48MnV退役曲轴剩余疲劳寿命测评技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着汽车产销的井喷式发展,我国已取代美国成为了世界第一大汽车市场。汽车保有量的飞速增长,使得报废汽车的数量也急剧增加,给社会和环境带来了一系列问题。而再制造,是把废旧产品恢复到像原产品一样的技术性能和产品质量的生产工艺流程,也是国际公认的解决报废汽车难题的最好方法之一。现有报废汽车回收利用体系下,退役零部件虽进行检测,但其所采用的无损检测方法,如超声波、磁粉等,均是以疲劳裂纹等缺陷为发现目标,当退役零件尚未检测出疲劳裂纹,而又已经处于疲劳裂纹萌生阶段的后期时,其剩余疲劳强度是否足以支持其再制造进而完成下一个服役周期,当前的检测方法无法做出判断,也就不能准确的评价退役零件是否可以再制造。因此,引入一种新的评价方法,在退役汽车零部件进入再制造流程之前对其进行剩余疲劳寿命测评,已变得十分必要和紧迫。
     磁记忆检测方法在对铁磁零件以应力集中为代表的早期疲劳损伤评价方面有着独特的优势,而曲轴作为汽车发动机的重要部件之一,具有很高的再制造价值,因此,本文以当前广泛应用的48MnV曲轴为代表,将磁记忆检测方法进行移植,开展退役汽车零部件剩余疲劳寿命测评技术研究,准确判断其是否可以再制造,具有极大的工程价值和理论意义。
     本文首先对表征疲劳损伤的磁记忆参数进行了分析,发现磁记忆漏磁场法向分量很难表征疲劳损伤,并结合磁记忆检测操作要求,创造性的提出了将轴类零件表面漏磁场最大和最小切向分量之差,即幅值,作为疲劳损伤的表征参数。实际检测效果表明,该表征参数重复性好,适合表征疲劳损伤。
     本文通过对曲轴系进行数值模拟求取了曲轴理论最小安全系数,并对全新曲轴和经500小时、1000小时和3000小时发动机可靠性试验后的曲轴截取曲拐进行了弯曲疲劳试验,研究其剩余安全系数的变化。结果表明:(1)曲轴正常工作时最大应力为208Mpa,由此计算得到曲轴的理论最小安全系数为1.6。(2)随服役时间的增加,曲轴剩余安全系数略有下降,但其值远在理论最小安全系数1.6之上,从而验证了曲轴的可再制造性。
     本文开展了基于标准拉压疲劳试验和标准旋转弯曲疲劳试验的曲轴材料48MnV钢疲劳过程的磁记忆表征模型研究,结果显示:疲劳损伤与磁记忆表征参数之间存在着非线性关系,并且,疲劳载荷与磁记忆表征参数值的大小之间存在着对应关系:(1)当载荷小于疲劳极限时,磁记忆表征值在疲劳过程中一直保持在较小范围内波动;(2)当载荷大于疲劳极限时,磁记忆表征值随疲劳循环次数的增加先升高,到达某一峰值后,又随疲劳循环次数的增加而下降,直到疲劳断裂。峰值与疲劳裂纹的出现存在着一定的对应关系。
     本文自行开发了基于LabVIEW虚拟仪器技术的曲轴弯曲疲劳试验系统,并在其上对48MnV曲轴疲劳过程的磁记忆表征模型进行了研究。结果表明:该模型与上述48MnV钢疲劳过程的磁记忆表征模型相一致,再结合曲轴理论最小安全系数,分析确定了退役曲轴剩余疲劳寿命的安全阈值为438A/m,即,当48MnV退役曲轴测得的磁记忆表征值小于该安全阈值时,可以认为其剩余疲劳寿命处于安全区内,足以支持再制造。
     在前述工作的基础上,本文提出了48MnV曲轴剩余疲劳寿命测评方法并开发了相应的测评装置,均已获得发明专利授权。该测评方法和装置在实际测试中运行良好,适用于工程实践。48MnV曲轴剩余疲劳寿命测评方法的建立过程具有普适性,可以推及其他各类退役曲轴和铁磁零件,评价其是否适合再制造。
Nowadays, with the rapid development of vehicle industry, China hasreplaced the USA to become the biggest vehicle market in the world, whichmakes the number of scraped vehicles rise up and leads a lot of social andenvironmental issues. Remanufacturing, a production process of restoring thetechnical performance and product quality of scraped products, is one of the bestmethods to solve the problems of scraped vehicles. In China’s existing recyclingsystem, although scraped parts were detected, all the non-destructive testingmethods such as ultrasound, magnetic, etc., are aiming at defects reprensentedby fatigue cracks. If the fatigue cracks of the parts have not yet detected butexisting in the late stage of fatigue crack initiation phase, whether the residualfatigue strength of the parts can support remanufacturing and then fullfill thenext service cycle is hard to judged by the current methods. Therefore, tointroduce a new method to evaluate the residual fatigue life of scraped auto partsbecomes more and more important.
