焊接裂纹的金属磁记忆特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接是最常见也是最重要的材料连接方法,但是焊接加工形成的焊接接头经过了焊接过程的特殊热循环,该处的物理化学性能都是与母材有差异的。这种差异最终导致了焊接构件的焊接接头处在使用过程中产生断裂、疲劳、腐蚀等损伤。因此,该处对于焊接质量的控制就成为很重要的位置。
    金属磁记忆检测方法是由俄罗斯专家在1997年提出的一种无损检测方法。该方法利用铁磁性材料在地磁场中加工和使用过程中的应力和变形造成的磁畴组织定向不可逆的取向,形成的漏磁场来确定构件的应力应变集中部位。
    为了推动金属磁记忆检测方法在焊接质量检测中的应用,本文进行了对焊接接头质量影响最大的焊接裂纹的金属磁记忆特征的研究。
    首先,本文对TSC-1M-4型金属磁记忆检测设备用于焊接检测时采用的检测参数进行了研究,确定了Ho选择为ON、S选择为1mm、b选择为15mm是适合焊接质量检测最佳检测参数组合。
    其次,提出了裂纹、裂纹应力场、漏磁场三者之间的关系是研究的核心理论支柱。针对X70管线钢研究了该材料中的裂纹尖端的应力分布; 以及应力分布与漏磁磁场之间的关系; 应力与金属磁记忆检测信号之间的关系。
    之后,通过自行设计的实验进行了焊接裂纹金属磁记忆检测时空有效性研究,认为X70钢构件冷却到低于100℃后的任何时间进行检测的结果都是有效的; 在距离金属磁记忆特征信号70mm为半径的范围内是有效的焊接裂纹可疑区。
    再后,通过自行设计的拉伸试验以及二次正交旋转组合试验设计焊接管道裂纹标准样本库的检测,找到了焊接裂纹的四个金属磁记忆检测信号特征参数:Deta、△Hp/△Lx、△Hp和MMM检测信号傅立叶分析的相位突变点。提出焊接裂纹处MMM检测信号Deta、△Hp/△Lx、△Hp、以及傅立叶分析相位突变点等四个特征量的综合分析可以反映焊接裂纹的存在和几何形状。
    最后,得到了焊接裂纹的金属磁记忆信号特征量Deta、△Hp/△Lx、△Hp和焊接裂纹的几何描述量裂纹长度、裂纹角度、裂纹埋深之间的关系,建立了它们之间的回归关系模型。
Weld is the most important and widely used material-connecting method. However, the weld joint produced by welding process experiences the extremely welding heat cycle, and is different from the body material in physical and chemic performance. Then, these differences incur that the weld components rupture, fatigue, and corrupt at the weld joint during used. Therefore, the weld joint is the most significant point in the weld-quality-controlling.
    Metal magnetic memory is a nondestructive testing method, which is invented by Russian expert in 1997. The method use the ferromagnetic leakage magnetic field to detect the stress concentration position because the leakage magnetic field is produced by the magnetic domain orient irreversible change due to operating strain and stress in earth magnetic field.
    In order to apply the metal magnetic memory method to test the welding quality, the metal magnetic memory characteristic of the welding crack is studied, which is the most badly factor tampering with the weld joint quality.
    Firstly, the detection parameter is studied when the TSC-1M-4 metal magnetic memory device is used in the weld detection. It is the best detection parameter group that Ho set as ON, S set as 1mm and b set as 15mm.
    Secondly, the main aspects of the research are thought as the three relationships of the crack, stress field of the crack and leakage field of the stress concentration. As the subject investigated, X70 line-pipe steel has been researched on the stress field around the crack tip, the relationship between the stress field and the leakage field, and the relationship between the stress and the metal magnetic memory signal.
    Thirdly, the time and space availability of weld crack’s metal magnetic memory testing is researched by the self-layout experiment. The detection result is available when the weld joint is cooled below 100℃, and the doubtful weld crack area include the positions from which the distance to the metal magnetic memory characteristic signal position is no more than 70mm.
    Fourthly, such self layout experiments has been carried out as tension, one-factor rotate weld pipeline standard sample cracks, and quadratic rotation-orthogonal combination design weld pipeline standard sample cracks, and these are detected by metal magnetic memory method. From the detection results, it is concluded that there
    are four metal magnetic memory signal characteristic of weld crack-Deta, △Hp/△Lx, △Hp and Fourier analysis phase saltation of metal magnetic memory signal. Comprehensive analysis of all the four signal characters above can reflect the existence and geometry shape of weld crack. Finally, the regression equations has arrived between such the signal characteristic variances as Deta, △Hp/△Lx and △Hp and such weld crack geometry shape parameter as length, angle and depth.
