宏/微两级驱动的大行程高精度二维定位平台基础技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以研究大行程、高精度定位平台为主要目的,结合浙江省科技计划(国际合作)项目“纳米级超精密定位平台的研制”(No.2004C24003),研制了以平面电机及超磁致伸缩致动器为驱动单元,以基于平面电容传感器的二维位移直接解耦测量系统为测量单元的大行程高精度二维定位平台,并进行了动力学分析、优化、控制和相应的技术基础研究与实验研究。
     第一章阐述了超精密定位平台的研究背景与意义,介绍了其中的驱动与测量技术,综合评述了当前国内外超精密定位平台大行程驱动方式、两级驱动方式以及位移测量技术的研究现状及其发展趋势,重点分析了实现大行程高精度二维定位的若干基础技术。最后给出了论文的主要研究内容,阐述了各章节结构之间的关系。
     第二章研究了超磁致伸缩致动器的动态磁滞模型。在致动器(准)静态磁滞模型的基础上,结合涡流阻抗的估算方法,建立了致动器在不同频率下的动态模型;研究了动态模型的数值计算方法,并对仿真与实验结果进行了对比分析。
     第三章根据超磁滞伸缩致动器(GMA)微动平台的磁、机特性,推导了GMA微动平台的动力学模型;建立了基于一阶有限差分-强跟踪滤波的扩展卡尔曼-布斯滤波方法,对GMA微动平台的位移测量信号进行滤波:并对所提滤波方法进行了仿真分析与实验验证。
     第四章研究了基于磁滞逆补偿的超磁致伸缩致动器自适应控制方法。采用二分法数值求解超磁滞伸缩致动器(GMA)(准)静态与动态磁滞全逆模型,并将逆模型应用于GMA精密定位控制系统的前馈补偿环节。对模糊PID控制、广义最小方差—模糊PID控制以及广义预测PID控制等自适应控制算法的控制效率、控制精度进行了仿真与实验研究。利用磁滞前馈逆补偿结合多模广义预测PID控制算法,提高GMA微动平台的定位精度和起动阶段的平稳性。
     第五章针对二维位移的测量,提出了基于平面电容传感器原理、具有直接解耦效果的二维位移测量方法。对比了无限大平行板电容器电容量计算公式、Hereen模型、MAXWELL静电场理论以及有限元等四种电容量计算方法的计算结果,在此基础上计算了传感器的灵敏度。最后,结合灵敏度指标对传感器的结构参数进行了设计。
     第六章研制了基于平面电容传感器的二维位移直接解耦测量系统。研究了基于平面电容传感器的二维位移直接解耦测量系统研制所采用的主要技术:采用电荷放大器检测电路对传感器输出微弱信号进行放大检测,以消除PCS分布电容的影响;采用锁相检测原理对检出的信号进行相敏解调,以消除由检测电路寄生电容造成的相移;利用研制的传感器所产生的相位若为90度的两路信号进行运动辨向、1/4周期计数、相位细分以及位移量整合计算;最后,叙述了测量系统所采用的抗干扰技术。
     第七章进行了宏/微两级驱动的大行程高精度二维定位系统实验研究。构建了宏/微驱动二维大行程精密定位实验平台,以及基于平面电容传感器的测量系统实验平台,对其进行了实验研究,分析了影响平台性能的主要因素。
Ultra-precision positioners with large range, have been widely applied in many fields. Most of these positioner are driven in coarse-fine mode. For 2-dimension positioning, the type, with one dimension positioner added on to another dimension one, is commonly used. Accordingly, one set of measuring system for one DOF's measurement, two set are applied for two DOF(X-Y) displacement measurements, which leads to Abbe error. Here, a new coarse-fine positioning method is put forward, with planar motor as the coarse driving part and giant magnetostrictive actuator (GMA), a smart material actuator, as the fine one, which avoids added-on installation for 2-DOF positioning as mentioned.