     Metal Memory Method (MMM) has a unique advantage in the evaluationof early fatigue damage represented by stress concentration of ferromagneticparts. Also, as an core part of engine, crankshaft has a high remanufacturingvalue. Therefore, the widely used48MnV crank was chosen to carry out theresidual fatigue life evaluation technology research and the MMM was chosento be the technical means in this paper, which will has great project value andtheoretical significance for China’s remanufacturing industry.
     Firstly, this paper analysised the magnetic memory parameter tocharacterize the fatigue damage, discovered that the normal component ofleakage magnetic field is hard to characterize the fatigue damage, then with theoperational requirements of MMM to propose that taking the diffrerencebetween the maximum and the minimum tangential component of leakagemagnetic field on the surface of crankshaft as the magnetic memorycharacterization parameter of fatigue damage. Actual testing results show that the characterization parameter has a good reproducibility and is suitable forcharacterization of fatigue damage.
     The crankshaft system was simulated to caculate the theoretical minimumsafety factor and then the bending fatigue tests were carried out on single crankspecimens which were cut respectively from the testing crankshafts including anew crankshaft, a crankshaft after500hour’s reliability test, a crankshaft after1000hour’s reliability test and a crankshaft after3000hour’s reliability test tosdudy the change of residual safety factor. The results show as follows:(1) themaximum stress of crankshaft when working was208MPa and thecorresponding theoretical minimum safety factor was1.6;(2) The longer theservice time of crankshaft, the smaller the safety factor of used crankshaft, butits value is bigger than the theoretical minimum safety factor, which verifies theremanufacturability of the crankshaft.
     Research on the magnetic memory characterization model of fatigueprocess of48MnV steel were carried out based on the tension-compressionfatigue tests and the rotating bending fatigue tests. The magnetic memorycharacterization model of fatigue process of48MnV steel was presented asfollows:(1) When the loads are less than the fatigue limit, magnetic memorycharacterization values keep fluctuating at a narrow range;(2) When the loadsare greater than the fatigue limit, with the increment of fatigue cycles, magneticmemory characterization values increase at first, and then, after reach a peakvalue, decrease with the increment of fatigue cycles. The appearance of the peakvalue has a correlation with the initiation of fatigue cracks.
     This paper developed a bending fatigue testing system of crankshaft basedon LabVIEW virtual Instruments technology, and then research on the magneticmemory characterization model of fatigue process of crankshaft was studied onthe system. Results show that the model of48MnV crankshafts is consistentwith the above mentioned magnetic memory characterization model of fatigueprocess of48MnV steel, and then the safety threshold of magnetic memorycharacterization parameter was analyzed and determined as438A/m bycaculating with the theoretical minimum safety factor. The safety threshold canbe explained like this: when the detected value of magnetic memorycharacterization parameter of48MnV crankshaft is less than the safety threshold,its residual fatigue life exists in safety area and is longer enough to supportremanufacturing.
