松突圆蚧和枯斑拟盘多毛孢共寄生的格局及对寄主针叶主要化学成分的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在首次发现松突圆蚧和枯斑拟盘多毛孢共寄生(co-parasitism)现象的基础上,以揭示松突圆蚧入侵暴发机制为目标,通过野外系统定位调查和室内测试,研究了松突圆蚧和枯斑拟盘多毛孢共寄生的格局及其对针叶主要化学成分的影响。结果表明:(1)在松突圆蚧危害的针叶中,约有50%被松突圆蚧和枯斑拟盘多毛孢共寄生;在6~10月松突圆蚧种群低谷期,共寄生针叶中松突圆蚧的总虫口密度、活虫密度及其有活虫针叶的比例均显著大于非共寄生针叶;说明在松突圆蚧入侵的松林中,两者共寄生的现象较为普遍,且有利于加剧松突圆蚧的危害和提高该虫的生境适应性;(2)松突圆蚧和枯斑拟盘多毛孢共寄生显著降低了针叶含水量(降低9.99%),显著提高了针叶叶绿素a、总叶绿素的含量(分别提高了29.36%和34.63%)和针叶可溶性糖、多糖、蛋白质的含量(分别提高了143.60%、11.51%和34.93%),也显著提高了针叶单宁和总酚的含量(分别提高了39.29%和45.54%)。因此认为,松突圆蚧和枯斑拟盘多毛孢共寄生既可能通过提高针叶主要营养物质含量,对松突圆蚧产生显著的利他效应,也可能通过诱导松针单宁和总酚等次生物质含量的增加而提高对松突圆蚧的抵抗效应;松突圆蚧和枯斑拟盘多毛孢共寄生的格局是这两种效应共同作用的结果。上述结果寓示:枯斑拟盘多毛孢的共寄生在松突圆蚧的入侵和暴发过程中可能扮演着重要角色。进一步从种群生物学、生物化学和分子生物学的角度开展两者共寄生对松突圆蚧种群动态和个体生命过程的影响,对于深入揭示该虫的入侵暴发机制具有重要意义。
Based on the first discovery of co-parasitism both the dangerous and invasive pine armored scale, Hemiberlesia pitysophila, and the native wide-distributed fungi, Pestalotiopsis funereal, the pattern of this co-parasitism and its effects on the main chemical substances contented in Masson Pine needles were investigated and measured, aimed to explore the mechanism of the invasive pine armored scale in South China, in the pine forest located at Fuqing of Fujian Province in 2010. Results showed that around 50% of pine needles infested with the pine armored scale were co-parasitized by the fungi of P. funereal. In the period from June to October while the pine armored scale population kept the lowest level in a year cycle, densities of the total individuals including dead scales and live individuals, live individuals, and percentage of the needles with live individuals of the pine armored scale in co-parasitic needles were all significantly higher than those in non-co-parasitic needles. These aspects imply that the co-parasitism of both H. pitysophila and P. funereal is prevalent in the pine forest invaded with H. pitysophila, and can be beneficial to the scale pest’s occurrence and adaptation to a new habitat. Additionally, biological test experiments showed that the co-parasitism significantly increased the main chemical substances of the pine needles, including water content with a 9.99% of mean increment, chlorophyll a with a 29.36% of mean increment, total chlorophyll with a 34.63% of mean increment, water-soluble sugar with a 143.60% of mean increment, polysaccharide with a 11.51% of mean increment, protein with a 34.93% of mean increment, tannin with a 39.29% of mean increment and total hydroxybenzene with a 45.54% of mean increment. Based on the results above, we suggest that the co-parasitism both H. pitysophila and P. funereal could induce a altruistic efficacy to the pine armored scale through increasing the main nutrimental substances in needles, however, it also could induce a resistant efficacy against the pine armored scale through increasing the tanning and hydroxybenzene contents in needles. So the present co-parasitic pattern in the field could result from their common action of both the two efficacies. Furthermore, the suggestion reveals that the co-parasitism could play an important role in the invasion and outbreak course of H. pitysophila population in South China. It is greatly helpful for clarifying the invasive mechanism of H. pitysophila to further study the co-parasitism’s ecological functions and results.
引文
Arimura G, Kost C, Boland W. Herbivore-induced, indirect plant defences[J]. Biochimica and Biophysica Acta, 2005, 1734(2): 91-111.
    Bertness M D. Habitat and community modification by an introduced herbivorous snail[J]. Ecology, 1984, 65: 370-381.
    Callaway R M, Aschehoug E T. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion[J]. Science, 2000, 290(5491): 521-523.
    Carroll C R, Hoffman C A. Chemical feeding deterrent mobilized in response to insect herbivory and counter adaption by Epilachna tredecimnotata[J]. Science, 1980, 209: 414-416.