引文
[1]梁启涵,焊接检验,北京:机械工业出版社,1980,1~4
    [2]赵熹华,焊接检验,北京:机械工业出版社,1992,1~2
    [3]史兴全,陈永武, 绿色能源,世纪工程——西气东输工程, 第四纪研究,2003,23(2):125~133
    [4]李鹤林,冯辉荣,霍春勇等, 关于西气东输管线和钢管的若干问题, 中国冶金,2003(4):36~40
    [5]于淑香, 西气东输与中国管道焊接技术的发展-访中国石油天然气管道科学研究院薛振奎院长, 机械工人,2002(8):12~13
    [6]冯耀荣,王新虎,赵东岩,油气输送管失效事故的调查与分析,中国海上油气(工程),1999,11(5):11~14
    [7]蔺永诚,谢禹钧,王晓华,罗弘,在役压力管道断裂失效风险分析软件的开发,油气储运,2003,22(11):5~9
    [8]王朝晖,朱欢勤, 发展我国管道检测技术的意义和步骤, 石油商技.2000,18(2):26~27,34
    [9]夏海波,张来斌,王朝辉, 国内外油气管道泄漏检测技术的发展现状, 油气储运,2001,20(1):1~5
    [10]石宇熙. 天然气管道焊缝缺陷原因及防治技术. 上海煤气,2002(5):37~39
    [11]王玉,高大路,廖明夫,焊接领域无损检测技术应用现状及发展,无损检测,2003,25(3):140~142,145
    [12]Wuensch W., Design and testing of equipment for nondestructive detection and identification of the location and dimensions of materials defects, especially of cracks in welded joints of pipe systems, NDT&E International,1996,29(2):120~128
    [13]张俊哲,无损检测技术及应用,北京:水电出版社,1993,34~39
    [14]陶旺斌,周在杞, 电磁检测, 北京:北京航空航天出版社,1995,115~153
    [15]Weibull I.,Process and product control by nondestructive testing, Materials and Design,1995,16(1):51~53
    [16]黎连修,无损检测及国内外钢轨探伤情况简介,铁道标准化,1995(6):1~4
    [17]安宝祥,汽车制造无损检测应用技术,北京:北京理工大学出版社,1998,34~70
    [18]曾祥照, 无损检测文化概论,无损探伤,2002,26(2):34~37
    [19]Pawlowski Z., Meeting report.24th National Conference on nondestructive testing. NDT&E International,1996,29(5):349~350
    [20]陈积懋,无损检测新技术 20 年回顾,无损检测,1998,20(7):181~185
    [21]冉启芳,无损检测方法的分类及其特征简介,无损检测,1999,21(2):75~80
    [22]机械标准化研究所,国内无损检测标准汇编. 1988
    [23]曾令可,吴卫生,红外热成像无损检测陶瓷制品机理的研究,景德镇陶瓷学院学报,1995,16(1):9~15
    [24]梅林,红外热成像无损检测技术及其应用现状,无损检测,1999,21(10):466~468
    [25]朱建堂,激光,红外和微波无损检测技术的应用与发展,无损检测,2000,22(7):291~296
    [26]陈桂才,吴东流,井立等,激光全息无损检测技术的现状及展望,宇航材料工艺,2003,33(2):26~28,43
    [27]曾启林,熊显名,激光全息无损检测技术的应用,中国橡胶,1999(7):5~6
    [28]朱政,基于 FOKKER80L 的声振检测在 Z8 型机上的应用,昌河科技,2002(3):3~5
    [29]吴慧敏,陈翔,SV—401 型工程声振检测仪的研制—第四代非破损检测仪,施工技术(北京),1993,22(4):25~26
    [30]姚毅,金属管道缺陷的微波检测,自动化与仪器仪表,2003,(4):51~53,56
    [31]周在杞,微波检测技术研究进展,无损探伤,2001,25(1):22~24
    [32]周在杞,微波无损检测在我国航天航空工业的发展,无损检测,1997,19(11):314~316
    [33]Doubov Amatoli A. Diagnostics of metal items and equipment by means of metal magnetic memory proc of CHSNDT 7th Conference on NDT and International Research Symposium,1999:181~187
    [34]任吉林,邬冠华,宋凯等,金属磁记忆检测机理的探讨,无损检测,2001,24(1):29~31
    [35]Doubov A.A.,The express-technique of welded joints examination with use of metal magnetic memory,NDT&E International,2000,33(6):351~362
    [36]林俊明,林春景,林发炳等,基于磁记忆效应的一种无损检测新技术,无损检测,2000,22(7):297~299
    [37]赵凯华,陈熙谋,电磁学,北京:高等教育出版社,1978
    [38]宋学孟,金属物理性能分析,北京:机械工业出版社,1981
    [39]北京大学物理系《铁磁学》编写组,铁磁学,北京:科学出版社,1976 年
    [40]张卫民,董韶平,张之敬,金属磁记忆检测技术的现状与发展,中国机械工程,2003,14(10):892~896
    [41]沈功田,地 2002 中—俄金属磁记忆检测与评价技术研讨会在北京召开,无损检测,2002,24(12):549
    [42](美)S. Suresh.材料的疲劳. 王中光等. 北京:国防工业出版社,1999
    [43](日)西田正孝. 应力集中. 李安定等. 北京:机械工业出版社,1986
    [44]陈心爽,袁耀良. 材料力学. 上海:同济大学出版社,1996
    [45]哈宽富. 断裂物理基础. 北京:科学出版社,2000
    [46]哈宽富. 金属力学性质的微观理论(第二版). 北京:科学出版社,1991
    [47]林吉忠,刘淑华. 金属材料的断裂与疲劳. 北京:中国电力出版社,1989
    [48]Doubov A A. Diagnostics of metal items and equipment by means of metal magnetic memory[A]. Proc of CHSNDT 7th Conference on NDT and International Research Symposium[C]. Shantou: Shantou University, 1999.181~187.