     For coarse-fine mode, fine positioning is decisive for the whole positioning accuracy, though coarse positioning also plays an important role. Therefore, inherent nonlinearity and hysteresis in GMA, greatly affecting the accuracy, has to be handled for the goal of ultra-precision positioning.
     Hysteresis exhibited by giant magnetostrictive actuator is rate-independent when the input frequency is low and can be modeled by static Jiles-Atherton model. It becomes rate-dependent due to the eddy current effect and the magnetoelastic dynamics when the input frequency gets high. In this case, the eddy current loss represented by eddy current impedance and the estimation of the GMA's eddy current impedance through effective permeability are studied.
     Before computing the error between the feedback displacement signal and the desired position, the feedback signal should be filtered to minimize the influence of noise and time-variant model parameters, caused by environment or by estimation deviation. To this end, the extended Kalman filter combined with 1~(st)-order devided difference and strong tracking filtering is established.
     To attenuate the nonlinear and hysteresis behaviors, the inverse of the Jiles-Atherton hysteresis model for hysteresis compensation, in other words, linearizing the GMA model, is employed. After the inverse hysteresis developed and the feedback displacement signal filtered, feedback control laws are designed to meet the performance specifications. Several adaptive control algorithms, respectively, combined with common PID controller are considered, including Fuzzy-PID control, generalized minimum variant Fuzzy-PID control, multi-mode generalized predictive control PID control. The performance of these control methods are illustrated through simulations and experiment studies.
     On the other hand, to erase Abbe error for 2-DOF measurement, the principle of the planar capacitive sensor-based 2-D direct-decoupling measurement is proposed. Four methods for the sensor's capacitance computing—equation for infinite parallel capacitor, equation by Hereen's model, equations derived from Maxwell static electric field theory and analysis by finite elements method-are provided, and their results are compared with. Based on capacitance computing, the sensitivity of the designed sensor is figured out. To balance the dimension and the sensitivity of the sensor, structural design is conducted to minimize the sensor area with the given sensitivity. Moreover, the techniques for signal detection and conditioning, increasing displacement computation and anti-interference implementation are discussed.
     At last, the coarse-fine positioner is established, the planar capacitive sensor-based 2-D direct-decoupling measuring system is constructed, and the according experiments have been conducted to verify above theoretical studies.
引文
[1]信息产业“十一五”规划,信息产业部.2008.
    [2]集成电路产业“十一五”专项规划,信息产业部.2008
    [3]fcCSP datasheet.Amkor Electronics,2007
    [4]Kano,Yoshio,Masaki Yamaguchi et al..Two-dimensional dc surface motor using window-shaped coils[J],Electrical Engineering in Japan(English translation of Denki Gakkai Ronbunshi),1999,128(1):70-77.
    [5]魏燕定.压电驱动器的非线性模型及其精密定位控制研究[J],中国机械工程,2004,15(7):565-568.
    [6]魏燕定,陶惠峰,压电驱动器迟滞特性的Pre isach模型研究[J],压电与声光,2004,26(5):364-367.
    [7]A.Sharon,N.Hogan,D.Hardt.High bandwidth force and inertia reduction using a macro/micro manipulator system[C],Proc IEEE International Conference on Robotics and Automation,1985:126-132.
    [8]刘红忠,卢秉恒,丁玉成等.超高精度定位系统及线性补偿研究[J],西安交通大学学报,2003,37(3):277-281.
    [9]刘红忠,丁玉成,卢秉恒等.纳米压印光刻中的多步定位研究[J],西安交通大学学报,2006,40(3):261-269.
    [10]孙立宁,孙绍云,曲东升等.大行程高精度宏/微双重驱动机器人系统的研究[J],高技术通讯.2004,14(4):50-52
    [11]孙绍云,曲东升,孙立宁等.宏/微驱动定位系统滑模变结构控制的研究[J],机器人,2004,26(1):32-34.
    [12]宋文荣.微电子制芯领域中磁悬浮精密平台的研究[D],中国科学院长春光学精密机械与物理研究所博士学位论文,2004.
