基于磁记忆技术的铁磁性材料早期损伤诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无损检测技术对于保障设备可靠运行及人身安全具有重要意义。随着现代设备正日益向高载、高速、高温、高压的方向发展,为了防止突发性事故的发生,早期发现引起机械结构和设备失效的各种微观缺陷和局部应力集中就显得尤为重要,而这些在宏观裂纹或缺陷产生之前的隐性损伤对于传统的无损检测方法来说却无能为力。新兴的金属磁记忆技术,被认为在早期损伤检测方面极富开发潜力,但目前对铁磁构件早期损伤的磁记忆检测机理和方法还缺乏相应的系统研究。
     本文通过对金属磁记忆检测技术的研究,找到适用于铁磁性材料初期塑性变形及早期疲劳损伤诊断的方法,以达到尽早发现构件损伤、提前预防失效的目的。首先探讨了磁记忆技术用于应力状态和疲劳损伤检测的可行性,进而围绕铁磁性材料早期损伤检测这一核心,从静载和疲劳拉伸试验研究、塑性范围内的磁机械效应模型构建、面向早期疲劳损伤的磁场畸变建模等几个方面,较系统地研究了铁磁构件早期损伤的磁记忆检测问题。具体来说,本论文主要在以下几个方面展开了探索和研究:
     基于有效场理论和接近原理,详细推导了单向应力作用下铁磁性材料的磁机械效应模型,数值模拟了地磁场下磁化强度随应力的变化关系,表明应力致磁场的变化是一个由初始磁状态不断向非滞后磁化强度接近的过程。通过旋转弯曲疲劳试验,跟踪了磁信号在旋转一周不同位置的变化,发现与受检对象的实际应力-变形状态一致;同时研究了磁记忆信号随循环次数的变化特征,表明磁曲线与疲劳损伤之间具有相关性。
     在对磁记忆技术用于早期损伤可行性研究的基础上,通过对未退磁平板试件和退磁平板试件的静载拉伸试验,研究了加载过程中磁记忆信号的演变规律,分别提出了识别弹塑性不同变形阶段的磁信号特征;结合接近原理,分析了不同初始剩磁状态对应力致磁场变化的影响及原因,可为以后磁记忆检测的标准制定提供参考。通过拉-拉疲劳试验,研究了磁记忆信号随循环周次的变化规律,提出表征疲劳损伤的关键参量为应力集中区磁场梯度,基于建立的损伤变量模型计算结果与动态疲劳过程中四个阶段不同损伤程度的演化规律相一致。
     建立了适用于塑性变形阶段的改进的磁机械效应模型,得到磁化强度随应变之间的变化关系。针对目前磁机械效应模型仅在弹性范围内有效的局限性,从能量守恒的角度出发,推导出适用范围更广的磁化强度与有效场之间的关系模型。模型中考虑了参数钉扎系数和有效场度量系数在塑性范围内为位错密度的函数;塑性阶段加载时的有效场公式中明确区分了弹性变形和塑性变形所引起有效场分量的不同,而卸载后的有效场则要包括残余应力产生的附加磁场。通过对改进模型的数值模拟,结果表明在较小塑性变形时磁化强度会发生急剧变化;基于光滑平板退磁试件的静拉伸试验,发现在线卸载时的磁记忆信号在屈服时产生突变。理论计算结果很好地吻合实验现象,表明提出的模型可以解决铁磁性材料的初期塑性变形检测问题。
     采用XH-500现场金相显微镜加DIG300专用数字摄像头并同步配合磁记忆检测装置建立了显微疲劳试验系统,应用磁记忆显微疲劳观测试验方法,对45#钢试件进行了拉-拉疲劳试验,在细观尺度上动态观察了疲劳短裂纹萌生和扩展的演化过程,通过维氏硬度测试得到显微硬度在整个疲劳过程中的变化规律。同时分析了V型缺口处表面磁记忆信号随循环周次的变化,研究了不同裂纹尺寸下对应的磁信号曲线分布规律,进而确定了早期疲劳损伤的磁记忆信号特征。在此基础上,基于塑性区位错密度线性分布的假设,提出应用带磁偶极子模型等效应力集中区磁畴的定向排列,建立了裂纹尖端塑性区表面的漏磁场分布模型。分别对漏磁场切向分量和法向分量进行了数值模拟,提出了用于表征损伤程度和范围的两个关键参量分别为漏磁场切向分量的峰值Hxp和法向分量波峰-波谷之间的宽度△xHyp-p,实现了疲劳损伤的早期检测。
Non-destructive testing techniques have very important influence onguaranteeing reliable equipment operation and life safety. With the increasingdevelopment of modern equipment towards high load, high speed, high temperatureand high pressure, it is vital significant to early discover various micro-defects andlocal stress concentration zones causing mechanical structure and equipment failureto avoid sudden accident, but these hidden damage occurring before macro-cracksor defects can not be detected by traditional non-destructive testing methods. Anewly arisen technique named metal magnetic memory is deemed to have potentialsin detecting early damage, whereas it is lack of systematic research on magneticmemory testing mechanism and method in early damage of ferromagneticcomponents.
