CB/PP与CNTs/PP复合材料的电性能及外场响应性能对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电高分子复合材料(CPCs)的研究和开发是当今高分子材料功能化的一个重要课题。CPCs是指在高分子基体中加入一种或多种导电填料制备的具有导电功能的高分子复合材料。CPCs已被大量用于抗静电材料、自发热材料、电磁屏蔽材料、各种传感器材料、气体、石油化工、环境等领域探测材料等。近年来,CPCs在外场刺激下的电性能敏感特性引起了人们的广泛关注,尤其是在拉伸、压缩、有机溶剂刺激下的响应行为的研究更是引人注目。尽管如此,具有不同维数的导电填料对CPCs电性能尤其是外场响应性能的影响尚未完全明确,而这对CPCs的应用至关重要。在本论文中,首先,我们采用熔融共混法制备了具有不同维数填料(炭黑(CB),0维、碳纳米管(CNTs),1维)填充的聚丙烯(PP) CPCs,研究了两种CPCs的逾渗行为。并用填料含量稍高于逾渗值的试样测试了CPCs在拉应力场,拉伸循环拉伸下电性能的演变,并对两种CPCs的电性能演变进行了对比。分析了CPCs电性能在上述外场中的变化机制,并运用该导电机制对本实验的现象进行了解释。根据上述讨论,绘制了循环拉伸情况下两种CPCs的导电网络演变的示意图,对两种CPCs在外力作用下试样内部的微观结构演变进行了直观的描述和对比。
     其次,我们采用在真空环境下模压成型的方式制备了CB/PP,CNTs/PP CPCs,显著降低了它们逾渗值。另外,我们观察了真空环境下模压制备的两种CPCs试样在拉应力场和循环拉伸场(应变(ε)≤3%)刺激下电性能的演化,并对比了该CPCs与普通CB/PP,CNTs/PP在外场刺激下电性能的变化及其演变机制的异同。
     再次,我们本着制备电性能稳定的CPCs的目的,在不同温度(80℃,120℃)下对试样进行了3个小时的热处理,并比较了热处理前后试样阻值的变化。同时也观察了试样热处理后在拉应力场,循环拉伸力场(ε≤3%)刺激下电性能的演化,并对比了两种CPCs试样在外场刺激下电性能的变化。
     我们还对普通试样的液体敏感行为进行了对比研究,探讨了了两种CPCs在良溶剂二甲苯溶剂中的响应率高低及其在浸润-挥发循环过程(IDRs)中液敏行为的稳定性。为了研究材料的液体敏感长期使用性能,观察了两种CPCs在二甲苯溶剂中经过72小时(h)浸润并充分挥发后10个IDRs中的液体敏感行为,并进行了对比分析。观察了在环己烷和四氯化碳刺激下的液体敏感行为,并进行了对比研究。
The investigation and exploitation of conductive polymer composites (CPCs) is one of the hot issues for the functionalization of polymers for a long time. CPCs are prepared by filling one or several kinds of conductive fillers into the one or several polymers. CPCs have been widely used for as antistatic materials, self-regulated heaters, electromagnetic shielding, sensors and detection systems, etc. In recent years, CPCs have received great attention due to their popular applications in many fields, especially for the sensitive stimuli-response behaviors under extension, compression and organic solvent, Based on the description above, basic investigation of CPCs has been studied. Although, the effect of own different dimensions conductive fillers on electrical property of CPCs has not been cleared fully, which is crucial for the applications of CPCs. In this paper, we prepared the CPCs by filling CB (0dimension) or CNTs (1dimension) into polypropylene by melt mixing method, the behaviour of percolation thresholds of both CPCs have been stutied. In the present work, the concentrations of CB and CNTs are7.16vol.%and3.41vol.%, respectively, which are little beyond the percolation thresholds of CNT/PP and CB/PP composites (ca.7.05vol.%and3.24vol.%, respectively). The variation of the electrical resistance of both CPCs under tensile field, stress-strain cycles with strain (ε<3%) and the comparison of the mechanical property and electrical property of both CPCs have been investigated. Then the mechanisms of electric conduction have been summarized. And the phenomena, which are observed, have been explained by mechanisms. Finally, a schematic illustration was drawn to illustrate the mechanism of the different sensing behaviour, micro-structure envolution of the inner of samples has been described directly and compared to the both CPCs under extra field.