     Based on the previous research works, the residual fatigue life evaluationmethod of48MnV crankshaft was set up and the corresponding residual fatiguelife testing device was developed. Meanwhile, three Chinese patents wereauthorized. The evaluation method and device work well in the actual test andare suitble for engineering practice. The establishing process of the residualfatigue life evaluation method of48MnV crankshaft has a general adaption andcan be applied for other retired crankshafts or ferromagnetic parts.
引文
[1] Robert T. Lund. The Remanufacturing Industry: Hidden Giant [M]. Boston: Boston University Press,1996.
    [2]徐滨士,马世宁.21世纪的再制造工程[J].中国机械工程,2000,11(1):36-38.
    [3] Chen Ming. End-of-life vehicle recycling in China: Now and the future [J]. Journal of the Minerals,Metals and Materials Society,2007,57(10):20-26.
    [4]周传月,郑红霞,罗慧强. MSC.Fatigue疲劳分析应用与实例[M].北京:科学出版社,2005.
    [5]李灏.损伤力学基础[M].济南:山东科学技术出版社,1992.
    [6] J.勒迈特(法)著.损伤力学教程[M].北京:科学出版社,1996:23-26.
    [7]凌中,白以龙.一种铝合金层裂破坏的分形形貌与微结构的相关性[J].爆炸与冲击,1994,14(1):1-8.
    [8]戴振羽,高庆.疲劳损伤细观分析[J].西南交通大学学报,2001,36(6):561-563.
    [9]姚磊江,陈胜红,童小燕.纯铜疲劳热耗散的同步测量研究[J].固体力学学报,2008,29(4):361-364.
    [10]黄婧,李立军,沈成武,等.基于连续损伤力学的板材成形过程损伤分析[J].武汉理工大学学报(交通科学与工程版),2006,30(4):595-598.
    [11]平安.材料疲劳性能变化规律与剩余寿命预测[J].东北大学学报,1994,15(3):263-266.
    [12] Ye Duyi, Wang Zhenlin. An approach to investigate pre-nucleation fatigue damage of cyclicallyloaded metals using Vickers microhardness tests [J], International Journal of Fatigue.2001,23(1):85-91.
    [13] Duyi Ye, Xiaoyan Tong, Leijiang Yao, et. al. Fatigue hardening/softening behavior investigatedthrough Vickers microhardness measurement during high-cycle fatigue [J], Materials Chemistry andPhysics.1998,56(3):199-204.
    [14]叶笃毅,王德俊.中碳钢高周疲劳损伤过程中表面显微硬度变化特征的试验研究[J].机械强度,1996,18(2):63-65.
    [15] Ye Duyi, Wang Zhenlin, Ping An. Characteristics of the change in the surface microhardness duringhigh cycle fatigue damage [J], Materials Chemistry and Physics.1996,44(2):179-181.
    [16]叶笃毅,王德俊.疲劳损伤过程中45#钢剩余力学性能的变化特征[J].材料研究学报,1996,10(4):357-362.
    [17]叶笃毅,王德俊.结构钢表面疲劳损伤演化过程的显微硬度研究方法[J].钢铁研究学报,1998,10(6):52-55.
    [18] Ye Duyi, Wang Zhenlin. A new approach to low-cycle fatigue damage based on exhaustion of statictoughness and dissipation of cyclic plastic strain energy during fatigue [J], International Journal ofFatigue.2001,23(8):679-687.
    [19]谢和平,鞠杨,董毓利.经典损伤定义中的“弹性模量法”探讨[J].力学与实践,1997,19(2):1-5.
    [20]赵银燕,周利.用变截面试样测量损伤变量D(E)[J].航空学报,1998,19(2):164-168.
    [21]施明泽.高周疲劳损伤变量的测试和损伤演变规律的研究[J].浙江大学学报(自然科学版),1994,28(6):660-665.
    [22] L. W. Anson, R. C. Chivers, K. E. Puttick. On the feasibility of detecting pre-cracking fatigue damagein metal-matrix composites by ultrasonic techniques [J]. Composites Science and Technology,1995,55(1):63-73.