     A method suitable to detect initial plastic deformation and early fatiguedamage of ferromagnetic materials is proposed via research on the metal magneticmemory testing technique, in order to discover component damage early and avoidfailure in advance. The feasibility of the magnetic memory technique applied todetect stress state and fatigue damage is first explored, and the early damage testingon ferromagnetic materials is kept as the central task. The main problems includingstatic and dynamic tensile tests, the magneto-mechanical effect modeling in theplastic region, and the magnetic field distortion modeling on the early fatiguedamage have been systematically investigated. To be specific, the main contents areexplored as follows.
     Based on the effective field theory and approaching principle, themagneto-mechanical effect model of ferromagnetic materials under the action ofunaxial stress state is derived in detail, and the variation of magnetization withstress in the earth’s magnetic field is numerically simulated, showing that the initialmagnetic state tends continuously towards the anhysteretic magnetization on theapplication of stress. The variation of the magnetic signal in one certain point atdifferent locations of the specimen rotated a period is recorded via the rotarybending fatigue experiment, which is consistent with its actual stress-strain state. Inthe meantime, the variation characteristics of the magnetic memory signal withcycle number are investigated, indicating that there is correlation between the magnetic curve and the fatigue damage.
     On the basis of the research on the feasibility of the magnetic memorytechnique applied to detect early damage, the evolution law of the magneticmemory signal on loading is studied via the static tensile experiments withundemagnetized and demagnetized plate specimens, and the magnetic signalcharacteristics to recognize elastic and plastic deformation stages are given.Combined with the approaching principle, the influence and reason of differentinitial residual magnetization on the magnetic field variation induced by stress areanalyzed, which helps to guide engineering application. The variation regularities ofthe magnetic memory signal with cycle number are investigated throughtensile-tensile fatigue experiments, and the magnetic field gradient in the stressconcentration zone as the key parameter to characterize fatigue damage is putforward. The result calculated by the established damage variable model coincideswith the evolution law of different damage degree in the four stages during thedynamic fatigue process.
     The modified magneto-mechanical effect model applicable to plasticdeformation stage is developed, and the variation relationship betweenmagnetization and strain is obtained. Considering the limit that the presentmagneto-mechanical effect models are only valid in the elastic range, the moreuniversal stress-magnetism coupling model correlating the magnetization and theeffective field is derived based on the law of conservation of energy. The piningcoefficient and the effective field scaling parameter are both regarded as thefunctions of dislocation density in the plastic range in the model, and the effectivefield components induced by elastic and plastic deformation are differentiateddefinitely in the effective field expression on loading, and the effective field afterunloading contains the additional magnetic field induced by residual stress. Thenumerical simulation results show that the magnetization by the rather small plasticdeformation decreased sharply, and the magnetic memory signal after unloadingonline also changed suddenly on yielding in the static tensile experiment withdemagnetized smooth plate specimens. The theoretical results have a goodagreement with the experimental phenomena, indicating that the proposed modelcan be used to detect the initial plastic deformation of ferromagnetic materials.
     The microscopic fatigue experimental system including XH-500metallograhpic microscope, DIG300special digital camera and magnetic memorytesting device, combined with the magnetic memory microscopic fatigue observation method is adopted, and the tensile-tensile fatigue experiment withspecimens made of steel45are conducted. The evolution process of fatigueshort-crack initiation and growth is observed dynamically from the microscopicscale, and the variation regularity of microscopic Vickers hardness during thefatigue procedure is also given. At the same time, the variation of the magneticmemory signal on the surface of the V-shaped notch with cycle number is analyzed,and the magnetic signal curve distribution regularity corresponding to differentcrack length is investigated. On this basis, assuming that the dislocation density inthe plastic zone is linear distribution, the leakage magnetic field distribution in thestress concentration zone is calculated in terms of the magnetic dipole model, andthe leakage magnetic field model on the surface of the plastic zone in the crack tipis set up. The tangential and normal components of the leakage magnetic field areboth simulated, and the peak Hxpof the tangential component and the width betweenabnormal wave crest and trough△xHyp-pof the normal component as two keyparameters to represent damage degree and range are proposed respectively,achieving early diagnosis on fatigue damage.
引文
1徐章遂,徐英,王建斌,等.裂纹漏磁定量原理与应用[M].北京:国防工业出版社,2005:5-51.
    2Lo C C H, Tang F, Biner S B, et al. Effects of fatigue-induced changes inmicrostructure and stress on domain structure and magnetic properties of Fe-Calloys[J]. Journal of Applied Physics,2000,87(9):6520-6522.
    3Lo C C H, Tang F, Jiles D C, et al. Evaluation of fatigue damage using amagnetic measurement technique[J]. IEEE Transactions on Magnetics,1999,35(5):3977-3979.
    4Panda A K, Das S K, Mitra A, et al. Evaluation of deformation behavior ofHSLA-100steel using magnetic hysteresis technique[J]. IEEE Transactions onMagnetics,2006,42(10):3264-3266.
    5Kronmüller H. Magnetic techniques for the study of dislocations inferromagnetic materials[J]. International Journal of Nondestructive Testing,1972,3(4):315-350.
    6Takahashi S, Echigoya J, Motoki Z. Magnetization curves of plasticallydeformed Fe metals and alloys[J]. Journal of Applied Physics,2000,87(2):805-813.