     Following, we prepared CB/PP, CNTs/PP CPCs by compression in the vacuum environment, and decreased percolation thresholds remarkablely. In addition, the envolution of the electrical property of both CPCs, which have been prepared in two different conditions, under tensile field, cycle tension with strain (ε<3%) has been investigated. The electrical property of both CPCs with different preparation ways has been compared also.
     Then, in order to prepare stable CPCs, the samples have been annealed at the different temperatures (80℃,120℃) for three hours. The electrical resistance of annealed samples with samples of before annealed were compared. The variation of the electrical resistance of both CPCs, under tensile field, cycle tension with strain (ε≤3%) has been investigated. The electrical property of both CPCs with different preparation ways has been compared as well.
     Finally, the xylene stimuli-response behaviors of both CPCs have been investigated. It's found that the responsivity of CB/PP is higher and the reproducibility of CNTs/PP is higher under10IDRs immersion-drying runs (5min immersion, then15min drying). Moreover, after some samples were immersed in xylene for72h, then absolute drying, the effect of immersion on the responsivity and reproducibility under10IDRs immersion-drying runs have been studied. In addition, the organic liquid (cyclohexane and carbon tetrachloride (CCl4), stimuli-response behaviors of both CPCs have been observed.
引文
[1]林静,刘丽敏,李长江,等.炭黑-聚丙烯复合型导电高分子材料的电热性能研究[J].北京化工大学学报(自然科学版),1997,(04):91-94.
    [2]Goodings EP. Conductive rubbers and plastics. R. H. Norman, pp. viii+277,1970. London: Elsevier Publishing Co. Ltd. f5.00[J]. British Polymer Journal,1971,3(4):201-201.
    [3]Xiao AY, Tong QK, Savoca AC, et al. Conductive ink for through hole application[J]. Components and Packaging Technologies, IEEE Transactions on,2001,24(3):445-449.
    [4]Fujitani T MK. United States Patent,1981,24.
    [5]Yang Y, Gupta MC, Dudley KL, et al. Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding[J]. Nano Letters,2005,5(11):2131-2134.
    [6]Flandin L, Brechet Y, Cavaille JY. Electrically conductive polymer nanocomposites as deformation sensors[J]. Composites Science and Technology,2001,61(6):895-901.
    [7]Kang I, Schulz MJ, Kim JH, et al. A carbon nanotube strain sensor for structural health monitoring[J]. Smart Materials and Structures,2006,15(3):737.
    [8]Bauhofer W, Kovacs JZ. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Composites Science and Technology,2009,69(10):1486-1498.
    [9]Mohanraj GT, Chaki TK, Chakraborty A, et al. Effect of some service conditions on the electrical resistivity of conductive styrene-butadiene rubber-carbon black composites[J]. Journal of Applied Polymer Science,2004,92(4):2179-2188.
    [10]Gul VE MN, Kamenskii AN and Fodiman NM, Vysokomol. soedin.. Electrically conducting systems based on polymers-I. Investigation of the structure of current conducting compositions on a non-solidified resin base [J]. Polymer Science U.S.S.R.,1962, 3(5):642-648.
    [11]Miyasaka K, Watanabe K, Jojima E, et al. Electrical conductivity of carbon-polymer composites as a function of carbon content[J]. Journal of materials science,1982,17(6): 1610-1616.
    [12]Kitazaki Y HT. J Adhesion Soc Jpn 1973,8.
    [13]Foulger SH. Reduced percolation thresholds of immiscible conductive blends[J]. Journal of Polymer Science Part B:Polymer Physics,1999,37(15):1899-1910.
    [14]Sau KP, Chaki TK, Khastgir D. Carbon fibre filled conductive composites based on nitrile rubber (NBR), ethylene propylene diene rubber (EPDM) and their blend[J]. Polymer,1998, 39(25):6461-6471.
    [15]Sau KP, Chaki TK, Khastgir D. Conductive rubber composites from different blends of ethylene-propylene-diene rubber and nitrile rubber[J]. Journal of materials science,1997, 32(21):5717-5724.
    [16]Narkis M, Vaxman A. Resistivity behavior of filled electrically conductive crosslinked polyethylene[J]. Journal of Applied Polymer Science.1984,29(5):1639-1652.
    [17]Klason C, Kubat J. Anomalous behavior of electrical conductivity and thermal noise in carbon black-containing polymers at Tg and Tm[J]. Journal of Applied Polymer Science,1975, 19(3):831-845.
