prepared by using the variously doped PPys with absorber. From the electromagnetic parameters measurement testing results, it has been found that the dielectric loss of composite related closely to the conductivity of PPy and the size of dopant anion. Especially, SDBS doped PPy showed the maximum dielectric loss tangent. Therefore, the electromagnetic properties of PPy composites with different SDBS doping degrees were tested and the results indicated that the permittivity showed similar doping degree dependence as the conductivity, i.e., the permittivity increased and then decreased with doping degree, and the maximum appeared when SDBS/Py was 0.2. For the PPy with a SDBS/Py=0.2, when its content was 20wt%, the composite showed an optimum absorbing capacity. Definitely, the peak microwave reflection loss was -14.8dB and the-10dB reflection loss band lay in 9.5-11.6GHz for the sample with a thickness of 2.3mm.
     Montmorillonite/polypyrrole (MMT/PPy) nanocomposites containing PPy ranged from 10% to 80% were prepared by in-situ polymerization of pyrrole in the presence of MMT in aqueous solution with FeCl3 as oxidant, and the structures and properties of those nanocomposites were characterized. Concretely, the X-ray diffraction result indicated an interlayer spacing enlarging, implying the intercalation of PPy into galleries of MMT. Moreover, the shifting of characteristic absorption peaks of PPy in the FTIR spectra revealed the possible interaction between PPy backbones and MMT layer surface. In the SEM patterns, the novel flaky-like morphology of PPy in MMT/PPy nanocomposites could be observed, which was totally different from those of PPys mentioned above. And the flake-like morphology of PPy was confirmed by removing MMT via HF acid etching. Furthermore, the MMT/PPy nanocomposites displayed improved thermostability. The conductivity of MMT/PPy nanocomposite increased with the increasing PPy content, and the percolation threshold was 20wt%, especially, when the PPy content was 50wt%, the nanocomposite showed an even higher conductivity than the pure PPy.
     The microwave absorbing specimens were prepared by using the MMT/PPy-SDBS-50% as the absorber, and their permittivities were measured by means of HP 8722ES network analyser. It has been found that both the real and the imaginary parts of permittivities of the composites increased with the increasing MMT/PPy-SDBS content within the X band, and the imaginary part was even higher compared to that of PPy-SDBS. From the absorbing capacity simulation results, it could be concluded that MMT/PPy-SDBS was a better microwave absorber than PPy-SDBS because its reflection loss was stronger and the frequency bandwidth was wider. As a matter of fact, for the MMT/PPy-SDBS composite with a thickness of 2.8mm, the peak reflection loss could reach-33dB at 10.5GHz, and-1OdB reflection loss band lay in 9-12.4GHz.
     The microtubes formed by self-assembling of small molecular AYM were used as the template to synthesis of the PPy/AYM complex, then the microtubes PPy was successfully obtained after removing AYM with CH2Cl2. It has been found the molar ratio of Py monomer over AYM affected the morphology of PPy, and when the molar ratio was well controlled, the PPy microtubes with a length of 101-102μm and the diameter of 300nm or even smaller could be obtained. However, if the Py monomer loading was too low the strip shape PPy would appear except for the tube ones, whereas if Py monomer loading was too high the product would agglomerate and just looked like that from bulk polymerization.
     The permittivities and permeabilities of the PPy microtube composites were measured within the frequency range of 2-18GHz. The real and imaginary part of the permittivity increased with the increasing absorber content, however, the permeabilities failed to show obvious increasing and just changed randomly. The simulation indicated the 20wt% content of PPy microtubes in the composite was the optimum condition for the reflection loss of composite. When the thickness of composite was 2mm, the peak reflection loss was -29.5dB at 12.8GHz, and -10dB absorbing band lay in 12.4GHz-18GHz.