    [13]陈本永.磁悬浮式微运动系统,发明专利号:03114739.9.
    [14]R.Riesenberg,A.Wuttig,Novel Optical MEMS / Micromechanical Devices As Field Selectors for Imaging Spectrometry,Proceedings of SPIE - The International Society for Optical Engineering:MOEMS and Miniaturized Systems Ⅱ,2001.V 339-347.
    [15]K.K.Tan,Tong Heng Lee,Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller[J],IEEE/ASME Transactions on Mechatronics,2001,6(4):428-436
    [16]PaHk Heui Jae,Dong Sung Lee,Jong Ho Park.Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation,International Journal of Machine Tools and Manufacture,2001,41(1):51-63.
    [17]Kano,Yoshio,Masaki Yamaguchi,and Masayuki Sugawara.Two-dimensional dc surface motor using window-shaped coils,Electrical Engineering in Japan(English translation of Denki Gakkai Ronbunshi),1999,128(I):70-77
    [18]Mike Holmesa,Robert Hocken,David Trumperb.The long-range scanning stage:a novel platform for scanned-probe microscopy,Precision Engineering,2000,24:191-209
    [19]T.L.Jordan,Z.Ounaies,Piezoelectric ceramics characterization[R],NASA/CR-2001-211225,ICASE Report No.2001-28.
    [20]Yunhe Yu,Preisach hysteresis modeling for piezoceramic actuator systems[D],Ph.D.thesis,University of Toledo,2000.
    [21]夏春林,丁凡,路甬祥.超磁致伸缩材料驱动驱动器实验研究[J],电工技术学报,1999,14(4):14-16,34.
    [22]贾宇辉,谭久彬.超磁致伸缩微位移驱动系统的研究[J].仪器仪表学报,2000,21(1):38-41.
    [23]A.G.Jennera,R.J.E.Smitha,A.J.Wilkinsonb,R.D.Greenougha.Actuation and transduction by giant magnetostrictive alloys[J],Mechatronics,2000,10:457-466.
    [24]贾振元,王福吉,张菊,郭丽莎.超磁致伸缩材料执行器磁滞非线性建模与控制[J],机械工程学报,2005,41(7):131-135.
    [25]I.D.Mayergoyz.Generalized Preisach model of hysteresis[J],IEEE Transactions on Magnetics,1988,24(1):212-217.
    [26]Ping Ge,Musa Jouaneh.Modeling hysteresis in piezoceramic actuators[J],Precision Engineering,1995,17:211-221.
    [27]D.C.Jiles and D.L.Atherton,Ferromagnetic hysteresis[J],IEEE Transactions on Magnetics,1983,19(5):2183-2185.
    [28]D.C.Jiles and D.L.Atherton,Theory of ferromagnetic hysteresis[J],Journal of Applied Physics,1984,55(6):2115-2120.
    [29]F.T.Calkins,R.C.Smith,and A.B.Flatau,Energy-Based Hysteresis Model for Magnetostrictive Transducers[J],IEEE Transactions on Magnetics,2000,36(2):429-439.
    [30]Marcelo J.Dapino,Ralph C.Smith,and Alison B.Flatau,Structural magnetic strain model for magnetostrictive transducers[J],IEEE Transactions on Magnetics,2000,36(3):545-556.
    [31]Bryant,M.D.and Wang,N.Audio range controllability of linear motion terfenol actuators[J].Journal of Intelligent Material Systems and Structures,1994(5):431-436.
    [32]D.C.Jiles,Modelling the Effects of Eddy Current Losses on Frequency Dependent Hysteresis in Electrically Conducting Media,IEEE Transactions on Magnetics,1994,30(6):4326-4328.
    [33]R.Venkataraman,Modeling and Adaptive Control of Magnetostrictive Actuators[D],Ph.D.thesis,University of Maryland,1999.