    [18]Gubbels F, Jerome R, Teyssie P, et al. Selective Localization of Carbon Black in Immiscible Polymer Blends:A Useful Tool To Design Electrical Conductive Composites[J]. Macromolecules,1994,27(7):1972-1974.
    [19]Gubbels F, Blacher S, Vanlathem E, et al. Design of Electrical Composites:Determining the Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends[J]. Macromolecules,1995,28(5):1559-1566.
    [20]Zhang C, Yi XS, Yui H, et al. Selective location and double percolation of short carbon fiber filled polymer blends:high-density polyethylene/isotactic polypropylene[J]. Materials Letters, 1998,36(1-4):186-190.
    [21]Tchoudakov R, Breuer O, Narkis M, et al. Conductive polymer blends with low carbon black loading:Polypropylene/polyamide[J]. Polymer Engineering & Science,1996,36(10): 1336-1346.
    [22]Jiyun Feng C-MC. Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers[J]. Polymer,2000,41(12): 4559-4565.
    [23]Sau KP, Khastgir D, Chaki TK. Electrical conductivity of carbon black and carbon fibre filled silicone rubber composites[J]. Die Angewandte Makromolekulare Chemie,1998,258(1): 11-17.
    [24]Flandin L, Chang A, Nazarenko S, et al. Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers[J]. Journal of Applied Polymer Science,2000,76(6):894-905.
    [25]Pramanik PK, Khastgir D, Saha TN. Conductive nitrile rubber composite containing carbon fillers:Studies on mechanical properties and electrical conductivity[J]. Composites,1992, 23(3):183-191.
    [26]Kirkpatrick S. Percolation and Conduction[J]. Reviews of Modern Physics,1973,45(4): 574-588.
    [27]Wang Guoquan. Electrical resistance measurement of conductive network in short carbon fibre-polymer composites[J]. Polymer Testing,1997,16(3):277-286.
    [28]Stauffer D. Introduction to percolation theory.[J]. Talyor and Francis.Lundon,,1987.
    [29]Balberg I, Bozowski S. Percolation in a composite of random stick-like conducting particles[J]. Solid State Communications,1982,44(4):551-554.
    [30]Stinchcombe RB. Conductivity and spin-wave stiffness in disordered systems-an exactly soluble model[J]. Journal of Physics C:Solid State Physics,1974,7(1):179.
    [31]Abeles B, Pinch HL, Gittleman JI. Percolation Conductivity in W-A1_{2}O_{3} Granular Metal Films[J]. Physical Review Letters,1975,35(4):247-250.
    [32]Clerc JP, Giraud G, Laugier JM, et al. The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models[J]. Advances in Physics,1990,39(3): 191-309.
    [33]Carmona F, Prudhon P, Barreau F. Percolation in short fibres epoxy resin composites: Conductivity behavior and finite size effects near threshold[J]. Solid State Communications, 1984,51(4):255-257.
    [34]Pramanik PK, Khastgir D, De SK, et al. Pressure-sensitive electrically conductive nitrile rubber composites filled with particulate carbon black and short carbon fibre[J]. Journal of materials science,1990,25(9):3848-3853.
    [35]Pramanik PK, Khastagir D, Saha TN. Effect of extensional strain on the resistivity of electrically conductive nitrile-rubber composites filled with carbon filler[J]. Journal of materials science,1993,28(13):3539-3546.
    [36]Martin BJA, Parkinson D. Milling Procedure Its Effect on Physical Properties[J]. Rubber Chemistry and Technology,1955,28(1):261-277.
    [37]Agari Y, Ueda A, Nagai S. Thermal conductivities of composites in several types of dispersion systems[J]. Journal of Applied Polymer Science,1991,42(6):1665-1669.
    [38]Jana PB, Chaudhuri S, Pal AK, et al. Electrical conductivity of short carbon fiber-reinforced polychloroprene rubber and mechanism of conduction[J]. Polymer Engineering & Science, 1992,32(6):448-456.
    [39]Balta Calleja FJ, Bayer RK, Ezquerra TA. Electrical conductivity of polyethylene-carbon-fibre composites mixed with carbon black[J]. Journal of materials science,1988,23(4): 1411-1415.
    [40]Sircar AK, Lamond TG. Effect of Carbon Black Particle Size Distribution on Electrical Conductivity[J]. Rubber Chemistry and Technology,1978,51(1):126-132.