     In this paper, the influence of the morphologies of PPy on the microwave absorbing has been paid more attention. Firstly, the absorbing abilities of spherulitic PPys obtained respectively in alcohol/water or water medium were investigated, and in fact the former PPy possessed a diameter of 100-200nm while the later was 400-800nm. The results of electromagnetic parameters measurement showed that the dielectric loss tangent of the smaller size particles was higher than that the larger ones, giving a better microwave absorbing ability, definitely, the peak reflection loss values was -15.7dB at 9.7GHz and -10dB reflection loss band lay in 8.5GHz-11.2GHz for the composite sample with a thickness of 3mm. Furthermore, according to the effective electromagnetic parameters theory which considered the absorber morphology effect, the absorption and scatter section area of the spherulitic, tubulous and flake-like PPys were calculated. The results demonstrated the microwave absorption section area for flake-shaped sample were better than the other, which coincided with the experimental results. As the matter of fact, the consideration of transition pathway of microwave in the composites would also be helpful to understand the absorbing ability difference between various types of PPy.
引文
[1]Theron I.P. On microwave theory & technics [J]. IEEE Trans,1996,44(8): 1451-1459
    [2]张考,马东立等,军用飞机生存力与隐身设计,国防工业出版社,北京,2002,54-168
    [3]哈恩华,黄大庆等,新型轻质雷达吸波材料的应用研究及进展[J].材料工程,2006,3:55-59
    [4]李高峰,吴茜,各种减小雷达截面的方法与机理[J]电讯工程,1999,1:1-4
    [5]周克省,黄可龙,孔德明等,吸波材料的物理机制及其设计[J].中南工业大学学报,2001,32(6):617-621
    [6]吴晓光,车晔秋,国外微波吸收材料,国防科技大学出版社,长沙,1992.
    [7]郭硕鸿,电动力学,人民教育出版社,北京,1979.
    [8]阮颖铮,雷达截面与隐身技术,国防工业出版社,北京,1998,270
    [9]刘顺华,刘军民等,电磁波屏蔽及吸波材料,2007,244-252
    [10]Dhawan S.K., Sinh K. et al. Electromagnetic shielding behaviour of conducting polyaniline composites [J]. Science and Technology of Advanced Materials,2003,4: 105-113
    [11]Zhang W.D., Feng X.Y., Meng X.L. Status and development of foreign study on new stealt hy materials [J]. Aerospace Materials & Technology,2000,3:1-4
    [12]万梅香,李素珍,李军朝,[J].宇航材料工艺,1989,5:28-32
    [13]Wan M.X. [J]. Acta Physica Sinca,1992,41(6):917
    [14]Chanterac H.de, Rduit P., et al. [J] Synth. Met.,1992,52:183-192
    [15]张新宇等, [J].化学工业与工程,1998,15(3):64-67
    [16]邹勇,王国强,[J].华中科技大学学报,2001,29(1):87
    [17]Wan M.-X, Li J.-C., Li S.-Z. Microtubules of polyaniline as new microwave absorbent materials [J]. Polym. Adv. Technol.,2001,12:651-657
    [18]熊为华,方庆清,王保明,[J].磁性材料及器件,2007,6:30-32
    [19]Li Y.B., Yi R., et al. Facile synthesis and properties of ZnFe2O4 and ZnFe2O4/ polypyrrole core-shell nanoparticles [J]. Solid State Sciences,2009,11:1319-1324
    [20]Li Liangchao, Xiang Chen, et al. Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole:Preparation and electromagnetic properties [J]. Synth. Met.,2010,160:28-34
    [21]Yuvaraj H., Woo M. H. et al. Polypyrrole/γ-Fe203 magnetic nanocomposites synthesized in supercritical fluid [J]. European Polymer J.44 (2008) 637-644
