超磁致伸缩换能器正逆效应和自感知基础理论及仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料(GMM)的优异性能使其在电-机换能、传感器、自感知执行器等领域具有广阔的应用前景。对磁致伸缩正逆效应与自感知理论的研究,必将推动和加速超磁致伸缩材料在智能器件中的应用。
     本文首先对超磁致伸缩材料的性能和换能器的用途做了详细的阐述,对自感知执行器的概念做了简要的说明,给出了论文的主要工作。
     其次,详细论述了磁致伸缩机理和磁致伸缩材料的基本特性,介绍了磁致伸缩机理的三种表现形式和基于自感知机理的压磁方程,说明了恒温和变温下两个方程的含义。从J-A模型入手,结合二次畴转模型和动力学模型,建立了磁致伸缩换能器的正效应模型。利用该模型编制了仿真程序,对外加磁场与磁化强度、位移和磁致伸缩之间的关系进行了仿真研究。仿真结果表明,当偏置电流大小低于激励电流幅值时,位移和应变均会有倍频现象发生,增大偏置电流倍频现象减弱或者消失
     利用磁机耦合模型建立了磁致伸缩换能器的逆效应模型,利用该模型编制了仿真程序,对外加应力与磁化强度、感应电压之间的关系进行了仿真研究。仿真结果表明,预应力越大,输出电压峰-峰值越小。仿真结果与实验结果对比,验证该模型的准确性。
     研究了电桥电路自感知检测原理,并编写换能器的动力学状态方程程序,将电路部分和器件动力学模型结合建立了自感知电桥电路模型I;在电桥电路模型I的基础上,将J-A模型引入得到电桥电路模型II,仿真结果表明此模型能更准确的描述材料本身的磁滞非线性,从而为实际搭建电桥电路提取自感知电压信号做铺垫。利用压磁方程和法拉第定律推导了自感知力和位移的公式,将自感知电压信号转化为自感知力和速度信号,从而在电桥电路模型II得到改进的电桥电路模型III。
Giant magnetostrictive material (GMM) has a lot of outstanding performances, which make it have a broad prospect well in sonar, detection, magnetical, mechanical and eleetrical transducer fields. The research on the positive& inverse effect and self-sensing theory will push forwad and accelerate the giant magnetostrictive material in smart device application.
     Firstly, the performances of giant magnetostrictive material and applications of the giant magnetostrictive transducer are explained in detail in the paper, the concept of self-sensing actuator is summarized briefly; the main jobs are gived in paper.
     Secondly, the magnetostriction mechanismbasic and the basic features of GMM are expounded in detail, three kinds of forms of magnetostrietive fundamental phenomenons and piezomagnetic equations on account of self-sensing fundamentalare introduced, the meanings of two equations are talked about under constant temperature and change temperature.
     The paper established a positive effect model of magnetostrictive transducer based on the JA model and combined with secondary domain model and dynamic model. According to the model the simulation program is compiled, a research on the simulation for the relationship of additional magnetic field and magnetic field intensity, displacement and magnetostrictive is made. The simulation result show that both displacement and strain would occur times frequency phenomenon when bias current less than the excited current. The times frequency phenomenon will weaken and disappear with increasing bias current.
     An inverse effect model of magnetostrictive transducer based on the magnetic machine coupling model is established. And compile the simulation program according to the inverse effect model.The paper make a research on the simulation for the relationship of the applied stress and magnetizing strength, and the relationship of the applied stress and inductive voltage. The simulation result show that the bigger the prestress and the smaller the output voltage peak–peak. It verifies the accuracy of the model by contrasting the simulation results and experimental results.
     The paper discuss the theory of self-sensing detection of electric bridge circuit, and compile the program of dynamic equation of transducer. It present the model I of self-sensing detection of electric bridge circuit by combining the circuit with dynamics model. According to the model I of self-sensing detection of electric bridge circuit, JA model into the model II of self-sensing detection of electric bridge circuit is introduced. The simulation result shows that the model II can accurately describe the hysteresis nonlinear of the material themselves. Basis on it we can build a bridge circuit in practice and extract self-sensing signal. It derives the formulation of self-perception force and displacement. with piezomagnetic equation and Faraday’s law, and convert the self-sensing voltage signal into a self-sensing force and speed signal, therefore, derive the mode III of electric bridge circuit by improving the mode II of electric bridge circuit.