    [23] S. I. Rokhlin, Y. C. Chu, W. Huang. Ultrasonic evaluation of fatigue damage in metal matrixcomposites [J]. Mechanics of Materials,1995,21(4):251-263.
    [24] Peter B. Nagy. Fatigue damage assessment by nonlinear ultrasonic materials characterization [J].Ultrasonics,1998,36(1-5):375-381.
    [25] J. H. Liu, G. L. Li, X. Y. Hao, et. al. Ultrasonic measurement of fatigue damage of nodular cast iron[J]. Materials Letters,2001,50(4):194-198.
    [26] S. Palit Sagar, S. Das, N. Parida, et. al. Bhattacharya. Non-linear ultrasonic technique to assessfatigue damage in structural steel [J]. Scripta Materialia,2006,55(2):199-202.
    [27] Sanat Wagle, Hiroshi Kato. Ultrasonic detection of fretting fatigue damage at bolt joints of aluminumalloy plates [J]. International Journal of Fatigue,2009,31(8-9):1378-1385.
    [28] Lemaitre J., Dufailly J. Damage measurements [J]. Engineering Fracture Mechanics,1987,28(5/6):643–661.
    [29] Tada, N., Hayashi, Y., Kitamura,T., et. al. Analysis on the applicability of direct current electricalpotential method to the detection of damage by multiple small internal cracks [J]. InternationalJournal of Fracture,1997,85(1):1-9.
    [30]刘金海.用电阻法测量球墨铸铁的疲劳损伤[J].清华大学学报(自然科学版),1999,39(2):14-17.
    [31]姜菊生,许金泉.金属材料疲劳损伤的电阻研究法[J].机械强度,1999,21(3):232-234.
    [32]杨厚君,李正刚,林介东.电阻法在金属材料蠕变损伤检测中的应用[J].武汉水利电力大学学报,1999,32(6):74-77.
    [33]马宝钿.电阻法检测疲劳损伤及预测修复效果探讨[J].理化检验-物理分册,2002,38(11):493-495.
    [34]孙斌祥,郭乙木.基于电阻变化的高周疲劳寿命预测[J].机械强度,2002,24(4):579-583.
    [35]孙斌祥,郭乙木.基于电能耗散的金属材料疲劳损伤测量[J].力学季刊,2003,24(3):416-422.
    [36]孙斌祥,郭乙木.结构钢高周疲劳寿命预测的电阻模型[J].浙江大学学报(工学版),2003,37(3):372-376.
    [37] Binxiang Sun, Yimu Guo. High-cycle fatigue damage measurement based on electrical resistancechange considering variable electrical resistivity [J]. International Journal of fatigue,2004(26):457-462.
    [38]胡明敏,陈杰,陶宝琪.用疲劳寿命计实现的寿命预测方法[J].机械强度,1994,16(2):9-11.
    [39]胡明敏,陈杰,陶宝祺.疲劳寿命计性能研究[J].航空学报,1994,15(3):336-339.
    [40]胡明敏,周克印.疲劳寿命计电阻变化机理的研究[J].航空学报,1999,20(1):72-74.
    [41]胡明敏.用等效平均损伤模型计算剩余寿命方法的研究[J].航空学报,2000,21(3):262-266.
    [42]胡明敏.疲劳寿命计退火特性及电阻变化推算载荷谱的研究[J].理化检验-物理分册,2000,36(1):24-27.
    [43]胡明敏,方义庆.疲劳寿命计疲劳响应模型研究[J].河海大学学报(自然科学版),2004,32(3):287-290.
    [44]周克印,陶宝祺.复合材料层板疲劳过程中疲劳寿命计的电阻变化规律研究[J].数据采集与处理,1999,14(2):204-209.
    [45]魏平,王洪凯.疲劳寿命计电阻变化的灰色建模研究[J].理化检验-物理分册,2003,39(8):392-397.
    [46]魏平,胡明敏.疲劳寿命计的电阻变化特性研究[J].理化检验-物理分册,2004,40(10):511-513.