    [22]Dhawan S.K., Singh K., et al. Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption [J]. Synth. Met.,2009, 159:2259-2262
    [23]Xue G., Chen W., et al. Magnetic and conducting particles:preparation of polypyrrole layer on Fe3O4 nanospheres [J]. Macromolecular Nanotechnology,2003, 218:216-222
    [24]Kuramoto N., Phang S.-W., et al. Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes [J]. Synth. Met.,2008,158:251-258
    [25]Fu S.-Y., Xiao H.-Y., Zhang W.-D. One-step synthesis, electromagnetic and microwave absorbing properties of a-FeOOH/polypyrrole nanocomposites [J]. Composites Science and Technology,2010, xxx:xxx-xxx
    [26]Zhao D.L., et al. [J]. Wuli Xuebao/Acta Physica Sinica,2005,54(8):3878
    [27]Huber T., Makeiff D.A. Microwave absorption by polyaniline-carbon nanotube composites [J]. Synth. Met.,2006,156:497-505
    [28]Wu K.H., Ting T.H. et al. Synthesis and microwave electromagnetic character-istics of bamboo charcoal/polyaniline composites in 2-40GHz [J]. Synth. Met.,2008, 158:688-694
    [29]王鹏,王庆昭,邱光磊等,[J].高分子学报,2006,9:1100-1105
    [30]王鹏,王庆昭,邱光磊等,[J].工程塑料应用,2006,34(1):44-47
    [31]Truong V.-T., Riddell S.Z., et al. [J]. Journal of materials science,1998,33: 4971-4976
    [32]Diaz A.F., Kanazawa K.K., Gardini G.P. [J]. J. Chem. Soc. Chem. Commun., 1979,13:635
    [33]Akagi K., Katayama S., et al. [J]. Synth. Met.,1987,17:241
    [34]Kanzawa K.K, Diaz A.F., et al. [J]. Synth. Met.,1980,1:329.
    [35]Diaz A.F., Castillo J.I, et al. Electrochemistry of conducting polypyrrole films [J]. J. Electroanal. Chem.,1981,129:115-132.
    [36]Kumar D., Sharma R.C. Advances in Conductive Polymers [J]. Eur. Polym. J. 1998,34(8):1053-1060
    [37]曹铺,导电性聚合物化学的进展[J].高分子通报,1988,1,25-31
    [38]钱人元,导电高聚物的分子设计问题[J].高分子通报,1991,2,65-71
    [39]董绍俊,化学修饰电极,科学出版社,2003
    [40]尹五生,聚吡咯导电材料的合成方法的进展,[J].功能材料,1996,2,97-102
    [41]郑玉斌,电聚合导电聚吡咯的合成研究,[J]功能高分子学报,1996,613-615
    [42]Roncali J. Conjugated poly(thiophenes):synthesis, functionalization and application. [J]. Chem. Rev.1992,92:711-738
    [43]Unders B.R., Fleming R.J., Murray K.S. Recent advances in the physical and spectroscopic properties of polypyrrole films, partially those containing transition-metal complexes as counter ions. [J].Chem. Mater.1995,7:1082-1094
    [44]Chen S.A., Tsai C.C. Structure properties of conjugated conductive polymers [J]. Macromolecules,1993,26:2234-2239
    [45]Beadle P., Armes S. P., Gottesfeld S., et al. Electrically conductive polyaniline-copolymer latex composites. [J]. Macromolecules,1992,25:2526-2530
    [46]Somanathan N., Wegner G. Studies on poly(3-cyclohexylthiophene). [J]. Indian J. Chem. A.,1994,33(6):572-579
    [47]Kudoh Y. Properties of polypyrrole prepared by chemical polymerization using aqueous solution containing Fe2(SO4)3 and anionic surfactant [J]. Synth. Met.,1996, 79(1):17-22
    [48]Annapoomi S., Sundaresan N.S, Pandey S.S, et al. Photocarrier mobility in processable polyaniline [J]. J. Appl. Phys.,1993,74:2109-2112
    [49]Segawa, H., Shimidzu, T. and Honda, K. J. Chem. Soc., Chem. Commun.1989, 132.