引文
[1]王静,顾大强,邬义杰.超磁致伸缩材料与自传感执行器[J].农业机械学报,Vol.36,No.2,2005,2
    [2]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000
    [3]王博文,曹淑瑛,黄文美.磁致伸缩材料与器件[M].北京:冶金工业出版社,2008
    [4]钟文定.铁磁学(中册) [M].北京:科学出版社,1984
    [5]段慧.超磁致伸缩自感知执行器基础理论与实验研究[D].天津:河北工业大学,2007
    [6]杜立群,颇云辉,王德俊.智能结构发展综述[J].机械设计与制造,1997(3):49-54
    [7]Tzou H S, Anderson G L, Natori M C.Active structure, devices, and systems[M], Chapter authored by Gacia E and Jones L D, World Science Publishing Comnany,1997
    [8]董维杰,孙宝元,崔玉国等.自感知执行器—传感器、执行器集成新概念[J].压电与声光,2001,23(2):l20-l2
    [9]杨贵新.超磁致伸缩换能器驱动系统的设计[D].天津:河北工业大学,2006
    [10]贺西平.稀土超磁致伸缩换能器[M].北京:科学出版社,2006
    [11]Nakano, et al. Giant Magnetosttictive Acoustics Transducer and Its Application To Acousticmouitoring of Oceans. International Syaposium on Giant Magnetosttictive Materials and Their Applications. Japan,1992,77-82
    [12]贺西平,孙进才,李斌.低频大功率稀土磁致伸缩弯张换能器的有限元设计理论及实验研究II实验部分[J].声学学报,2001,26(4):378-380
    [13]徐爱群.超磁致伸缩采油换能器工作机理及应用基础研究[D].浙江:浙江大学,2007
    [14]徐爱群等.超磁致伸缩振动器谐振频率自感知机理研究[J].振动与冲击,2010,29(3):26-29
    [15]贺西平,孙进才,李斌.低频大功率稀土磁致伸缩弯张换能器的有限元设计理论及实验研究I理论部分[J].声学学报,2000,25(6):521-527
    [16]邹波.超磁致伸缩自感知方法与实验研究[D].浙江:浙江大学,2010
    [17]Dosch J, Inman D J, Garcia E. A self-sensing piezoelectric actuator for collocated control [J]. Journalof Intelligent Material Systems and Structures.1992.3(1):166-185
    [18]Pons J L,Reynaerts D,Peirs J.Comparison of different control approaches to drive SMA a ctuators,International Conference on Advanced Robotics,1997,p819-824
    [19]Pratt J,Flatau A.Development and analysis of a self-sensing magnetostrictive actuator design,Proceedings of the 1993 SPIE Smart Materials and structures Conference,1993,SPIE 1917pp.952-961
    [20]Jones L D, Garcia E. Self-sensing magnetostrictive actuator for vibration. Suppression, J. Guidance, 1996,19(3):713-715
    [21]Kuhnen,K.,Schommer,M.,Janocha,H.,“Design of a smart magnetostrictive actuator by sensing thevariationof magnetic flux,”Proceeding of the 11th International Conference of Sensor 2003,Nuremberg,May 2003,pp.267-272
    [22]杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究[D].大连:大连理工大学,2001
    [23]唐志峰.超磁致伸缩执行器的基础理论与实验研究[D].浙江:浙江大学,2005
    [24]郑加驹,王洪礼,曹淑瑛.基于逆磁致伸缩效应的超磁致伸缩磁力控制器建模[J].机械工程学报,2008,44(5) :51-56
    [25]张菊.超磁致伸缩执行器磁滞建模与控制技术研究[D].大连:大连理工大学,2004
    [26]孙乐.超磁致伸材料的本构理论研究[D].甘肃:兰州大学,2007
    [27]周浩淼.铁磁材料非线性此弹性耦合理论及其在超磁致伸缩智能材料中的应用[D].甘肃:兰州大学,2007
    [28]刘楚辉.基于超磁致伸缩材料的微位移致动器设计与研究[D].浙江:浙江大学,2004
    [29]翁玲.超磁致伸振动传感器的模型与实验研究[D].天津:河北工业大学,2008
    [30]赵英俊,杨克冲,杨叔子.非静态合金传感器技术与应用[M].武汉:华中理工大学出版社, 1998
    [31]唐志峰,吕福在,项占琴.影响超磁致伸缩执行器中逆效应性能的主要因素[J] .机械工程学报,2007,43(12):133-136
    [32]孙慷,张福学.压电学[M].北京:国防工业出版社.1984
    [33]董维杰,孙宝元.基于压电自感知执行器悬臂梁振动控制[J].大连理工大学报,2001,41(1):77-80.
    [34]董维杰.压电自感知执行器理论与应用研究[D].大连:大连理工大学,2003
    [35]Claeyssen F, Lhermet N, Leletty R. Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds, 1997, 258:61-73
    [36]胡明哲,李强,李银祥等,磁致伸缩材料的特性及应用研究(II),稀有金属材料与工程,2001, 30(1):1-4
    [37]熊燕玲,赵洪,张剑等,基于超磁致伸缩材料的光纤光栅交流电流传感系统,电工技术学报,2006 21(4):16-19
    [38]文西芹,宁晓明,张永忠等,磁致伸缩传感器技术应用的发展[J].传感器技术,2003,22(2):1-4
    [39]莫喜平.稀土超磁致伸缩水声换能器的研究.北京:中国科学院声学研究所博士后研究工作报告,2000.7
    [40]M.J.Dapino,R.C.Smith,S.Seelecke. Free energy model for hysteresis in magnetostrictive transducers. Journal of Applied Physics,2003,93(1):458-466
    [41]D.C.Jiles,D.L.Atherton. Ferromagnetic Hysteresis. IEEETrans.Magn.,1983,19(5):2183-2185
    [42]曹淑瑛,王博文,闫荣格等.超磁致伸缩致动器的磁滞非线性动态模型[J].中国电机工程学报,2003,23(11):145-149
    [43]曹淑瑛.超磁致伸缩致动器的磁滞非线性动态模型与控制技术[D].天津:河北工业大学,2004
    [44] Gaylord,M.L.著.包紫薇等译.电声学.北京:科学出版社1981
    [45]徐爱群.超磁致伸缩换能器谐振频率自动跟踪方法[J].中国电机工程,2009,21(29):114-118
    [46]薛定宇.控制系统仿真与计算机辅助设计,机械工业出版社,2005
    [47]王正林等.Matlab/simulink与控制系统仿真,电子工业出版社,2005
    [48]F.Claeyssen, N.Lhermet, F.Barillot, R.Leletty. Giant dynamic strains in magnetostrietive actuators and trducers, Paper presented at ISAGMM 2006 CONF., OCT.2006:78-93
    [49]http://etrema-usa.com/documents/Terfenol.pdf
    [50]郑慧.基于GMM驱动位移自感知微进给装置设计及测试系统研究[D].武汉:武汉理工大学,2010
    [51]郑加驹.超磁致伸缩换能器滞回非线性的研究[D].天津:天津大学,2009