    [34]Tan X.B.,JOHN S.B..Control of hysteresis in smart actuators[R],Technical Research Report,CDCCSS TR 2002-8,2002.
    [35]Tan X.B..Control of smart actuators[D],Ph.D.thesis,University of Maryland,2002.
    [36]Nealis J.,Smith R.C..Partial inverse compensation techniques for linear control design in magnetostrictive transducers[J].SPIE,2001,4326:462-473.
    [37]Dozor J.M.,Engel B.B.,Kiley J.E..Modeling,optimization,and control of magnetostrictive high force to mass ratio reaction mass actuators[J],SPIE,1997,3044:370-381.
    [38]梅德庆,陈子辰.微制造平台的精密隔振系统研究[J],光学精密工程,2001,9(6):506-510.
    [39]Y.W.Park,M.C.Lim,D.Y.Kim.Control of a magnetostrictive actuator with feedforwarding inverted hysteresis[J],Journal of Magnetism and Magnetic Materials,2004,272-276:e1757-e1759.
    [40]Smith R.C..Inverse Compensation for Hysteresis in Magnetostrictive Transducers,Mathematical and Computer Modelling,2001,33:285-298.
    [41]James M.Nealis and Ralph C.Smith,Model-Based Robust Control Design for Magnetostrictive Transducers Operating in Hysteretic and Nonlinear Regimes,IEEE Transactions on Control Systems Technology,2007,15(1):22-39.
    [42]曹淑瑛,郑加驹,王博文等.基于动态递归神经网络的超磁致伸缩驱动器精密位移控制[J],中国电机工程学报,2006,26(3):106-111.
    [43]Y.Sun,B.Wang,W.Huang,et al..Hysteresis Compensation Control Algorithm for the Giant Magnetostrictive Actuators[C],Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation,Luoyang,China,2006,2139-2143.
    [44]Dahl,P.Measurement of solid friction parameters of ball bearings[C],Proc.of 6th Annual Symposium on Incremental Motion Control Systems and Devices,Urbana,IL,1977,49-60
    [45]Canudas de Wit,H.Olsson.A new model for control of systems with friction[J],IEEE Transactions on Automatic control,1995,40(3):419-425.
    [46]R.G.Brown.Introduction to random signal analysis and Kalman filtering[M],Wiley Press,1983.
    [47]Sri-Jayantha,M.,and Stengel,R.F..Determination of nonlinear aerodynamic coefficients using the estimation-before-modeling Method[J],Journal of Aircraft,1988,25(9):796-804
    [48]Ray,L.R.Nonlinear tire force estimation and road friction identification:simulation and experiments[J], Automatica,1997,33:1819-1833.
    [49]Ramasubramanian,A.,Ray,L.R..Friction cancellation in flexible systems using extended Kalman-Bucy Filtering[C],Proc.of American ControlConference,Denver,2003,1062-1067.
    [50]吴鹰飞,周兆英.柔性铰链的设计计算[J],工程力学,2002,19(6):136-140.
    [51]节德刚.宏/微驱动高速高精度定位系统的研究[DJ,哈尔滨工业大学博士学位论文,2006.
    [52]A.A.Elmustafa,Max G.Lagally,Flexurai-hinge guided motion nanopositioner stage for precision machining:finite element simulations[J],Precision Engineering,2001(25):77-81.
    [53]曾光宇,杨湖,李博.现代传感器技术与应用基础[M],北京理工大学出版社,2006.
    [54]RENISHAW Corporation.http://www.renishaw.ru/client/product/Chinese/PRD-6330.shtml.
    [55]ZYGO Corporation.zmi4004_ds.pdf.
    [56]HEIDENHAIN Corporation.exposedlinear.pdf.
    [57]长春光机数显技术有限公司.http://www.ciomp.ac.cn/info/content.asp.
    [58]成都远恒精密测控技术有限公司.http://www.cdyh.com/gscgq.htm.
    [59]Micro-Epsilon Corporation.D_capa6100_e.pdf.