    [50]杨平,张菁,方忻生,郭颖,常压等离子体聚合吡咯的荧光特性研究
    [51]Penner R.M., Martin C.R. Controlling the morphology of electronically conductive polymers [J]. J. Electrochem. Soc.,1986,133:2206-2207
    [52]Martin C.R., van Dyke L.S., Cai Z., et al. Template-synthesis of organic microtubules [J]. J. Am. Chem. Soc.,1990,112:8976-8977
    [53]Liang W., Martin C.R. Template-synthesized polyacetylene fribrils show enhanced supermolecular order [J]. J. Am. Chem. Soc.,1990,112:9666-9668
    [54]Menon V.P., Lei J.T., Martin C.R. Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils [J]. Chem. Mater.,1996,8 (9):2382-2390
    [55]Cepak V.M, Martin C.R. Preparation of polymeric micro- and nanostructures using a template-based deposition method [J]. Chem. Mater.,1999,11(5): 1363-1367
    [56]Parthasarathy R.V., Martin C.R. Enzyme and chemical encapsulation in polymeric microcapsules [J]. J. Appl. Polym. Sci.,1996,62:875-886
    [57]Parthasarathy R.V., Martin C.R. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization [J]. Nature,1994,369(6478):298-301
    [58]Barthet C., Armes S.P., Lascelles S.F., et al. Synthesis and characterization of micrometer-sized polyaniline-coated polystyrene latexes [J]. Langmuir,1998,14(8): 2032-2041
    [59]Okubo M., Fujii S., Minami H. Production of electrically conductive, corelshell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization [J]. Colloid Polym. Sci.,2001,279(2):139-145
    [60]Caruso F. Hollow Capsule Processing through Colloidal Templating and Self-Assembly [J]. Chem. Eur. J.,2000,6:413-419
    [61]Stejskal J., Kratochvil P., Armes S.P., et al. Polyaniline dispersions: stabilization by colloidal silica particles [J]. Macromolecules,1996,29(21): 6814-6819
    [62]Jun J.B., Kim J.W., Lee J.W., et al. Spherical polarization body:Synthesis of monodisperse micron-sized polyaniline composite particles [J]. Macromol. Rapid. Comm.2001,22(12):937-940
    [63]Marinakos S.M., Shultz D.A., Feldheim D.L. Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules [J]. Adv. Mater.,1999,11(1):34-37
    [64]Cairns D.B., Armes S.P., Bremer L.G.B. Synthesis and characterization of submicrometer-sized polypyrrole-polystyrene composite particles [J]. Langmuir, 1999,15(23):8052-8058
    [65]Cairns D.B., Armes S.P., Chehimi M.M., et al. X-ray photoelectron spectroscopy characterization of submicrometer-sized polypyrrole-Polystyrene composites [J]. Langmuir,1999,15 (23):8059-8066
    [66]Khan M.A, Armes S.P, Synthesis and characterization of micrometer-sized poly (3,4-ethylenedioxythiophene)-coated polystyrene latexes [J]. Langmuir,1999,15 (10):3469-347s
    [67]Hao L.Y., Zhu C.L., Chen C. N., et al. Fabrication of silica core-conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates. [J]. Synth. Met.2003,139 (2):391-396
    [68]Zhang X., Manohar S.K. Bulk synthesis of polypyrrole nanofibers by a seeding approach [J]. J. Am.Chem. Soc.,2004,126(40):12714-12715
    [69]Chen J., Chao X., et al. General synthesis of two-dimensional patterned conducting polymer-nanobowl sheet via chemical polymerization [J]. Macromol. Rapid Commun.,2006,27(10):771-775