    7Takahashi S, Kobayashi S. Eddy current effects and pinning effects in Fe andNi single crystals with low defect densities[J]. IEEE Transactions onMagnetics,2008,44(11):3859-3862.
    8Takahashi S, Zhang L, Kobayashi S, et al. Analysis of minor hysteresis loopsin plastically deformed low carbon steel[J]. Journal of Applied Physics,2005,98(3):033909-1-8.
    9Guralnick S A, Bao S, Erber T. Piezomagnetism and fatigue:II[J]. Journal ofPhysics D: Applied Physics,2008,41(11):1-11.
    10Weinstock H. A review of SQUID magnetometry applied to nondestructiveevaluation[J]. IEEE Transactions on Magnetics,1991,27(2):3231-3236.
    11Hatsukade Y, Aly-Hassan M S, Kasai N, et al. SQUID-NDE method ondamaged area and damage degree of defects in composite materials[J]. IEEETransactions on Applied Superconductivity,2003,13(2):207-210.
    12Bonavolontà C, Peluso G, Valentino M, et al. Detection of magnetomechanicaleffect in structural steel using SQUIDs and flux-gate sensors[J]. Journal ofSuperconductivity and Novel Magnetism,2009,22(8):833-839.
    13Tae-Kyu L, Morris J W, Seungkyun L, et al. Detecting fatigue damage withscanning SQUID microscopy[C]. Plasticity, Failure and Fatigue in StructuralMaterials-from Macro to Nano: Proceedings of the Hael Mughrabi HonorarySymposium,2008:41-46.
    14Clatterbuck D M, Lee T K, Shaw T J, et al. Detection of plastic deformationgradients in steel using scanning SQUID microscopy[J]. IEEE Transactions onApplied Superconductivity,2001,11(1):1307-1310.
    15Tae-Kyu L, Clatterbuck D M, Morris J W, et al. Detecing damage in steel withscanning squid microscopy[C]. AIP Conference Proceedings,2002,615A:453-459.
    16Tae-Kyu L, Morris J W, Lee S, et al. Detecting incipient fatigue damage withscanning SQUID microscopy[C]. AIP Conference Proceedings,2003,657A:485-491.
    17Krause T W, Makar J M, Atherton D L. Investigation of the magnetic field andstress dependence of180deg domain wall motion in pipeline steel usingmagnetic Barkhausen noise[J]. Journal of Magnetism and Magnetic Materials,1994,137(1-2):25-34.
    18Stefanita C G, Atherton D L, Clapham L. Plastic versus elastic deformationeffects on magnetic Barkhausen noise in steel[J]. Acta Materialia,2000,48(13):3545-3551.
    19Pasley R L. Barkhausen effect-An indication of stress[J]. Materials Evaluation,1970,28(7):157-161.
    20Blaow M, Evans J T, Shaw B A. Effect of hardness and composition gradientson Barkhausen emission in case hardened steel[J]. Journal of Magnetism andMagnetic Materials,2006,303(1):153-159.
    21Blaow M, Evans J T, Shaw B A. The effect of microstructure and applied stresson magnetic Barkhausen emission in induction hardened steel[J]. Journal ofMaterials Science,2007,42(12):4364-4371.
    22Moorthy V, Shaw B A. Magnetic Barkhausen emission measurements forevaluation of material properties in gears[J]. Nondestructive Testing andEvaluation,2008,23(4):317-347.
    23Dhar A, Clapham L, Atherton D L. Influence of uniaxial plastic deformation onmagnetic Barkhausen noise in steel[J]. NDT&E International,2001,34(8):507-514.
    24Stefanita C G, Clapham L, Atherton D L. Subtle changes in magneticBarkhausen noise before the macroscopic elastic limit[J]. Journal of MaterialsScience,2000,35(11):2675-2681.
    25Dhar A, Clapham L, Atherton D L. Influence of Luders bands on magneticBarkhausen noise and magnetic flux leakage signals[J]. Journal of MaterialsScience,2002,37(12):2441-2446.
    26Mandal K, Loukas M E, Corey A, et al. Magnetic Barkhausen noise indicationsof stress concentrations near pits of various depths[J]. Journal of Magnetismand Magnetic Materials,1997,175(3):255-262.
    27Soultan M, Kleber X, Chicois J, et al. Mechanical Barkhausen noise duringfatigue of iron[J]. NDT&E International,2006,39(6):493-498.
    28Sagar S P, Parida N, Das S, et al. Magnetic Barkhausen emission to evaluatefatigue damage in a low carbon structural steel[J]. International Journal ofFatigue,2005,27(3):317-322.
    29Lindgren M, Lepisto T. Application of a novel type Barkhausen noise sensor tocontinuous fatigue monitoring[J]. NDT&E International,2000,33(6):423-428.
    30Shibata M, Ono K. Magnetomechanical acoustic emission-a new method fornon-destructive stress measurement[J]. NDT International,1981,14(5):227-234.
    31Ono K, Shibata M. Magnetomechanical acoustic emission of iron and steels[J].Materials Evaluation,1980,38(1):55-61.
    32Kusanagi H, Kimura H, Sasaki H. Stress effect on the magnitude of acousticemission during magnetization of ferromagnetic materials[J]. Journal ofApplied Physics,1979,50(4):2985-2987.