    [60]ChenYang Technologies GmbH & Co.http://www.chenyang-ism.com/CapaSensorPosi.htm.
    [61]Moojin Kim,Wonkyu Moon.,Euisung Yoon,etc..A new capacitive displacement sensor with high accuracy and long-range[J],Sensors and Actuators A,2006,130-131:135-141
    [62]Xuanze Wang,Xiaohua Dong,Jun Guo and Tiebang Xie,Two-dimensional displacement sensing using a cross diffraction grating scheme[J],Journal of Optics A:Pure and Applied Optics,2004(6):106-111
    [63]Kao Ching-Fen,Lu Sheng-Hua,Lu Mao-Hong,High resolution planar encoder by retro-reflection[J],Review of Scientific Instruments,2005.76:085110.
    [64]Reinishaw plc,RGX planar encoder system,http://www.renishaw.com
    [65]W.Gao,S.Dejima,S.Kiyono,A dual-mode surface encoder for position measurement[J],Sensors and Actuators,A:Physical,2005,117(1):95-102.
    [66]王碧波,岳金福,周泽兵,彭益武.基于二维精密电容微位移传感器的二维纳米定位系统[J],纳米技术与精密工程,2005,3(2):137-141.
    [67]P.G.Hanwell,Robert G.Walmsley.Integrated position sensing for control of XY actuator[C],Proceedings of IEEE Sensors,2004,3:1407-1410.
    [68]A.A.Kuijpers,R.J.Wiegerink,G.J.M.Krijnen,et al..Capacitive long-range position sensor for microactuators,Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)[C],Technical Digest,2004,544-547.
    [69]M.Bonse,F.Zhu,and J.Spronck,New two-dimensional capacitive position transducer,Sensors and Actuators,A:Physical,1994,41-42:29-32.
    [70]H.Furuichi,R.S.Fearing,Planar capacitive micro positioning sensor[C],Proceedings of the International Symposium on Micromechatronics and Human Science,1996,85-90.
    [71]邬义杰,刘楚辉.超磁致伸缩驱动器设计方法的研究[J],浙江大学学报(工学版),2004,38(6):747-760.
    [72]梅德庆,浦军,陈子辰.用于超精密隔振的稀土超磁致伸缩致动器设计[J],仪器仪表学报,2004,25(6):766-769.
    [73]M.J.Sablik,D.C.Jiles.A model for hysteresis in magnetostriction[J],Journal of Applied Physics,1988,64(10):5402-5404.
    [74]F Stillesjo,G.Engdahl,A.Bergqvist.A Design Technique for Magnetostrictive Actuators with Laminated Active Material[J].IEEE Transactions on Magnetics,1998,34(4):2141-2143.
    [75]L.Kvarnsjo,G Engdahl.Examination of eddy current influence on th.e behavior of a giant magnetostrictive functional unit[J].Journal of Applied Physics,1990,67(9):50105012.
    [76]G.Engdahl,A.Bergqvist.Loss simulations in magnetostrictive actuators[J].Journal of Applied Physics,1996,79(8):4689-4691.
    [77]唐志峰.超磁致伸缩执行器的基础理论与实验研究[D],浙江大学博士学位论文,2005.
    [78]田春林.超磁致伸缩执行器的本征非线性研究及其补偿控制[D],上海交通大学博士学位论文,2007.
    [79]任吉林,林俊明,高春法.电磁检测[M],北京:机械工业出版社,2000.
    [80]R.L.斯托尔 著,史乃 译,涡流分析[M],哈尔滨:黑龙江科学技术出版社,1983.
    [81]倪光正.工程电磁场原理[M],北京:高等教育出版社,2002.
    [82]Marcelo Jorge Dapino.Nonlinear and hysteretic magnetomechanical model for magnetostrictive transducers[D].Iowa State,1999.
    [83]陈戬恒.应用于精密定位的超磁滞伸缩执行器的控制研究[D].浙江大学硕士论文,2007.