    [70]Athawale A.A., Katre P.P., et al. Synthesis of polypyrrole nanofibers by ultrasonic waves [J]. J. Appl. Polym. Sci.,2008,108(5):2872-2875
    [71]Yan W., Han J. Synthesis and formation mechanism study of rectangular-sectioned polypyrrole micro/nanotubules [J]. Polymer,2007,48(23):6782-6790
    [72]Jang J, Yoon H. Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization [J]. Chem. Common.2003, (6):720-721
    [1]Aldissi M. Intrinsically conducting polymers:An emerging technology; Dordrecht: Kluwer,1993:1
    [2]Nalwa H.S. Handbook of organic conducting molecules and polymers, Vol.2, Chichester: Wiley,1997:1
    [3]Skotheim TA, Elsenbaumer RL, Reynolds JR., Handbook of conducting polymers 2nd; New York:Marcel Dekker,1998:1
    [4]赵文元,赵文明,王亦军,聚合物材料的电学性能及其应用,北京,化学工业出版社,14
    [5]Omastova M., Trchova M., Kovarova J., et al,.Synthesis and structural study of polypyrroles prepared in the presence of surfactants., Synth. Met.,138(3),2003,447
    [6]苏静,王庚超,邓惠山等,掺杂质子酸的类型对聚苯胺结构和电导率的影响[J].功能高分子学报,2002,15(2):122
    [7]Wan, M. X., Shen, Y. Q., Huang, J. Chinese Patent, No.98109916.5
    [8]Hongjin Qiu and Meixiang Wan, et al. Conducting Polyaniline Nanotubes by Template-Free Polymerization, Macromolecules 2001,34,675-677
    [9]Jang J., Yoon H. Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization [J]. Chem. Common.2003, (6):720-721
    [10]Lee J.Y., Kim D.Y., Kim C.Y. [J]. Synth. Met.,1995,74:103
    [11]Lee J.Y., Song K.T., et al. [J]. Synth. Met.,1997,84:137
    [12]Oh E.J., Jang K.S., et al. [J]. Synth. Met.,1997,84:147
    [13]Levon K, Ho K-H, Zheng W-Y, etal. Thermal doping of polyaniline with dodecylbenzene sulfonic acid without auxiliary solvents [J]. Polymer,1995,36(14): 2733-2738
    [14]Chu Ying, Han Mingjuan, Han Dongxue, Liu Yang, Fabrication and characterizations of oligopyrrole doped with dodecylbenzenesulfonic acid in reverse microemulsion [J]. J. Colloid Interface Sci.,2006,296:110-117
    [15]Xing Shuangxi, Zhao Guoku, Morphology and thermostability of polypyrrole prepared from SDBS aqueous solution [J]. Polymer Bulletin,2006,57:933-943
    [16]Javadi HHS, Cromack KR, MacDiarmid AG, et al. Microwave transport in the emeraldine form of polyaniline [J]. Phys. Rev. B:Condens. Matter.,1989,39: 3579-3584.
    [17]刘顺华,刘军民,董星龙,电磁波屏蔽及吸波材料,化学工业出版社,2007,211
    [18]Omastova M, Mravcakova M, Chodak I, Pionteck J, et al. Conductive polypropylene/ Clay/polypyrrole nanocomposits, [J]. Polym. Eng. Sci.,2006,46(8):1069-1078
    [19]Armes S.P, Optimum reaction conditions for the polymerization of pyrrole by iron (Ⅲ) chloride in aqueous solution, [J]. Synth. Met.,1987,20(3):365-371
    [20]江建明,戚慰先,仲蕾兰,方柏容,化学氧化聚吡咯的结构及导电性的研究[J].高分子材料科学与工程,1991,7(5):94-98
    [21]Cheah K, Forsyth M, Truong V. T, An XRD/XPS approach to structural change in conducting PPy, [J]. Synthetic Met.,1999,101 (1-3):19
    [22]毛倩瑾,周美玲,导电高聚物吸波材料的研究进展[J].北京工业大学学报,2004,30(4):488
    [23]Kim K.H., Lee G.J., Lee S.H., etal. Synthesis and Characterization of Soluble Polypyrrole with Improved Electrical Conductivity, [J]. J Appl Polym Sci,2002,84: 2583-2590
    [24]殷敬华,莫志深,现代高分子物理学,北京:科学出版社,2001