    [41]Medalia AI. Electrical Conduction in Carbon Black Composites[J]. Rubber Chemistry and Technology,1986,59(3):432-454.
    [42]Abdel-Bary EM, Amin M, Hassan HH. Factors affecting electrical conductivity of carbon black-loaded rubber. Ⅱ. Effect of concentration and type of carbon black on electrical conductivity of SBR[J]. Journal of Polymer Science:Polymer Chemistry Edition,1979,17(7): 2163-2172.
    [43]陈耀庭,周明义,王国全,等.碳纤维/聚合物复合材料的导电性及电磁屏蔽性能的研究[M].塑料科技,1997,(06):4-7.
    [44]Fifolt DA, Petrenko VF, Schulson EM. Preliminary study of electromagnetic emissions from cracks in ice[J]. Philosophical Magazine Part B,1993,67(3):289-299.
    [45]Kost J, Narkis M, Foux A. Resistivity behavior of carbon-black-filled silicone rubber in cyclic loading experiments[J]. Journal of Applied Polymer Science,1984,29(12):3937-3946.
    [46]Oliva-Aviles Al, Aviles F, Sosa V. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field[J]. Carbon,2011,49(9): 2989-2997.
    [47]Sevkat E, Li J, Liaw B, et al. A statistical model of electrical resistance of carbon fiber reinforced composites under tensile loading[J]. Composites Science and Technology,2008, 68(10-11):2214-2219.
    [48]Zhang Y, Sheehan CJ, Zhai J, et al. Polymer-Embedded Carbon Nanotube Ribbons for Stretchable Conductors[J]. Advanced Materials,2010,22(28):3027-3031.
    [49]Narkis M, Srivastava S, Tchoudakov R, et al. Sensors for liquids based on conductive immiscible polymer blends[J]. Synthetic Metals,2000,113(1-2):29-34.
    [50]Segal E, Tchoudakov R, Narkis M, et al. Sensors for chemicals based on electrically conductive immiscible HIPS/TPU blends containing carbon black[J]. Journal of materials science,2004,39(18):5673-5682.
    [51]Dai K, Zhang Y-C, Tang J-H, et al. Organic liquid stimuli-response behaviors of electrically conductive microfibrillar composite with a selective conductive component distribution[J]. Journal of Applied Polymer Science,2012,124(6):4466-4474.
    [52]Kobashi K, Villmow T, Andres T, et al. Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films[J]. Sensors and Actuators B:Chemical, 2008,134(2):787-795.
    [53]Potschke P, Andres T, Villmow T, et al. Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes[J]. Composites Science and Technology,2010,70(2):343-349.
    [54]Kobashi K, Villmow T, Andres T, et al. Investigation of liquid sensing mechanism of poly(lactic acid)/multi-walled carbon nanotube composite films[J]. Smart Materials and Structures,2009,18(3):035008.
    [55]Potschke P, Kobashi K, Villmow T, et al. Liquid sensing properties of melt processed polypropylene/poly(ε-caprolactone) blends containing multiwalled carbon nanotubes[J]. Composites Science and Technology,2011,71(12):1451-1460.
    [56]Rentenberger R, Cayla A, Villmow T, et al. Multifilament fibres of poly(s-caprolactone) /poly(lactic acid) blends with multiwalled carbon nanotubes as sensor materials for ethyl acetate and acetone[J]. Sensors and Actuators B:Chemical,2011,160(1):22-31.
    [57]Fathi A, Hatami K, Grady BP. Effect of carbon black structure on low-strain conductivity of polypropylene and low-density polyethylene composites[J]. Polymer Engineering and Science, 2012,52(3):549-556.
    [58]Knite M, Teteris V, Kiploka A, et al. Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials[J]. Sensors and Actuators A:Physical,2004,110(1-3): 142-149.
    [59]Pham GT, Park Y-B, Liang Z, et al. Processing and modeling of conductive thermoplastic /carbon nanotube films for strain sensing[J]. Composites Part B:Engineering,2008,39(1): 209-216.
    [60]Das NC, Chaki TK, Khastgir D. Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites[J]. Polymer International, 2002,51(2):156-163.
    [61]Wichmann MHG, Buschhorn ST, Gehrmann J, et al. Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load[J]. Physical Review B,2009,80(24): 245437.
    [62]Gao DL, Zhan MS. Fabrication and electrical properties of CNT/PP conductive composites with low percolation threshold by solid state alloying[J]. Polymer Composites,2010,31(6): 1084-1090.