    Craig T P, Price P W. Resource regulation by a stem-galling sawfly on the arroyo willow[J]. Ecology, 1986, 67(2): 415-419.
    Creelman R A. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress[J]. Proceedings of the National Academy of Sciences, USA, 1995, 92 : 4114-4119.
    Diche M, Sabelis M W. Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application on pest control[J]. J. Chem. Ecol. 1990, 16(11): 3190-3218.
    Ehler L E. Invasion biology and biological control[J]. Biological Control, 1998, 13: 127-133.
    Ellstrand N C, Schierenbeck K A. Hybridization as a stimulus for the evolution of invasiveness in plants[J]. Proceedings of the National Academy of Sciences, USA, 2000, 97(13): 7043-7050.
    Elton C S. The ecology of invasions by animals and plants[M]. London: Methuen and Co Ltd. 1958.
    Faeth S H. Indirect interactions between temporally separated herbivores mediated by the host plant[J]. Ecology, 1986, 67(2): 479-496.
    Farmer E E , Ryan C A. Octadecanoid precursors of jasmonic acidactivate the synthesis of wound-inducible proteinase inhibitors[J]. Plant Cell, 4: 129-134.
    Harari A R , Ben-Yalir D, Rosen D. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera : Scarabaeidae)[J]. J. Chem. Ecol., 1994, 20: 361-71.
    Haukioja E. Induction of defenses in trees[J]. Ann. Rev. Entomol., 1990, 36: 25-42.
    Holway D A, Suarez A V, Case T J. Loss of intra-specific aggression in the success of a widespread invasive social insect[J]. Science, 1998, 282: 949-952.
    Holway D A, Suarez A V. Animal behavior: an essential component of invasion biology[J]. Trends in Ecology & Evolution, 1999, 14(8): 328-330.
    Holway D A. Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant[J]. Ecology, 1999, 80(1): 238-251.
    Hunter M D,Cchultz J C. Fertilization mitigates chemical induction and herbivore responses within damaged oak tree[J]s. Ecology, 1995, 76(4):1226-1232.
    Juliano S A. Species introduction and replacement among mosquitoes: inter-specific resource competition or apparent competition[J]. Ecology, 1998, 79(1): 255-268.
    Karban R , Baldwin I T. Induced Responses to Herbivor[M]. Illinois: Univ of Chicago Press. 1997, 319.
    Liu S S, De Barro P J, Xu J, Luan J B. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly[J]. Science, 2007, 318(5857): 1769-1772.
    Loughrin J H , Potter D A , Hamilton- Kemp T R. Volatiles compounds induced by herbivory act as aggregation kairomones for the Japanese beetle ( Popillia japonica Newman)[J] . J. Chem. Ecol., 1995, 21: 1457-1467.
    Mack R N, Chair D, Simberloff W N. Biotic invasions: causes, epidemiology, global consequences and control[J]. Ecol. Appl., 2000, (10): 689-710.
    McConn M, Creelman R A , Bell E , Mullet J E , Browse J. Jasmonate is essential for insect defense in Arabidopsis[J]. Proc. Natl . Acad. Sci. USA, 1992, 94(10): 5473-5477.
    Petren K, Bolger D T, Case T J. Mechanisms in the competitive success of an invading sexual gecko over an asexual native[J]. Science, 1993, 259: 354-358.
    Petren K, Case T J. An experimental demonstration of exploitation competition in an ongoing invasion[J]. Ecology, 1996, 77(1): 118-132.
    Pimentel D. Genetically modified crops and the agro-ecosystem: Comments on "Genetically modified crops: risks and promise" by Gordon Conway[J]. Conservation Ecology, 2000, 4(1): 10.
    Sala, O E, Chapin F S, Armesto J J. Global biodiversity scenarios for the year 2100[J]. Science, 2000, 287: 1770-1774. Smith C M(冯明光译).植物抗虫性的研究与应用[M].北京:中国农业科技出版社. 1992, 292.
    Stotz H U , Pittendrigh B R , Kroymann J. Induced plant defense responses against chewing insects. ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth[J]. Plant Physiology, 2000, 124: 1007-1018.
    Strong D R , Cawton J H , Southwood T R E (刘如友译).植物上的昆虫:群落格局和机制[M].杨陵:天则出版社. 1990, 304.
    Suarez A V, Tsutsui N D, Holway D A. Behavioral and genetic differentiation between native and introduced populations of the Argentine ant[J]. Biological Invasions, 1999, 1(1): 43-53.
    Takagi S. Diospidae of Taiwan based on material collected in connection with the Japan-US cooperation science program. (Homoptera: Coccoidea)[J]. Part 1. part 2. Insect Matsumur, 1965, (32): 1-110.