    [25]Omastova M, Trchova M, Pointeck J, et al. Effect of polymerization conditions on the properties of polyrrole prepared in the presence of sodium bis (2-ethylhexyl) sulfosuccinate, [J]. Synth. Met.,2004,143(2,3):153-161
    [26]Xu P, Han X, Wang C, et al. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites, [J]. J. Phys. Chem. B,2008,112 (34): 10443-10448
    [27]Lamprakopoulos S, Yfantis D, Yfantis A, etal. An FTIR study of the role of H2O and D2O in the aging mechanism of conductive polypyrroles, [J]. Synth. Met., 2004,144(30):229-234
    [28]Cheah K, Forsyth M, Truong V. T, An XRD/XPS approach to structural change in conducting PPy, [J]. Synthetic Met.,1999,101(1-3):19
    [29]Akif Kaynak, Llew Rintoul, Graeme A. George, Change of mechanical and electrical properties of polypyrrole films with dopant concentration and oxidative aging [J]. Materials Research Bulletin,2000,35:813-824
    [30]Olmedo L., Hourquebie P., and Jousse F., Hand Book of Organic Conductive Molecules and Polymers, Vol.3, H.S. Nalwa, editor, Wiley, (1997), Chapter 8.
    [31]Honey John, Rinku M. Thomas, et al. Conducting Polyaniline Composites as Microwave Absorbers [J]. Poly. Compos.,2007,28:588-592
    [32]Kirkwood J.G., Fuoss R.M., [J]. J. Chem. Phys.,9,329 (1941)
    [33]Paul A., Thomas S. [J]. J. AppL Polym Sci.,1997,63:247
    [1]Biswas M, Ray S.S Preparation and evaluation of composites from montmorillo-nite and some heterocyclic polymers:3. A water dispersible nanocomposite from pyrrole-montmorillonite polymerization system. Mater. Res. Bull.1999,34: 1187-1194
    [2]Biswas M, Ray S. S Water-dispersible nanocomposites of polyaniline and montmorillonite. J. Appl. Polym. Sci.2000,77:2948-2956
    [3]Aranda P, Letaief S, E. Ruiz-Hitzky. Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Appl. Clay Sci.2005,28:183-198
    [4]Mravcakov M, Omastova M, Olejnikov K, et al. The preparation and properties of sodium and organomodified-montmorillonite/polypyrrole composites:A comparative study. Synthetic Metals 2007,157:347-357
    [5]Wu H, Li G, Gao J. Template synthesis flake polypyrrole and montmorillonite/ polypyrrole composites by vapor-liquor phase polymerization. Acta materiae compositae sinica 2009,26:86-92
    [6]Manjanna J., Kozaki T., et al. A new method for Fe(Ⅱ)-montmorillonite Preparation using Fe(Ⅱ)-nitrilotriacetate complex [J]. J. Nucl. Sci. Technol.,2007, 44(7):929-932
    [7]Pacula A., Bielanska E., et al. Textural effects in powdered montmorillonite introdued by freeze-drying and ultrasound pretreatment [J]. Appl. Clay Sci.,2006, 32(1-2):64-72
    [8]Kim C.H., Kim S.S. et al. Polymer intercalation in mesostructured carbon [J]. Adv. Mater.,2004,16(8):736-739
    [9]Ford W.K, Duke C.B. Electronic structure of polypyrrole and oligomers of pyrrole. J. Chem. Phys.1982,77:5030-5039
    [10]Rabias I, Hamerton I, Howlin B.J Theoretical studies of conducting polymers based on substituted polypyrroles. Comput. Theor. Polym. Sci.1998,8:265-271 [11] Yoshimoto S, Ohashi F, Kameyama T Macromol. Rapid Commun.2005,26: 461-466
    [12]Omastova M., Trchova M., et al. Effect of polymerization condition on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate [J]. Synth. Met.,2004,143(2,3):153-161