    [47] Luong, M.P. Infrared thermographic scanning of fatigue in metals [J]. Nuclear Engineering andDesign,1995,158(2-3):363-376.
    [48] Luong, Minh Phong. Fatigue limit evaluation of metals using an infrared thermographic technique [J].Mechanics of Materials,1998,28(1-4):155-163.
    [49] Hermanson, K.S., Sandor, B.I. Corrosion fatigue modeling via differential infrared thermography [J].Experimental Techniques,1998,22(3):19-21.
    [50] H. Wang, L. Jiang, C.R. Brooks, et. al. Infrared temperature mapping of ULTIMET alloy duringhigh-cycle fatigue tests [J]. Metallurgical and Materials Transactions A,2000,31A (4):1307-1310.
    [51] H Wang, L Jiang, Y H He, et. al. Infrared imaging during low-cycle fatigue of HR-120alloy [J].Metallurgical and Materials Transactions A,2002,33A (4):1287-1292.
    [52] L Jiang, H Wang, P K Liaw, et al. Temperature Evolution and Life Prediction in Fatigue ofSuperalloys [J]. Metallurgical and Materials Transactions A,2004,35A (3):839-838.
    [53] L. Jiang, H. Wang, PK. Liaw, et. al. Characterization of the temperature evolution during high-cyclefatigue of the ULTIMET superalloy: Experiment and theoretical modeling [J]. Metallurgical andMaterials Transactions A,2001,32A (9):2279-2296.
    [54] L. Jiang, H. Wang, PK. Liaw, et. al. Temperature evolution during low-cycle fatigue of ULTIMETalloy: experiment and modeling [J]. Mechanics of Materials,2004,36(1-2):73-84.
    [55] B. Yang, P.K. Liaw, H. Wang, et. al. Thermographic investigation of the fatigue behavior of reactorpressure vessel steels [J], Materials Science&Engineering A.2001,314(1-2):131–139.
    [56] B. Yang, P.K. Liaw, H. Wang,, et. al. Thermography: A New Nondestructive Evaluation Method inFatigue Damage [J]. JOM-e,2003,(suppl.): web-only.
    [57] B Yang, P K Liaw, G Wang, et. al. In-situ thermographic observation of mechanical damage inbulk-metallic glasses during fatigue and tensile experiments [J]. Intermetallics,2004,12(11):1265-1274.
    [58] B Yang, P K Liaw, G Wang, et al, Thermal-Imaging Technologies for Detecting Damage duringHigh-Cycle Fatigue [J]. Metallurgical and Materials Transactions A,2004,35A (1):15-23.
    [59] Wang, G.Y., Liaw, P.K., Peter, W.H., et. al. Fatigue behavior of bulk-metallic glasses [J].Intermetallics,2004,12(7-9):885-892.
    [60] Wang, G.Y., Liaw, P.K., Peter, W.H., et. al. Fatigue behavior and fracture morphology of Zr50Al10Cu40and Zr50Al10Cu30Ni10bulk-metallic glasses [J]. Intermetallics,2004,12(10-11):1219-1227.
    [61] Chen, L.J., Liaw, P.K., Wang, H., et. al. Cyclic deformation behavior of HAYNES HR-120superalloy under low-cycle fatigue loading [J]. Mechanics of Materials,2004,36(1-2):85-98.
    [62] Thomas Ummenhofer, Justus Medgenberg. On the use of infrared thermography for the analysis offatigue damage processes in welded joints [J]. International Journal of Fatigue,2009,31(1):130-137.
    [63]黄毅,林雪荣,徐军.高强度簿壁压力容器钢受力过程的红外热成像研究[J].金属学报,1990,26(1):61-67.
    [64]杨小林,谢小荣,江涛,等.疲劳裂纹的振动红外热成像检测[J].激光与红外,2007,37(5):442-444.
    [65] Dubov A. A research of metal properties using the method of magnetic memory [J]. Metal Scienceand Heat Treatment,1997,39(9-10):401-405.