    Tsutsui N D, Suarez A V, Holway D A. Reduced genetic variation and the success of an invasive species[J]. Proceedings of the National Academy of Sciences, USA, 2000, 97(11): 5948-5953.
    Turlings T C, Tumlinson J H, Lewis W J. Exploitation of herbirore-induced plant odors by host-seeking parasitic wasps[J]. Science, 1990, 250:1251-1253.
    Vitousek P M, Antonio C M, Loope L L. Introduced species: a significant component of human-caused global change[J]. New Zeal J. Ecol., 1997, 21(1): 1-6.
    Vitousek P M, Walker L R, Whiteaker L D. Biological invasion by Myrica faya alters ecosystem development in Hawaii[J]. Science, 1987, 238: 802-804.
    Vitousek P M, Walker L R. Biological invasion by Myrica faya in Hawaii: plant demography, nitrogen fixation, and ecosystem effects[J]. Ecological Monographs, 1989, 59: 247-265.
    Vitousek P M. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies[J]. Oikos, 1990, 57: 7-13.
    Wilcove D S. The promise and disappointment of the endangered species act[J]. New York University Environmental Law Journal, 1998, 6: 275-278.
    Williamson M, Fitter A. The varying success of invaders[J]. Ecology, 1996, 77(6): 1661-1666.
    Zeringue H. Changes in cotton leaf chemistry induced by volatile elicitors. Phytochemistry[J], 1987, 26: 1357-1360.
    Zhu S K., Salzman R A, Koiwa H, Murdock L L, Bressan R A, Hasegawa P M. Ethylene negatively regulates local expression of plant defense Lectin genes[J]. Physiological Plant, 1998, 104: 365-372.
    包为民.松突圆蚧寄生蜂室内大量繁殖和林间释放研究[J].中国生物防治, 1995, 11(3): 101-105.
    毕拥国,王志刚,黄大庄.植物次生性物质对植食性昆虫的抗虫作用及其分析方法[J].河北林果研究, 2006, 21(4): 373-377.
    陈顺立,张飞萍,童应华.松突圆蚧在松树不同梢位间的扩散和分布[J].南京林业大学学报(自然科学版), 2006, 30(6): 79-82.
    陈择藩.十五种松树对松突圆蚧抗性的初步研究[J].森林病虫通讯, 1988, (2): 1-2.
    陈芝卿,陈佩珍,连俊和.修枝间伐对松突圆蚧的抑制作用研究[J].林业科学研究, 1989, 2(4): 388-394.
    高微微,佟建明,郭顺星.植物次生代谢产物的生态学功能研究进展[J].中国药学杂志, 2006,41(13):961-964.
    戈峰,李典谟,邱业先.松树受害后一些化学物质含量的变化及其对马尾松毛虫种群参数的影响[J].昆虫学报, 1997, 40(4): 337-342.
    国家林业局植树造林司,国家林业局森林病虫害防治总站.中国林业检疫性有害生物及检疫技术操作办法[M].北京: 中国林业出版社. 2005. 4-1.
    胡炳福,黄勤钦,唐其平.松赤枯病生物防治试验简报[J].林业实用技术, 1989, (6): 23-24.
    胡艳红,陈顺立,杨爱民.松突圆蚧的发育起点温度与有效积温的测定[J].福建林业科技, 2004, 31(2): 9-11.
    胡艳红,刘新,陈顺立.三种药剂及其复配剂对松突圆蚧的毒力测定[J].华东昆虫学报, 2004, 13(2): 80-83.
    黄振裕,陈顺立,林庆源.混合杀虫剂对松突圆蚧的药效试验[J].福建林学院学报, 2005, 25(1): 43-46.
    贾之慎,刘志坤,傅一穷.竹类中黄酮化合物总量的研究[J].竹子研究汇刊,1995,14:39-52.
    李意德,顾茂彬.松突圆蚧危害程度划分的研究[J].林业科学研究, 1990, 3 (4): 411-415.
    李意德,王宝生.松突圆蚧危害与森林植被特征关系的研究[J].广东林业科技, 1990, (4): 6-11.
    林业部森林植物检疫防治所综合测报室.松突圆蚧自然扩散距离研究初报[J].森林病虫通讯, 1989, (3): 24-25.
    刘清浪,何雪香.松突圆蚧发育起点温度和有效积温的测定和应用[J].中南林学院学报, 1998, (10): 149-154.
    刘兴平,戈峰,陈春平.我国松树诱导抗虫性研究进展[J].林业科学, 2004, 39(5): 119-128.
    娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制[J].生态学报, 2000, 20(6): 1097-1106.