    [63]Lundberg B, Sundqvist B. Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment:Applications as a pressure and gas concentration transducer[J]. Journal of Applied Physics,1986,60(3):1074-1079.
    [64]Seo M-K, Park S-J. Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites[J]. Chemical Physics Letters,2004,395(1-3):44-48.
    [65]Babinec SJ, Mussell RD, Lundgard RL, et al. Electroactive Thermoplastics[J]. Advanced Materials,2000,12(23):1823-1834.
    [66]Castillo-Castro T, Castillo-Ortega MM, Herrera-Franco PJ. Electrical, mechanical and piezo-resistive behavior of a polyaniline/poly(n-butyl methacrylate) composite[J]. Composites Part A:Applied Science and Manufacturing,2009,40(10):1573-1579.
    [67]Ogasawara T, Tsuda T, Takeda N. Stress-strain behavior of multi-walled carbon nanotube /PEEK composites[J]. Composites Science and Technology,2011,71(2):73-78.
    [68]Shen X, Xia Z, Ellyin F. Cyclic deformation behavior of an epoxy polymer. Part I: Experimental investigation[J]. Polymer Engineering and Science,2004,44(12):2240-2246.
    [69]Ariyama T. Effect of mean strain on the cyclic deformation and stress relaxation in polypropylene[J]. Polymer Engineering & Science,1995,35(18):1455-1460.
    [70]Sau KP, Chaki TK, Khastgir D. The change in conductivity of a rubber-carbon black composite subjected to different modes of pre-strain[J]. Composites Part A:Applied Science and Manufacturing,1998,29(4):363-370.
    [71]Balberg I. Tunneling and nonuniversal conductivity in composite materials[J]. Physical Review Letters,1987,59(12):1305-1308.
    [72]Estrada Moreno IA, Diaz Diaz A, Mendoza Duarte ME, et al. Strain Effect on the Electrical Conductivity of CB/SEBS and GP/SEBS Composites[J]. Macromolecular Symposia,2009, 283-284(1):361-368.
    [73]Shui X, Chung D. A piezoresistive carbon filament polymer-matrix composite strain sensor[J]. Smart Materials and Structures(UK),1996,5(2):243-246.
    [74]张清华,陈大俊.炭黑填充聚丙烯复合材料的制备及性能[J].高分子材料科学与工程,2004,(03):213-215.
    [75]王荣秋.孔隙及其对复合材料力学性能的影响评述[J].玻璃钢,1982,(01):41-45.
    [76]Zhang Y-C, Huang Y-F, Dai K, et al. The Resistivity Response of an Anisotropically Conductive Polymer Composite with in-situ Conductive Microfibrils During Cooling[J]. Polymer-Plastics Technology and Engineering,2011,50(15):1511-1514.
    [77]Pan Y, Li L, Chan SH, et al. Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending[J]. Composites Part A:Applied Science and Manufacturing,2010,41(3):419-426.
    [78]Chen G, Wu C, Weng W, et al. Preparation of polystyrene/graphite nanosheet composite[J]. Polymer,2003,44(6):1781-1784.
    [79]Das NC, Chaki TK, Khastgir D. Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites[J]. Carbon, 2002,40(6):807-816.
    [80]Kim HS, Sohn BH, Lee W, et al. Multifunctional layer-by-layer self-assembly of conducting polymers and magnetic nanoparticles[J]. Thin Solid Films,2002,419(1-2):173-177.
    [81]Shimoda H, Fleming L, Horton K, et al. Formation of macroscopically ordered carbon nanotube membranes by self-assembly[J]. Physica B:Condensed Matter,2002,323(1-4): 135-136.
    [82]Huang K, Wan M. Self-Assembled Polyaniline Nanostructures with Photoisomerization Function[J]. Chemistry of Materials,2002,14(8):3486-3492.
    [83]Cassagneau T, Fendler JH. High Density Rechargeable Lithium-Ion Batteries Self-Assembled from Graphite Oxide Nanoplatelets and Polyelectrolytes[J]. Advanced Materials, 1998,10(11):877-881.
    [84]Jakubith S, Rotermund HH, Engel W, et al. Spatiotemporal concentration patterns in a surface reaction:Propagating and standing waves, rotating spirals, and turbulence[J]. Physical Review Letters,1990,65(24):3013-3016.