    33Piotrowski L, Augustyniak B, Chmielewski M, et al. Possibility of applicationof magnetoacoustic emission for the assessment of plastic deformation level inferrous materials[J]. IEEE Transactions on Magnetics,2011,47(8):2087-2092.
    34Augustyniak B, Chmielewski M, Piotrowski L, et al. Comparison of propertiesof magnetoacoustic emission and mechanical Barkhausen effects for P91steelafter plastic flow and creep[J]. IEEE Transactions on Magnetics,2008,44(11):3273-3276.
    35Piotrowski L, Augustyniak B, Chmielewski M, et al. Impact of plasticdeformation on magnetoacoustic properties of Fe-2%Si alloy[J]. NDT&EInternational,2009,42(2):92-96.
    36Piotrowski L, Augustyniak B, Chmielewski M, et al. The influence of plasticdeformation on the magnetoelastic properties of the CSN12021grade steel[J].Journal of Magnetism and Magnetic Materials,2009,321(15):2331-2335.
    37Sablik M J, Augustyniak B, de Campos M F, et al. Modeling of effect of plasticdeformation on Barkhausen noise and magnetoacoustic emission in iron with2%silicon[J]. IEEE Transactions on Magnetics,2008,44(11):3221-3224.
    38侯炳麟,周建平,彭湘,等.磁声发射在钢轨性能无损检测中的应用研究[J].实验力学,1998,13(1):98-104.
    39Sangwook S, Jin Woo P. MAE: An integrated design tool for failure and lifeprediction of composites[J]. Journal of Composite Materials,2008,42(18):1967-1988.
    40Dubov A A. Diagnostics of boiler tubes with usage of metal magnetic memory[M]. Moscow: Energoatomizdat,1995.
    41Dubov A A. Study of metal properties using magnetic memory method [C].Proceedings of the7th European Conference on Nondestructive Testing.Copenhagen,1998:920-927.
    42Dubov A A. Diagnostics of metal items and equipment by means of metalmagnetic memory [C]. Proceedings of the CHSNDT7th Conference on NDTand International Research Symposium. Shantou China,1999:181-187.
    43钟文定.铁磁学(中册)[M].北京:科学出版社,2000:21-44.
    44Dubov A A. A study of metal properties using the method of magneticmemory[J]. Metal Science and Heat Treatment,1997,39(9-10):401-405.
    45Roskosz M, Bieniek M. Evaluation of residual stress in ferromagnetic steelsbased on residual magnetic field measurements[J]. NDT&E International,2012,45(1):55-62.
    46Jiles D C. The effect of compressive plastic-deformation on themagnetic-properties of AISI-4130steels with various microstructures[J].Journal of Physics D-Applied Physics,1988,21(7):1196-1204.
    47Thompson S M, Tanner B K. The magnetic-properties of plastically deformedsteels[J]. Journal of Magnetism and Magnetic Materials,1990,83(1-3):221-222.
    48Chen Y, Kriegermeier-Sutton B K, Snyder J E, et al. Magnetomechanicaleffects under torsional strain in iron, cobalt and nickel[J]. Journal ofMagnetism and Magnetic Materials,2001,236(1-2):131-138.
    49Bozorth R M, Williams H J. Effect of small stresses on magnetic properties[J].Reviews of Modern Physics,1945,17(1):72-80.
    50Brown W F. Irreversible magnetic effects of stress[J]. Physical Review,1949,75(1):147-154.
    51Craik D J W M J. Magnetization changes induced by stress in a constantapplied field[J]. Journal of Physics D-Applied Physics,1970,3(7):1009-1016.
    52B D Cullity, C D Graham. Introduction to magnetic materials[M]. New Jersey:IEEE press,2009.
    53Jiles D C, Atherton D L. Theory of the magnetization process in ferromagnetsand its application to the magnetomechanical effect[J]. Journal of PhysicsD-Applied Physics,1984,17(6):1265-1281.
    54Jiles D C. Theory of the magnetomechanical effect[J]. Journal of PhysicsD-Applied Physics,1995,28(8):1537-1546.
    55Li L, Jiles D C. Modeling of the magnetomechanical effect: Application of theRayleigh law to the stress domain [J]. Journal of Applied Physics,2003,93(10):8480-8482.
    56Kuleev VG, Magnetization distribution over long ferromagnetic steel pipes in aweak external magnetic field under elastic and plastic bending[J]. RussianJournal of Nondestructive Testing,2002,38(6):452-464.
    57Fukawa K, Yamamoto T. Domain-structures and stress distributions due toball-point scratching in3-percent si-fe single-crystals with orientation near(110)[001][J]. IEEE Transactions on Magnetics,1982,18(4):963-969.
    58Sablik M J, Riley L A, Burkhardt G L, et al. Micromagnetic model for biaxialstress effects on magnetic-properties[J]. Journal of Magnetism and MagneticMaterials,1994,132(1-3):131-148.
    59Yamamoto K, Sasaki T, Yamashiro Y. Magnetization change due to stresschange in a constant magnetic field on amorphous ribbons[J]. Journal ofApplied Physics,1997,81(8):5796-5798.