    [13]Cole K.C. Use of infrared spectroscopy to characterize clay intercalation and exfoliation in polymer nanocomposites [J]. Macromolecules,2008,41(3):834-843
    [14]Wan M, Liu J. Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method. [J]. J. Mater Chem.2001,11:404-407
    [15]Wang T, Liu W Structure characterization and conductive performance of polypyrrole-molybdenum disulfide intercalation materials. [J]. Polym. Compos. 2004,25:111-117
    [16]Pourabbas B, Peighambardoust S.J Synthesis and characterization of conductive polypyrrole/ montmorillonite nanocomposites via one-pot emulsion polymerization. [J]. Macromol. Symp.2007,247:99-109
    [1]Mravcakov M, Omastova M, Olejnikov K, et al. The preparation and properties of sodium and organomodified-montmorillonite/polypyrrole composites:A comparative study. [J]. Synthetic Metals 2007,157:347-357
    [2]Biswas M, Ray S. S Water-dispersible nanocomposites of polyaniline and montmorillonite. [J]. J. Appl. Polym. Sci.2000,77:2948-2956
    [3]Aranda P, Letaief S, E. Ruiz-Hitzky. Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. [J]. Appl. Clay Sci.2005,28:183-198
    [4]Chehimi M M, Boukerma K, Piquemal J Y Synthesis and interfacial properties of montmorillonite/polypyrrole nanocomposites. [J]. Polymer 2006,47,569-576
    [5]Pourabbas B, Peighambardoust S.J Synthesis and characterization of conductive polypyrrole/montmorillonite nanocomposites via one-pot emulsion polymerization. [J]. Macromol. Symp.2007,247:99-109
    [6]Yeh J.M, Chin Ch.P, Chang S. Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole-clay nanocomposite materials. [J]. J. Appl. Polym. Sci.2005,88:3264-3272
    [7]Ranaweera A.U., Bandara H.M.N., et al. Electronically conducting montmorillonite-Cu2S and montmorillonite-Cu2S-polypyrrole nanocomposites [J]. Electrochemimica Acta,2007,52(25):7203-7209
    [8]Wu H, Li G, Gao J. Template synthesis flake polypyrrole and montmorillonite/ polypyrrole composites by vapor-liquor phase polymerization. [J]. Acta materiae compositae sinica 2009,26:86-92
    [9]Kim J.W, Liu F Physical characterization of polyaniline-Na+-montmorillonite nanocomposite intercalated by emulsion polymerization. Polymer 2003,44:289-293
    [10]Bae W.J., Kim K.H., et al. Fully exfoliated nanocomposite from polypyrrole graft copolymer/clay [J]. Material Research Bulltin,1995,30(6):723-729
    [11]Long Y., Wan M.X., et al. Electronic transport in single polyaniline and polypyrrole microtubes [J]. Phys. Rev. B.,2005,71 (16):165412-165417
    [12]Shklovskii B.I. and Efros A.L., Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin,1984); in Hopping Transport in Solids, edited by M. Pollak and B. I. Shklovskii (North-Holland, Amsterdam,1990)
    [13]Cheah K, Forsyth M, Truong V. T, An XRD/XPS approach to structural change in conducting PPy, [J]. Synthetic Met.,1999,101(1-3):19
    [14]Papirer E, Balard H. In:Pefferkorn E, editor. Interfacial phenomena in chromatography (surfactant science series), vol.80. New York:Marcel Dekker; 1999. p.145-71.
    [15]Perruchot C, Chehimi MM, Delamar M, Lascelles SF, Armes SP. [J]. J Colloid Interface Sci 1997; 193:190.
