JA/SW三维混合磁滞模型理论及仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来,磁性器件得到广泛的应用,但磁性材料的磁化过程伴随有能量的损耗,产生磁滞现象,这种磁滞非线性有时会产生较大的滞回性误差,这就限制了磁性器件的广泛使用。因此,对磁性器件磁滞现象的研究具有重要意义。
     本文首先对磁性材料、磁性器件和Jiles-Atheron(JA)、Preisach、Stoner-Wolhfarth(SW)、Globus四种磁滞模型做了介绍,然后对JA和SW两种模型及各自的性能和局限性做了细致的分析。
     详细研究了JA模型的基本理论及其数学执行式,采用JA模型算法的程序研究了JA模型中k、a、α、c、MS 5个参数对JA磁滞曲线的影响。
     接下来研究了SW模型理论,在对比了JA模型和SW模型各自的性能和局限性的基础上,提出了一种新型的JA/SW三维混合模型。该模型将两种模型合并到一个方程中,以SW得出的三维各向异性的向量作为JA模型的输入,从而实现了将各向异性引入到JA模型中。在JA/SW混合模型理论的基础上又详细的研究了几个重点参数对JA/SW磁滞曲线的影响。
     为了验证新提出的JA/SW混合模型的可行性,利用JA/SW算法的程序对微型磁通门传感器进行了仿真。通过设置算法中各参数的不同值来进行仿真,然后与同条件下由实验得到的曲线进行比较。通过分析仿真结果,发现与实验得到的曲线形状基本一致。结果表明JA/SW模型能完成对磁滞的模拟,是一个可使用的较优化的磁滞模型,但也存在一定的误差。
Recently, devices are applied widely, however, magnetization process of magnetic materials accompany with energy loss, cause hysteresis, This non-linear hysteretic sometimes can produce a greater hysteretic nature of the error, which limits the widespread use of magnetic devices. So, it is important to research on the hysteresis of magnetic devices.
     In this paper, first we introduce the magnetic material, the magnetic devices and the Jiles-Atherton(JA), Preisach, Stoner–Wolhfarth(SW), Globus four hysteresis models, and then made a detailed analysis to the performance and limitation of the JA model and SW model. It discuss the fundamental theory and implementation of JA model in detail, and employ the procedure of JA algorithm to study the influence of k, a,α, c, MS five parameters on JA hysteresis curve.
     The next we discuss the SW theory. We propose a hybrid 3-D JA/SW model after comparing the performance and limitation of JA model with SW model. The proposed model incorporates both models into one single formulation. We employ a virtual 3-D anisotropy-field vector calculated with SW theory as the input of JA model; in this case we introduce the anisotropic into JA model. We discuss the role of several key parameters on JA/SW hysteresis curve.
     We employ the hybrid 3-D JA/SW algorithm to simulate the response of miniature flux door sensor, in order to test the feasibility of the proposed hybrid 3-D JA/SW algorithm. We carry out the simulation by setting different parameters of the proposed algorithm, and compare with the hysteresis curve obtained from experiment. We discovered that it practically fitted with the experimental result by analyzing the simulation result. It show that JA/SW model can achieve the simulation of hysteresis. The proposed model is a optimized model, however, there be some errors.
引文
[1]冯雪.铁磁材料本构关系的理论和实验研究.[博士学位论文].北京:清华大学,2002
    [2]潘树明.第3代永磁材料——钕铁硼磁体.稀有金属材料与工程,1993,22(3):1-6
    [3]刘宗良.用于电网GIC影响分析的变压器模型研究.[硕士学位论文].保定:华北电力大学,2009
    [4]关于铝镍钻永磁合金某些问题的讨论.兰州大学物理系磁学教研组.
    [5]肖海航,曹宁,张辉.永磁材料及其在风电永磁发电机上的应用.东方电机,2009年第1期:37-43
    [6]周浩淼.铁磁材料非线性磁弹性耦合理论及其在超磁致伸缩智能材料中的应用.[博士学位论文].兰州:兰州大学,2007
    [7]李晓飞.地磁感应电流作用下的变压器模型研究.[硕士学位论文].保定:华北电力大学,2008
    [8]彭晨光,刘连光.基于JA理论的750kV自耦变压器直流偏磁研究.华东电力,2010,38(3):0349-0353
    [9]曹淑瑛.超磁致伸缩致动器的磁滞非线性动态模型与控制技术.[博士学位论文].天津:河北工业大学,2004
    [10]U. D. Annakkage,P. G. McLaren,E. Dirks, R. P. Jayasinghe,A. D. Parker. A Current Transformer Model Based on the Jiles–Atherton Theory of Ferromagnetic Hysteresis. IEEE Transactions on Power Delivery,2000,15(1) :57-61
    [11]Zdzislaw Wlodarski. The Jiles-Atherton Model With Variable Pinning Parameter. IEEE Transactions on Magnetics,2003,39(4):1990-1992