    60Notoji A, Hayakawa M, Saito A. Strain-magnetization properties and domainstructure change of silicon steel sheets due to plastic stress[J]. IEEETransactions on Magnetics,2000,36(5):3074-3077.
    61Zhu B, Lo C C H, Lee S J, et al. Micromagnetic modeling of the effects ofstress on magnetic properties[J]. Journal of Applied Physics,2001,89(11):7009-7011.
    62Bulte D P, Langman R A. Origins of the magnetomechanical effect[J]. Journalof Magnetism and Magnetic Materials,2002,251(2):229-243.
    63任吉林,陈晨,刘昌奎,等.磁记忆检测力-磁效应微观机理的试验研究[J].航空材料学报,2008,28(5):41-44.
    64Dong L H, Xu B S, Dong S Y, et al. Variation of stress-induced magneticsignals during tensile testing of ferromagnetic steels[J]. NDT&E International,2008,41(3):184-189.
    65董丽虹,徐滨士,董世运,等.拉伸载荷作用下中碳钢磁记忆信号的机理[J].材料研究学报,2006,20(4):440-444.
    66王丹,董世运,徐滨士,等.静载拉伸45钢材料的金属磁记忆信号分析[J].材料工程,2008,(8):77-80.
    67Dong L, Xu B, Dong S, et al. Stress dependence of the spontaneous stray fieldsignals of ferromagnetic steel[J]. NDT&E International,2009,42(4):323-327.
    68Yang E, Li L, Chen X. Magnetic field aberration induced by cycle stress[J].Journal of Magnetism and Magnetic Materials,2007,312(1):72-77.
    69陈钘,王晓凤,杨恩,等.铁磁构件拉压试验中的磁记忆效应研究[J].无损检测,2007,29(5):247-250.
    70任小棠,张卫民.金属磁记忆检测软件的设计及研制[J].计算机测量与控制,2005,13(8):846-848.
    71周克印,张静,姚恩涛,等.构件隐性损伤的磁记忆检测方法研究[J].南京航空航天大学学报,2004,36(6):713-717.
    72邢海燕,樊久铭,李雪峰,等.基于磁记忆机理的铁磁材料弯曲变形状态研究[J].哈尔滨工业大学学报,2006,38(7):1017-1019.
    73Kumar R, Misra A. Some basic aspects of electromagnetic radiation emissionduring plastic deformation and crack propagation in Cu-Zn alloys[J]. MaterialsScience and Engineering A-Structural Materials Properties Microstructure andProcessing,2007,454:203-210.
    74Misra A, Kumar A. Some basic aspects of electromagnetic radiation duringcrack propagation in metals[J]. International Journal of Fracture,2004,127(4):387-401.
    75Kumar A, Misra A. Shape anisotropy of magnetic field generation duringtensile fracture in steel[J]. Journal of Magnetism and Magnetic Materials,2005,285(1-2):71-78.
    76Misra A, Prasad R C, Chauhan V S, et al. A theoretical model for theelectromagnetic radiation emission during plastic deformation and crackpropagation in metallic materials[J]. International Journal of Fracture,2007,145(2):99-121.
    77Dong L H, Xu B S, Dong S Y, et al. Metal magnetic memory testing for earlydamage assessment in ferromagnetic materials[J]. Journal of Central SouthUniversity of Technology,2005,12(S2):102-106.
    78尹大伟,徐滨士,董世运,等.中碳钢疲劳试验的磁记忆检测[J].机械工程学报,2007,43(3):60-65.
    79Dong L H, Xu B S, Dong S Y, et al. Monitoring fatigue crack propagation offerromagnetic materials with spontaneous abnormal magnetic signals[J].International Journal of Fatigue,2008,30(9):1599-1605.
    80崔常京,董世运,王逾涯,等.疲劳载荷作用下应力集中部位金属的磁记忆现象[J].机械工程材料,2008,32(12):51-54.
    81王翔,陈铭,徐滨士.48MnV钢拉压疲劳过程中的磁记忆信号变化[J].中国机械工程,2007,18(15):1862-1864.
    82Chen X, Li L, Hu B, et al. Magnetic evaluation of fatigue damage in train axleswithout artificial excitation[J]. Insight: Non-Destructive Testing and ConditionMonitoring,2006,48(6):342-345.
    83于凤云,张川绪,吴淼.检测方向和提离值对磁记忆检测信号的影响[J].机械设计与制造,2006,(5):118-120.
    84王文江,戴光.疲劳断裂试件磁记忆检测结果及分析[J].大庆石油学院学报,2005,29(4):83-85.
    85尹大伟,徐滨士,董世运,等.不同检测环境下磁记忆信号变化研究[J].兵工学报,2007,28(3):319-323.
    86梁志芳,王迎娜,李午申,等.焊接裂纹金属磁记忆信号特征研究的进展[J].机械科学与技术,2007,26(1):81-83.
    87张军,王彪,计秉玉.基于小波变换的套管金属磁记忆检测信号处理[J].石油学报,2006,27(2):137-140.
    88张军,王彪,王文江.磁记忆检测套管应力集中信号和特征量研究[J].哈尔滨工业大学学报,2007,39(6):920-923.