    [84]D.C.Jiles,J.B.Thoelke,M.K.Devine.Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis[J],IEEE Transactions on Magnetics,1992,28(1):27-35
    [85]P.R.Wilson,J.N.Ross and A.D.Brown.Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm[J],IEEE Transactions on Magnetics,2001,37(2):989-993.
    [86]程耀东.机械振动学[M],杭州:浙江大学出版社,1990.
    [87]Rick Kellogg,Alison Flatau.Investigation of a Terfenol-D tunable mechanical resonator,Proceedings of SPIE,2001,4327:550-559.
    [88]杨大智,智能材料与智能系统[M],天津:天津大学出版社,2000.
    [89]候媛彬,汪梅,王立琦.系统辨识及其Matlab仿真[M],北京:科学出版社.2004.
    [90]M.S.Grewal,A.P.Andrews.Kalman filtering theory and applications(2~(nd) Edition)[M],Wiley InterScience Press,2001.
    [91]周东华,叶银忠.现代故障诊断与容错控制[M],北京:清华大学出版社,2000.
    [92]M.Bai,D.H.Zhou,Helmut Schwarz.Identification of generalized friction for an experimental planar two-link flexible manipulator using strong tracking filte[J],IEEE Transactions of Robotics and automation,1999,15(2):362-369.
    [93]T.S.Schei,A finite-difference method for linearization in non-linear estimation algorithms[J],Automatica,1997,33(11):2053-2058.
    [94]M.Norgarrd,N.K.Poulsen,O.Ravn,New developments in state estimation for nonlinear systems[J],Automatica,2000,36:1627-1638.
    [95]M.Norgarrd,N.K.Poulsen,O.Ravn,Advances in Derivative-free state Estimation for Nonlinear Systems [R],Technical report:IMM-REP-1998-15,Technical University of Denmark,2000.
    [96]Wang Wen,Li Xinxin,Chen Zichen.A new friction estimation approach for precision positioner[C].Proceedings of the International Conference on Integration and Commercialization of Micro and Nanosystems,2007,vA:715-718.
    [97]P.A.Ruymgaart,T.T.Soong.Mathematics of Kalman-Bucy filtering[M],Springer-Verlag,1985.
    [98]R.F.Stengel.Stochastic optimal Control:theory and application[M],John Wiley Press,1986.
    [99]J.M.Nealis.Model-Based Robust control designes fo high performance magnetostrictive transducers[D],North Carolina State University,2003.
    [100]李欣欣,王文,陈戬恒,陈子辰.Jiles-Atherton模型的超磁致伸缩驱动器磁滞补偿控制[J].光学精密工程,2007,15(10):1558-1563.
    [101]张化光,何希勤.模糊自适应控制理论及其应用[M],北京:北京航空航天大学出版社,2002.
    [102]易继铠,候媛彬.智能控制技术[M],北京:北京工业大学出版社,1999.
    [103]L.Wang,J.B.Tan,Y.T.Liu.Research on Giant Magnetostrictive Micro-displacement actuator with self-adaptive control Algorithm[J],Journal of Physics:Conference Series,2005,13:446-449.
    [104]谢新民.自适应控制系统[M],北京:清华大学出版社,2002.
    [105]周东华.非线性系统的自适应控制导论[M],北京[海德堡]:清华大学出版社[施普林格出版社],2002.
    [106]杨承志,孙棣华,张长胜.系统辨识与自适应控制[M].重庆:重庆大学出版社,2003.
    [107]张化光,何希勤.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社,2002.
    [108]D.W.Clark,C.Mohtadi,P.S.Tufts.Generalized predictive control,Part 1 and Part 2[J],Automatica,1987,23(2):37-160.
    [109]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005.
    [110]王伟.广义预测控制理论及应用[M].北京:科学出版社,1998.
    [111]李欣欣,王文,陈戬恒,陈子辰.超磁致伸缩致动器的广义最小方差.模糊PID控制方法[J].光学精密工程,2008,16(4):1678-1686.