    [66] Dubov A. A technique for monitoring the bends of boiler and steam-line tubes using the magneticmemory of metal [J]. Thermal Engineering,2001,48(4):289-295.
    [67] Dubov, A., Kolokolnikov, S. Review of welding problems and allied processes and their solutionusing the metal magnetic memory effect [J]. Welding in the World,2005,49(9):306-313.
    [68] Dubov, A. The method of metal magnetic memory-The new trend in engineering diagnostics [J].Welding in the World,2005,49(9):314-319.
    [69]任吉林,李晓刚,宋凯,等.典型受载铁磁构件的数值模拟和磁特性[J].北京科技大学学报,2005,27(6):684-687.
    [70]任吉林,王东升,宋凯,等.应力状态对磁记忆信号的影响[J].航空学报,2007,28(3):724-728.
    [71]任吉林,陈晨,刘昌奎,等.磁记忆检测力-磁效应微观机理的试验研究[J].航空材料学报,2008,28(5):41-44.
    [72]陈钘;王晓凤;杨恩,等.铁磁构件拉压试验中的磁记忆效应研究[J].无损检测,2007,29(5):247-250.
    [73]仲维畅.金属磁记忆法诊断的理论基础——铁磁性材料的弹-塑性应变磁化[J].无损检测,2001,23(10):424-426.
    [74]董丽虹,徐滨士,董世运,等.金属磁记忆技术检测低碳钢静载拉伸破坏的试验研究[J].材料工程,2006,(3):40-43.
    [75]董丽虹,徐滨士,董世运,等.拉伸及疲劳载荷对低碳钢磁记忆信号的影响[J].中国机械工程,2006,17(7):742-745.
    [76]董丽虹,徐滨士,董世运,等.拉伸载荷作用下中碳钢磁记忆信号的机理[J].材料研究学报,2006,20(4):440-444.
    [77] Dong Lihong, Xu Binshi, Dong Shiyun, et al. Variation of stress-induced magnetic signals duringtensile testing of ferromagnetic steels [J]. NDT&E International,2008,41(3):184-189.
    [78] Dong Lihong, Xu Binshi, Dong Shiyun, et al. Stress dependence of the spontaneous stray fieldsignals of ferromagnetic steel [J]. NDT&E International,2009,42(4):323-327.
    [79]丁辉,张寒.磁记忆检测裂纹类缺陷的理论模型[J].无损检测,2002,24(2):78-85.
    [80]温伟刚,萨殊利.金属磁记忆检测的机理及实现[J].北方交通大学学报,2002,26(4):67-70.
    [81] Chechko, I I. Using the method of magnetic memory of metal to evaluate the service life of the itemsof power equipment at the KONAKOVO district power station [J]. Chemical and PetroleumEngineering,2002,38(9-10):624-629.
    [82] Doubov A., Demin E.A., Milyaev A.I., et al. The experience of gas pipeline stress-strain state controlwith usage of the metal magnetic memory method as compared with conventional methods and stresscontrol means [J]. Welding in the World,2002,46(9-10):29-33.
    [83]任吉林,高春法,宋凯,等.电站铁磁构件的磁记忆检测[J].仪器仪表学报,2003,24(5):470-472+476.
    [84]任吉林,宋凯,唐继红,等.航空铁磁构件磁记忆检测技术的应用[J].航空制造技术,2005,(1):80-83
    [85]邸新杰,李午申,严春妍,等.焊接裂纹金属磁记忆信号的特征提取与应用[J].焊接学报,27(2):19-22.
    [86]邸新杰,李午申,白世武,等.焊接裂纹的金属磁记忆定量化评价研究[J].材料工程,2006,(7):56-60.
    [87]邸新杰,李午申,严春妍,等.基于金属磁记忆的宏观焊接裂纹识别方法[J].中国机械工程,2007,18(12):1475-1478.
    [88]于凤云.不同热处理状态下焊接件应力集中的金属磁记忆检测[J].金属热处理,2007,32(9):86-89.