    89任吉林,王进,范振中,等.一种磁记忆检测定量分析的新方法[J].仪器仪表学报,2010,31(2):431-436.
    90任吉林,白鹭,范振中,等.航空铁磁材料磁记忆检测新方法[J].航空学报,2009,30(11):2224-2228.
    91任吉林,陈曦,罗声彩,等.高周疲劳损伤的磁记忆二维检测研究[J].航空学报,2011,32(x): xxx-xxx.
    92Tanasienko A G, Suntsov S I, Dubov A A. Chemical equipment inspection withusing of metal magnetic memory[J]. Khimicheskoe I NeftegazovoeMashinostroenie,2002,10:36-38.
    93Dubov A A. Technique for monitoring the heating surface tubes of steam andhot-water boilers using the magnetic memory of metals[J]. Teploenergetika,1998,45(1):53-56.
    94Dubov A A, Matyunin V M. Early diagnostics of blade damages with using themethod of magnetic metal memory[J]. Tyazheloe Mashinostroenie,2001,10:32-33.
    95Dubov A A. Monitoring the stressed-strained state of pipelines[J]. TyazheloeMashinostroenie,2004,11:33-35.
    96Dubov A A. Diagnostics of austenitic steel tubes in the superheaters of steamboilers using scattered magnetic fields[J]. Thermal Engineering,1999,46(5):369-372.
    97Dubov A, Kolokolnikov S. Quality assurance of welded joints in power,chemical and gas pipeline engineering by the method of metal magneticmemory[J]. Welding in the World,2008,(52):709-714.
    98Dubov A A. Evaluation of service life of equipment using magnetic memorymethod[J]. Tyazheloe Mashinostroenie,2005,(6):13-15.
    99Lesiak P B P. Application of neural classifier to railway flaw detection in themethod of metal magnetic memory[C]. Proceedings of the6th InternationConference on Environmental Engineering. Vilnius:2005.
    100Wilson J W, Tian G Y, Barrans S. Residual magnetic field sensing for stressmeasurement[J]. Sensors and Actuators A: Physical,2007,135(2):381-387.
    101梁志芳,李午申,王迎娜,等.金属磁记忆信号的零点特征[J].天津大学学报,2006,39(7):847-850.
    102邸新杰,李午申,严春妍,等.焊接裂纹金属磁记忆信号的特征提取与应用[J].焊接学报,2006,27(2):19-22.
    103邸新杰,李午申,白世武,等.焊接裂纹的金属磁记忆定量化评价研究[J].材料工程,2006,(7):56-60.
    104张卫民,董韶平,杨煜,等.磁记忆检测方法及其应用研究[J].北京理工大学学报,2003,23(3):277-280.
    105王朝霞,宋金刚,陈克,等.基于金属磁记忆方法的压力容器检测技术[J].压力容器,2006,23(12):42-44.
    106王朝霞,张卫民,袁俊杰.铆接件应力集中的磁记忆检测实验研究[J].新技术新工艺,2008,(4):86-87.
    107任吉林,宋凯,邬冠华,等.磁记忆检测技术在飞机起落架检测中的应用[J].无损检测,2002,24(8):346-348.
    108任吉林,高春法,宋凯,等.电站铁磁构件的磁记忆检测[J].仪器仪表学报,2003,24(5):470-472.
    109于润桥,徐长英,龙盛蓉.金属磁记忆检测在钻具评价中的应用[J].仪器仪表学报,2008,29(1):191-194.
    110邢海燕,王文江,王日新,等.50MW汽轮机断裂叶片及断口的磁记忆研究[J].中国电机工程学报,2006,26(7):72-76.
    111张卫民, Doubov A A,孙海涛,等.高强度钢磨削时的金属磁记忆现象初探[J].兵工学报,2005,26(3):375-378.
    112蹇兴亮,周克印.构件形状对金属磁记忆检测的影响[J].理化检验(物理分册),2007,43(5):242-244.
    113GOST R52081. Non-destructive. Metal magnetic memory. Terms anddefinitions [S].2003.
    114GOST R52005. Non-destructive testing. Metal magnetic memory. Generalrequirements [S].2003.
    115GOST R52330. Non-destructive testing. Stressed-strained state test ofindustrial objects and transport. General requirements [S].2005.
    116CTO PHTCO004. Non-destructive testing, Welded joints of equipment andconstructions, Method of metal magnetic memory [S].2003.
    117ISO/DIS24497-1. Non-destructive testing-Metal magnetic memory-Part1:Vocabulary [S].2007.
    118ISO/DIS24497-2. Non-destructive testing-Metal magnetic memory-Part2:General requirements [S].2007.
    119ISO/DIS24497-3. Non-destructive testing-Metal magnetic memory-Part3:Inspection of welded joints [S].2007.
    120仲维畅.“加工磁化”和“运行磁化”原因初探[C].中国电力工程学会第二届无损检测年会,南宁:1981.
    121任吉林,邬冠华,宋凯,等.金属磁记忆检测机理的探讨[J].无损检测,2002,24(1):29-31.
    122仲维畅.金属磁记忆法诊断的理论基础——铁磁性材料的弹-塑性应变磁化[J].2001,23(10):424-426.
    123Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis[J]. Journal ofMagnetism and Magnetic Materials,1986,61(1-2):48-60.