    [112]吴鹏松,周志杰,周东华.基于强跟踪滤波器的组合自适应控制方法研究,中国科技论文在线,2003.
    [113]朱蕴璞,孔德仁,王芳.传感器原理及应用[M],国防工业出版社,2005.
    [114]Wang Wen,Li Xinxin,Chen Zichen,A Planar Capacitive Sensor for Large Scale Measurement,Key Engineering Materials,2008,v.381-382:509-512.
    [115]王文,李欣欣,陈子辰.一种基于电容测量原理的平面电容传感器,实用新型专利,2008,专利号:200720114326.2.
    [116]L.K.Baxter,Capacitive sensors:design and applications[M],IEEE Press,1997.
    [117]W.C.Heerens.Application of capacitance techniques in sensor design,J.Phys.E:Sci.Instrum,.1986,19.
    [118]W.C.Heerens.Multi-terminal capacitor Sensors,Journal of Physics E:Sci.Instrum.,1982,15:137-141.
    [119]S.Hoen,P.Merchant,G.Koke,J.Williams.Electrostatic surface drives_theoretical considerations and fabrication[C],International Conference on Solid-state Sensors and Actuators,Chicago,1997.
    [120]A.Pedrocchi,S.Heon,G.Ferrigno,et al..A.Perspectives on MEMS in bioengineering:a novel capacitive position microsensor,IEEE Transactions on Biomedical Engineering,2000,47(1):8-11.
    [121]M.H.W.Bonse,C.Mul,J.W.Spronck.Finite-element modelling as a tool for designing capacitive position sensors[J],Sensors and Actuators A,1995,46-47:266-269.
    [122]A.A.Kuijpers,G.J.M Krijnen,R.J.Wiegerink.2D-finite-element simulations for long-range capacitive position sensor[J],Journal of Micromech.Microeng,2003,13:S183-S189.
    [123]牛刚,贾志海,王经.基于ANSYS的多极板电容传感器仿真研究[J],仪器仪表学报,2006,27(3):280-284.
    [124]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析[M],电子工业出版社,2005.
    [125]R.B.McIntosh,P.E.Mauger,S.R.Patterson.Capacitive transducers with curved electrodes[J],IEEE Ssensors Journal,2006,6(1):125-138.
    [126]G.Ferri,P.De Laurentiis.A novel low voltage low power oscillator as a capacitive sensor interface for portable applications[J],Sensors and Actuators,1999,76:437-441.
    [127]张涛,位会兰,徐英.低功耗低温漂数字式电容角位移传感器[J],Journal of Tianjin University,2006,39(5):559-562.
    [128]董永贵.传感器及信号调理,清华大学出版社,2006.
    [129]H.Rodjegard,A.Loof.A differential charge-transfer readout circuit for multiple output capacitive sensors [J],Sensors and Actuators A,2005,119:309-315.
    [130]刘俊,张斌珍.微弱信号检测技术[M],电子工业出版社,2005.
    [131]Anolog Device Corporation.MLT04技术手册.
    [132]戴逸松.微弱信号检测方法及仪器[M],北京:国防工业出版社,1994.
    [133]林凌,洪权,李刚等.模拟乘法器MLT04在高精度微弱光信号锁相检测电路中的应用[J],光电子技术,2005,25(4):263-266.
    [134]吕海宝.激光光电检测[M],长沙:国防科技大学出版社,2000.
    [135]张增耀,骆家贤,容栅技术[M],中国计量出版社,2002.
    [136]李建文,刘书亮,付敬业等.高精度电容测微仪关键技术[J],天津大学学报,2004,37(9):787-791.
    [137]MESA Corporation,MHR系列微型LVDT datasheet.
    [138]Nanomotion Ltd..HR4 Motor User Manual.
    [139]RENISHAW Corporation.RGH25F high resolution encoder system(Datasheet).
    [140]RENISHAW Corporation.ML10-Golden User Mannual.
    [141]Linear Technology,LT1169 datasheet.