    [16]万梅香,导电高聚物的微波吸收机理的研究[J].物理学报,1992,41(6):917-923
    [17]Ge, F. D. (1997) Number of nano-magnetic micro-structure, properties and application in microwave absorbing materials, PHD Thesis, Beijing University of Science and Technology
    [18]Wang T, Liu W Structure characterization and conductive performance of polypyrrole- molybdenum disulfide intercalation materials. [J]. Polym. Compos. 2004,25:111-117
    [1]Jiang L., Fu Y., Li H., et al,.Single-crystalline, size, and orientation controllable nanowires and ultralong microwires of organic semiconductor with strong photoswitching property., J. Am. Chem. Soc.,130(12),2008,3937.
    [2]安颢瑗,任丽,王立新,磺酸系掺杂剂对聚吡咯结构与导电性能的影响,中国科学院上海冶金研究所,2000,博士论文
    [3]安颢瑗,任丽,王立新,聚吡咯的化学氧化合成与导电性研究,2005年高分子 年会
    [4]王立新,张富强,王新,PPy/SiO2纳米复合材料的合成与表征,[J].合成树脂,1998,15(2):5254
    [5]Wan M.X. A Template-Free Method Towards Conducting Polymer Nanostructures [J]. Adv. Mater.,2008,20:2926-2932
    [6]孟凡君,茹淼焱等,无机材料学报,1999,14(1):95-100
    [7]Wan MX, Li JC. [J]. J.Polym. Sci. Part A:Polym. Sci.2000,38:2359
    [8]Wan M. X., Li J. C., Li S. Z., Chinese Patent 99100651.8,25,2003
    [9]葛福鼎,朱静,陈利民:吸波剂颗粒形状对吸波材料性能的影响,[J].宇航材料工艺,1996,26(5):310-316
    [10]刘顺华,刘军民,董星龙,电磁波屏蔽及吸波材料,化学工业出版社,2007,211
    [11]邢丽英,刘俊能,任淑芳,短碳纤维电磁特性及其在吸波材料中应用研究,[J].材料工程,1998,(1):19-21
    [12]甘永学,陈昌麟,李成功,微波吸收复合材料中镀金属碳纤维的作用机制,[J].兵器材料科学与工程,1992,15(8):5-9
    [1]AD-A 117472
    [2]神原直孝电子材料,1982(9):25
    [3]吴晓光.微波吸波剂性能评价方法。国防科技大学论文报告资料91-5031,国防科大,1991.11
    [4]葛福鼎,一些纳米磁性材料的微结构、性能及其在吸波材料中的应用,北京科技大学,1997,博士论文
    [5]Mravcakov M, Omastova M, Olejnikov K, et al. The preparation and properties of sodium and organomodified-montmorillonite/polypyrrole composites:A comparative study. [J]. Synthetic Metals 2007,157:347-357
    [6]刘顺华,刘军民,董星龙,电磁波屏蔽及吸波材料,化学工业出版社,2007
    [7]Sihvla AH, Lindell I V, Polarizaility modeling of heterogene ous media and effective permeability of Mixtures in A. Prous ed., Progress in Electromagnetics Research [J]. Dielectric Properties of Heterogeneous mixrues.1991:101-153
    [8]陈季丹,刘子玉。电介质物理学。北京:机械工业出版社,1982:185
    [9]对日技术座谈资料之四:铁氧体吸收材料及应用[J].磁性材料及器件,1976,(5-6):119
    [10]赵凤章,李承祖,陈建华,颗粒行混合物等效介电常数的一种近似理论,宇航材料工艺[J].1989(4-5):10
    [11]王相元,盛玉宝,邱志强,钱鉴,羟基铁复合材料的复介电常数和复磁导率与体积的关系[J].宇航材料工艺,1989(4-5):47
    [12]王相元,盛宝玉等,吸波材料电磁参数与吸波剂百分体积关系[J].南京大学学报,1992,28(4):551-556
    [13]Fu WY, Liu SK, Fan WH, etal. [J]. J. Magn. Magn. Mater.316 (2007) 58