    [12]王博文,曹淑瑛,黄文美.磁致伸缩材料与器件.北京:冶金工业出版社.2008
    [13]Panagiotis D. Dimitropoulos, Georgios I. Stamoulis, Evangelos Hristoforou. A 3-D Hybrid Jiles–Atherton/Stoner–Wohlfarth Magnetic Hysteresis Model for Inductive Sensors and Actuators.IEEE Seneors Journal,2006,6(3):721-736
    [14]A. J. Bergqvist. A simple vector generalization of the Jiles–Atherton model of hysteresis.IEEE Transaction on Magnetic,1996,32(5):4213-4215
    [15]D. C. Jiles, J. B. Thoelke. Theory of ferromagnetic hysteresis: determination of model parameters from experimantal hysteresis loops.IEEE Transaction on Magnetic,1989,25(5):3928-3930
    [16]田春,汪鸿振.超磁致伸缩执行器的自由能磁滞模型的优化算法研究.中国机械工程,2005,16(1):24-27
    [17]田春,汪鸿振.超磁致伸缩执行器的自由能磁滞模型的数值实现.机械科学与技术,2005,24(6):650-652
    [18]曹淑瑛,王博文,闰荣格,黄文美,翁玲.超磁致伸缩致动器的磁滞非线性动态模型.中国电机工程学报,2003,23(11):145-149
    [19]F. Liorzou, B. Phelps, and D. L. Atherton. Macroscopic models of magnetization.IEEE Transactionson Magnetics,2000,36(2):418-420
    [20]B. F. Phelps, F. Liorzou, D. L. Atherton. Inclusive model of ferromagnetic hysteresis.IEEE Transactions on Magnetics,2002,38(2):1326–1332
    [21]Yevgen Melikhov, David C. Jiles, Ivan Tomás, Chester C. H. Lo, Oleksiy Perevertov, Jana Kadlecová. Investigation of Sensitivity of Preisach Analysis for Nondestructive Testing.IEEE Transactions on Magnetics,2001,37(6):3907-3912
    [22]D. L. Atherton, J. R. Beattie. A mean field Stoner–Wohlfarth hysteresis model.IEEE Transactions on Magnetics,1990,26(6): 3056–3063
    [23]H. W. L. Naus. Ferromagnetic Hysteresis and the ffective Field.IEEE Transactions on Magnetics,2002,38(2):3417-3419
    [24]W.Chandrasena, P.G.McLarc:nt ,U.D.Annakkage, R.P. Jayasinghet ,E.Dirks.Simulation Of Eddy Current Effects in Transformers. IEEE Canadian Conference on Electrical and Computer Engineering, 0-7803-75 14,2002
    [25]A. Ramesh, D. C. Jiles, J. M. Roderick. A model of anhysteretic magnetization.IEEE Transactions on Magnetics,1996,32(5):4234-4236
    [26]梁乃茹,吴晋彬.非晶金属丝的电磁性能及其在传感技术中的应用.金属功能材料,1997年第2期:55-60
    [27]赵英俊,杨克冲.非晶态合金的的典型磁效应及其在传感器技术中的应用方法.中国机械工程,1996,7(2):22-26
    [28]P. D. Dimitropoulos , J. N. Avaritsiotis.A micro-Fluxgate sensor based on the Matteucci effect of amorphous magnetic fibers. Sens. Actuators A, vol. 94, pp. 165–176, 2001.
    [29]C. Jiles, A. Ramesh, Y. Shi,X. Fang. Application of the anisotropic extension of the theory of hysteresis to the magnetization curves of crystalline and textured magnetic materials. IEEE Trans.Magn., vol. 33, No. 5, pp. 3961–3963, Sep. 1997
    [30]刘福贵,陈海燕,刘硕,颜威利.利用神经网络实现对磁滞特性的数值模拟.河北工业大学学报,2001,30(2):33-36
    [31]涂凝,郭文生,曹大平.磁通门传感器的应用与发展.《水雷与舰船防护》,2002年第1期:36-38
    [32]赵素英,李凤舞.磁性材料磁特性的巴克豪森跳跃描述.河北师范大学学报,2004,28(3):254-257
    [33]熊林,苏建仓,何锋,刘纯亮.磁性材料磁滞回线模型参数的计算.真空电子技术研究与技术,2004,第三期:16-19
    [34]郑加驹,王洪礼,曹淑瑛.超磁致伸缩驱动器频率相关的动态磁滞模型.机械工程学报,2008,44(7):38-44
    [35]韩同鹏,李国平.基于磁化机理的超磁致伸缩执行器磁滞模型.功能材料与器件学报,2010,16(1):41-46
    [36]赵海森,杨亚秋.铁磁材料损耗的产生机理及其计算基础.国家科技支撑计划资助项目(2008BAF34B01).
    [37]吴晓薇,郭子政.铁磁/反铁磁体系中交换偏置的角度依赖关系.信息记录材料,2010,11(5):54-57
    [38]郭子政.斯通纳粒子LLG方程的线性稳定性分析.内蒙古师范大学学报(自然科学汉版),2009,38(2):151-160
    [39]耿冰,马桂荣.磁信息材料的特点与应用.电大理工,2007年第4期:11-15
    [40]张雅茹,兰慕杰,王东红.微型磁通门传感器研究的现状与未来发展.遥测遥控,2002,23(4):1-7
    [41]常世杰,邵鹏睿,李鹏.磁矩翻转过程动力学研究的基本问题及进展.《装备制造技术》,2007年第5期:18-20
    [42]吴安国.零磁致伸缩非晶磁性传感器.磁性材料及器件.1994,25(1):42-47
    [43]蒋颜玮,房建成,盛蔚,黄学功.巨磁阻抗磁传感器的研究进展.仪表技术与传感器.2008年第8期:1-6
    [44]王美丽.霍尔传感器的应用探讨.山西电子技术.2010年第4期:84-86