    [49]Jilrs D C, Atherton D L. Ferromagnetic hysteresis [J]. IEEE Trans on Mag, 1983,19(5):2183~2185
    [50]拜尔.W H. 标准数学手册[M]. 荣现志,张顺忠,译. 北京:化学工业出版社,1998.
    [51]Sablic M J, Burkhardt G L, Kwun H, et al. A model for the effect of stress on the low-frequency harmonic content of the magnetic induction in ferromagnetic materials[J]. J Appl Phys, 1988,63(8):3930~3932
    [52]Gankepeti P, Cheng T T, Jiles D C. Theory of ferromagnetic hysteresis: evaluation of stress from hysteresis curves[J]. IEEE Trans on Magnetics, 1988,24(6):2922~2924
    [53]程昌钧.弹性力学[M].兰州:兰州大学出版社,1995
    [54]钟文定.铁磁学(中册)[M].北京:科学出版社,1998
    [55]Jilres D C, Atherton D L. Theory of ferromagentic hysteresis[J]. J Magnetism and Magnetic Materials, 1986,61:48~60.
    [56]Chikazumi S, Charap S H. Physics of Magnetism[M]. New York: John Wiley & Sons Inc,1984.
    [57]张亚梅.油气管道的磁记忆检测技术应用及其对比性定量的初探.天津:天津大学硕士学位论文.2004
    [58]邸新杰. 焊接裂纹的金属磁记忆漏磁场特性的初步研究.天津:天津大学硕士学位论文.2004
    [59] Zeng Pan. High accuracy formulas for discrete calculation of Fourier transform. Applied Mathematics and Computation. 1999.106(2): 117~140
    [60] Stankovic. Alieva. Bastiaans. Time-frequency signal analysis based on the window fractional Fourier transform. Signal Processing. 2003.83(11):2459~2468
    [61] (日)佐藤幸男.信号处理入门.宋伟刚(译).北京:科学出版社,2000
    [62] S.G Mallat. 信号处理的小波导引. 杨力华等(译). 北京:机械工业出版社,2002
    [63] 杨福生. 小波变换的工程分析与应用. 北京:科学出版社,1999
    [64] 魏巍.MATLAB 信息工程工具箱技术手册. 北京:国防工业出版社,2004
    [65] 张森,张正亮. MATLAB 仿真技术与实例应用教程.北京:机械工业出版社,2004
    [66] 刘则毅. 科学计算技术与 MATLAB. 北京:科学出版社,2001
    [67]史焱、黄俐研等. 居里点裂解色谱及应用. 现代仪器使用与维修.1998,3:1~4
    [68] 梁志芳,李午申,二次正交旋转组合试验设计孵化器,哈尔滨工业大学学报,2004,36(11):1561~1563
    [69] 中国机械工程学会焊接学会.焊接手册(焊接方法及设备:第 1 卷).北京,机械工业出版社,2001.8
    [70] 王志昌.输气管道工程—天然气开采工程丛书.北京,石油工业出版社,1997.4 p201~212.
    [71] 尹士科.焊接材料手册.北京,中国标准出版社,2000.11
    [72] 中国机械工程学会热处理专业分会.热处理手册(工艺基础:第 3 版,第1 卷).北京,机械工业出版社,2001.7,p152.
    [73]李建平,唐远炎,小波分析方法的应用,重庆:重庆出版社,1999
    [74]胡昌华,张军波,基于 MATLAB 的系统分析与设计—小波分析,西安:西安电子科技大学出版社
    [75]夏洪瑞,朱勇,周开明,小波变换及其在去噪中的应用,石油地球物理勘测,1994,29(3):274~285
    [76]彭玉华. 小波变换与工程应用. 科学出版社,2002
    [77]崔锦泰. 小波分析导论. 西安交通大学出版社,1997
    [78]杨福生. 小波变换的工程分析与应用. 北京科学出版社,1999
    [79]D.L.Donoho, De-noising by soft-thresholding,IEEE Trans, On Information Theory, 1995, 41(3):713~627
    [80]D.L.Donoho, Smooth wavelet decomposition with blocky coefficient kernels, Recent Advances in Wavelet Analysis, Academic Press, 1994
    [81]何岭松,小波函数性质及其对小波分析结果的影响,振动工程学报,2000,13(1):143~146
    [82]飞思科技研发中心,MATLAB6.5 辅助小波分析与应用,北京:电子工业出版社,2003