    [89]张卫民,董韶平,杨煜,等.磁记忆检测方法及其应用研究[J].北京理工大学学报,2003,23(3):277-280.
    [90] Furuya Y, Shimada H, Yamamoto K, et al. Estimation of low cycle fatigue process and life by themeasurement of magnetic Barkhausen noise [J]. J Jpn Soc Non-Destruct Inspect (J JSNDI),1991,41(4):215–222.
    [91] Donzella G, Granzotto S. Some experimental results about the correlation between Barkhausen noiseand then fatigue life of steel specimens [J]. Journal of Magnetism and Magnetic Materials,1994,133(1–3):613–616.
    [92] Yasumitsu Tomita, Kiyoshi Hashimoto, Naoki Osawa. Nondestructive estimation of fatigue damagefor steel by Barkhausen noise analysis [J]. NDT&E International,1996,29(5):275-280.
    [93] R. Baldev, T. Jayakumar, V. Moorthy. Characterisation of Microstructures, Deformation, and FatigueDamage in Different Steels Using Magnetic Barkhausen Emission Technique [J]. Russian Journal ofNondestructive Testing,2001,37(11):789-798.
    [94] Biachnio J, Dutkiewicz J, Salamon A. The effect of cyclic deformation in a13%Cr ferritic steel onstructure and Barkhausen noise level [J]. Materials Science&Engineering A,2002,323(1–2):83–90.
    [95] S. Palit Sagar, N. Parida, S. Das, et al. Magnetic Barkhausen emission to evaluate fatigue damage in alow carbon structural steel [J]. International Journal of Fatigue,2005,27(3):317-322.
    [96] Palma E.S., Mansur T.R., Silva S, et al. Fatigue damage assessment in AISI8620steel usingBarkhausen noise [J].International Journal of Fatigue,2005,27(6):659-665.
    [97]祁欣,于石生,李波.巴克豪森效应在材料检测中的应用和展望[J].材料科学与工艺,1994,2(2):107-112.
    [98]谢基龙,李强,袁祖贻,等.用巴克豪生噪声响应评估中碳钢的疲劳损伤[J].北方交通大学学报,1996,20(4):416-418+423.
    [99]谢基龙,周江峰,郑晓阳,等.用Barkhausen杂讯研究中碳钢的低周疲劳损伤特性[J].北方交通大学学报,1999,23(1):83-85+112.
    [100]李强,袁祖贻,缪龙秀.用巴克豪森噪声测量材料损伤的实验研究[J].中国铁道科学,2000,21(2):80-85.
    [101]刘明珠,杨从晶,于助,等.巴克豪森噪声在应力及疲劳损伤检测上的应用[J].哈尔滨理工大学学报,2001,6(1):73-76.
    [102]任吉林,林俊明,等.金属磁记忆检测技术[M].北京:中国电力出版社,2000.
    [103]凌树森.可靠性在机械强度设计和寿命估计中的应用[M].北京:宇航出版社,1988.
    [104]张国庆.零件剩余疲劳寿命预测方法与产品可再制造性评估研究[D].上海:上海交通大学机械与动力工程学院,2007.
    [105]孔红友.车用曲轴材料48MnV钢弯曲疲劳损伤的磁记忆表征研究[D].上海:上海交通大学机械与动力工程学院,2007.
    [106]范军锋.曲轴模拟弯曲疲劳损伤的磁记忆参数表征[D].上海:上海交通大学机械与动力工程学院,2007.
    [107]陈胜震.基于磁记忆参数的车用曲轴疲劳损伤表征研究[D].上海:上海交通大学机械与动力工程学院,2008.
    [108]程海正.基于微电阻测试技术的曲轴疲劳损伤表征研究[D].上海:上海交通大学机械与动力工程学院,2009.
    [109]冯美斌,徐家帜.曲轴弯曲疲劳试验方法评述[J].汽车技术,1990,(11):25-29.
    [110]杨乐平,李海涛,肖相生. Labview程序设计与应用[M].北京:电子工业出版社,2001.