    娄永根,程家安.植物的诱导抗虫性[J].昆虫学报, 1997, 40(3): 320-331.
    陆家云.植物病原真菌学[M].北京:中国农业出版社,2000
    罗孟军,朱天辉.枯斑拟盘多毛孢粗毒素的基本性质研究[J].四川林业科技, 2002, 23 (4) :17-20.
    罗孟军,朱天辉.枯斑拟盘多毛孢生物学特性研究[J].四川林业科技, 2001 , 22 (3) :15-18.
    潘务耀.松突圆蚧花角蚜小蜂引进和利用的研究[J].森林病虫通讯, 1993(1): 15-18.
    潘务耀.松突圆蚧生物学特性及防治的研究[J].森林病虫通讯, 1989, (1): 1-6.
    谯天敏,朱天辉,李芳莲.绿粘帚霉与坚强芽孢杆菌对松赤枯病的协同生物控制[J].林业科技, 2006, 31(1): 28-31.
    秦秋菊,高希武.昆虫取食诱导的植物防御反应[J].昆虫学报, 2005 , 48 (1): 125-134.
    陕西师范大学化学系化学分析教研室.农业大学常用分析方法[M],陕西科学技术出版社,1980,361-366.
    谭迎华.植物抗病物质及其作用[J].沈阳师范学院学报, 2000, 18(2): 64-67.
    汤德良.植物抗虫的次生代谢物质[J].世界农业, 1999, (239): 32-33.
    唐子颖.花角蚜小蜂输引程序概要[J].昆虫天敌, 1994, 16(3): 123-126.
    童国健,许少嫦.花角蚜小蜂防治松突圆蚧技术的应用[J].森林病虫通讯, 1998, (2): 23-24.
    童应华,陈顺立,张飞萍.松突圆蚧种群动态及其与气象因子的关系[J].福建林学院学报, 2006, 26 (2): 107-110
    万方浩,郑小波,郭建英.重要农林外来入侵物种的生物学与控制[M].北京:科学出版社. 2005. 23-36.
    王竹红,黄建,梁智生.松突圆蚧花角蚜小蜂的引种与利用[J].福建农林大学学报, 2004, 33(3): 313-317.
    吴东儒.植物致病过程的生物化学和遗传学[M].合肥:安徽科学技术出版社, 1983.
    吴光旭,何庭玉,刘爱嫒.植物中抗病原真菌的活性物质[J].植物学通报, 2004, 21(3): 367-375.
    吴一鹏. 4种杀虫剂防治松突圆蚧的野外试验[J].华东昆虫学报, 2005: 14(1): 72-75.
    谢国林.松突圆蚧花角蚜小蜂的生物学[J].昆虫学报, 1995, 38(1): 46-53.
    徐汝梅,叶万辉.生物入侵:理论与实践[M].北京:科学出版社. 2003.
    徐世多,谢伟忠,陈纪文.松突圆蚧传播及控制的研究[J].林业科技通讯, 1992, (1): 5-8.
    许冬.虫害诱导植物间接防御机制[J].植物保护, 2009, 35 (1): 13-21.
    严国光,王福均.农业仪器分析法[M].农业出版社,1986,266-268.
    岩野,周蓉,刘粉珍.松赤枯病的防治方法[J].云南林业, 2002, (2): 17.
    张飞萍,钟景辉,江宝福,梁光红,苏军.松突圆蚧种群耐寒性的季节变化[J].生态学报, 2009a, 29(11) : 5813-5822.
    张飞萍,钟景辉,江宝福,梁光红,苏军.引进天敌花角蚜小蜂耐寒性的季节变化[J].生态学报, 2009b, 29(9): 4604-4612.
    张星耀,骆有庆.中国森林重大生物灾害[M].北京:中国林业出版社, 2003. 256-275.
    张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报, 1998, 41(2): 204-212.
    赵善欢,刘秀琼,黄彰欣.松突圆蚧的化学防治[J].昆虫学报, 1993, 36(2): 177-184.
    郑凌凌,朱天辉.枯斑拟盘多毛孢的培养条件对其产毒的影响[J].北京林业大学学报, 2006, 28(3): 115-118.
    钟景辉,张飞萍,江宝福,肖梅,陈家华.寄主植物对松突圆蚧耐寒性的影响[J].林业科学, 2009, 45(10): 100-107.
    周仲铭.林木病理学[M].北京:中国林业出版社. 1990.
    朱麟,杨振德,赵博光.植食性昆虫诱导的植物抗性最新研究进展[J].林业科学, 2005, 41(1): 165-173.
    朱天辉.枯斑拟盘多毛孢菌毒素的研究[D].四川农业大学博士论文. 2003.