    124Jiles D C, Li L. A new approach to modeling the magnetomechanical effect[J].Journal of Applied Physics,2004,95(11):7058-7060.
    125赵维义,喻利华,邹畹珍.利用等效应力磁场测平面残余应力[J].华中理工大学学报,1999,27(12):100-101.
    126常福清,刘东旭,刘峰.磁记忆检测中的力-磁关系及其实验观察[J].实验力学,2009,24(4):367-373.
    127姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社,2003:207-250.
    128Lubitz K. Magnetic studies of the dislocation structure of iron single crystalsdeformed at295K[J]. Applied Physics,1974,4:51-61.
    129近角聪信著,葛世惠译.铁磁性物理[M].兰州:兰州大学出版社,2002:283-295.
    130任吉林,林俊明.金属磁记忆检测技术[M].北京:中国电力出版社,2000:49-54.
    131宛德福,马兴隆.磁性物理学(修订本)[M].北京:电子工业出版社,1999:205-210.
    132Hou C K, Lee S. Effect of rolling strain on the loss separation and permeabilityof lamination steels[J]. IEEE Transactions on Magnetics,1994,30(2):212-216.
    133Sablik M J, Landgraf F J G, Magnabosco R, et al. Fitting the flow curve of aplastically deformed silicon steel for the prediction of magnetic properties[J].Journal of Magnetism and Magnetic Materials,2006,304(2):155-158.
    134Kuruzar M E, Cullity B D. The magnetostriction of iron under tensile andcompressive stress[J]. International Journal of Magnetism,1971,1(4):323.
    135A Misra. Electromagnetic effects at metallic fracture[J]. Nature(London),1975,254:133-134.
    136Misra A. Theoretical study of the fracture-induced magnetic effect inferromagnetic materials[J]. Physics Letters,1977,62A(4):234-236.
    137任吉林,王东升,宋凯,等.应力状态对磁记忆信号的影响[J].航空学报,2007,28(3):724-728.
    138Shigeru T, Yuji N. Magnetic property change of type304stainless steel due toaccumulation of fatigue damage at elevated temperature[J]. InternationalJournal of Applied Electromagnetics and Mechanics,2007,25(1-4):211-217.
    139董丽虹,徐滨士,董世运,等.金属磁记忆技术检测低碳钢静载拉伸破坏的实验研究[J].材料工程,2006,(3):40-43.
    140Yamasaki T, Yamamoto S, Hirao M. Effect of applied stresses onmagnetostriction of low carbon steel[J]. NDT&E International,1996,29(5):263-298.
    141田民波.磁性材料[M].北京:清华大学出版社,2001:58-60.
    142Lo C C H, Kinser E, Jiles D C. Modeling the interrelating effects of plasticdeformation and stress on magnetic properties of materials[J]. Journal ofApplied Physics,2003,93(10):6626-6628.
    143Pitman K C. The influence of stress on ferromagnetic hysteresis[J]. IEEETransactions on Magnetics,1990,26(5):1978-1980.
    144Maylin M G, Squire P T. Departures from the law of approach to the principalanhysteresis in a ferromagnet[J]. Journal of Applied Physics,1993,73(6):2948-2955.
    145Lo C C H, Tang F, Shi Y, et al. Monitoring fatigue damage in materials usingmagnetic measurement techniques[J]. Journal of Applied Physics,1999,85(8):4595-4597.
    146李灏.损伤力学基础[M].山东:山东科学出版社,1992:209-215.
    147刘昌奎,陶春虎,陈星,等.基于金属磁记忆技术的18CrNi4A钢缺口试件疲劳损伤模型[J].航空学报,2009,30(9):1641-1647.
    148Henry D L. A theory of fatigue damage accumulation in steel[J]. Transaction ofthe ASME,1955,77:913-918.
    149Makar J M, Tanner B K. The effect of plastic deformation and residual stresson the permeability and magnetostriction of steels[J].Journal of Magnetism andMagnetic Materials,2000,222(3):291-304.
    150Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis inheterogeneous alloys[J]. Philosophical Transactions of the Royal Society ofLondon,1948,24(A):599-642.
    151Globus A, Duplex P, Guyot M. Determination of initial magnetization curvefrom crystallites size and effective anisotropy field[J]. IEEE Transactions onMagnetics,1971,7(3):617-622.
    152Mayergoyz I D. The classical preisach model of hysteresis and reversibility[J].Journal of Applied Physics,1991,69(8):4602-4604.
    153Schneider C S. Domain cooperation in ferromagnetic hysteresis[J]. Journal ofApplied Physics,2001,89(2):1281-1286.
    154Smith R C, Dapino M J, Braun T R, et al. A homogenized energy frameworkfor ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics,2006,42(7):1747-1769.
    155Seitz F. Prismatic dislocations and prismatic punching in crystals[J]. PhysicalReview,1950,79(4):723-724.
    156束德林.金属力学性能[M].北京:机械工业出版社,2002:12-15.
    157冯端.金属物理学(第四卷超导电性和磁性)[M].北京:科学出版社,1998:553-559.
    158Kurtzig A J, Patel J R. Interaction of magnetic domain walls and individualdislocations[J]. Physics Letters A,1970,33(2):123-125.
    159范继美,万光珉.位错理论及其在金属切削中的应用[M].上海:上海交通大学出版社,1991.
    160Wang Z D, Deng B, Yao K. Physical model of plastic deformation onmagnetization in ferromagnetic materials[J]. Journal of Applied Physics,2011,109(8):083928-1-6.
    161Sablik M J, Yonamine T, Landgraf F J G. Modeling plastic deformation effectsin steel on hysteresis loops with the same maximum flux density[J]. IEEETransactions on Magnetics,2004,40(5):3219-3226.
    162Kronmuller H. Magnetic techniques for the study of dislocations inferromagnetic materials[J]. International Journal of Nondestructive Testing,1972,3(4):315-350.
    163Sablik M J, Rios S, Landgraf F J G, et al. Modeling of sharp change inmagnetic hysteresis behavior of electrical steel at small plastic deformation[J].Journal of Applied Physics,2005,97:10E518-1-3.
    164Astie B, Degauque J, Porteseil J L, et al. Influence of the dislocationstructures on the magnetic and magnetomechanical properties of high-purityiron[J]. IEEE Transactions on Magnetics,1981, MAG-17(6):2929-2931.
    165Sablik M J. Modeling the effect of grain size and dislocation density onhysteretic magnetic properties in steels[J]. Journal of Applied Physics,2001,89(10):5610-5613.
    166Landgraf F J G, Emura M. Losses and permeability improvement by stressrelieving fully processed electrical steels with previous small deformations[J].Journal of Magnetism and Magnetic Materials,2002,242-245, Part1:152-156.
    167Landgraf F J G, Emura M, Ito K, et al. Effect of plastic deformation on themagnetic properties of non-oriented electrical steels[J]. Journal of Magnetismand Magnetic Materials,2000,215-216:94-96.
    168Garcia D B, Grandt A F. Application of a total life prediction model for frettingfatigue in Ti-6Al-4V[J]. International Journal of Fatigue,2007,29(7):1311-1318.
    169马骏,孙毅.金属材料疲劳损伤的宏细观理论[J].力学进展,2002,32(3):391-401.
    170Miller K J. The two thresholds of fatigue behavior[J]. Fatigue&Fracture ofEngineering Materials&Structures,1993,16(9):931-939.
    171Long M, Huang X. The influence of compressive loads on fatigue crackpropagation in metals[J]. Fatigue&Fracture of Engineering Materials&Structures,1998,21(1):65-83.
    172Dowling N E. Crack growth during low-cycle fatigue of smooth axialspecimens[J]. ASME STP,1977,637:97-121.
    173Tanaka K, Akinawa Y, Nakai Y. Modeling of small fatigue crack growthinteraction with grain boundary[J]. Engineering Fracture Mechanics,1986,24(6):803-819.
    174Lemaitre J, Sermeage J P, Desmorat R. A two scale damage concept applied tofatigue[J]. International Journal of Fracture,1999,97(1-4):67-81.
    175Wang X, Qin Y, Chen M, et al. Feasibility Research on Fatigue DamageEvaluation Based on Magnetic Memory Method[J]. Journal of DonghuaUniversity,2005,22(5):9-11.
    176刘昌奎,陶春虎,陈星,等.金属磁记忆检测技术定量评估构件疲劳损伤研究[J].材料工程,2009,(8):33-37.
    177潘家祯.疲劳试验新方法——显微疲劳试验[J].华东理工大学学报,1995,21(1):58-64.
    178邢海燕.基于磁记忆技术的疲劳损伤评估及寿命预测[D].哈尔滨工业大学博士论文,2007:27-31.
    179吴志学,徐灏.钝缺口试样疲劳短裂纹形成与扩展[J].机械强度,1997,19(1):67-69.
    180徐灏,吴志学.45钢疲劳短裂纹的形成和扩展[J].金属学报,1995,31(2):85-89.
    181叶笃毅,王德俊.疲劳损伤过程中45#钢剩余力学性能的变化特征[J].材料研究学报,1996,10(4):357-362.
    182Wang Z D, Yao K, Deng B, et al. Quantitative study of metal magnetic memorysignal versus local stress concentration[J]. NDT&E International,2010,43(6):513-518.
    183Wang Z D, Yao K, Deng B, et al. Theoretical studies of metal magneticmemory technique on magnetic flux leakage signals[J]. NDT&E International,2010,43(4):354-359.
    184Roberto B, Mitsudori D. The interaction between a crack and a disolcationdipole[J]. International Journal of Fracture,1988,37(1):61-71.
    185高飞,折晓黎,王运来.加工硬化材料裂纹尖端塑性区的位错分布[J].科学通报,1989,8:624-627.
    186钱才富,姜忠军,陈平,等.裂纹尖端塑性区和无位错区的微观模拟[J].金属学报,2004,40(2):159-162.
    187石常亮.面向再制造铁磁性构件损伤程度的磁记忆/超声综合无损评估[D].哈尔滨工业大学博士论文,2011:36-37.
    188Yao K, Deng B, Wang Z D. Numerical studies to signal characteristics with themetal magnetic memory-effect in plastically deformed samples[J]. NDT&EInternational,2012,47(4):7-17.