输出力可控的超磁致伸缩执行器控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料拥有大磁致伸缩系数,高能量密度、低驱动磁场、快速响应能力等特点,存在于材料本身的磁致伸缩正逆效应使其既可以用于驱动又可以用于传感,因此以超磁致伸缩材料为核心元件的各种器件的理论研究与工程应用已引起了国内外学者的广泛关注,尤其是超磁致伸缩执行器,由于具有的输出位移和力大、响应速度快、温度范围宽、低压可操作等突出优点,在国内外已经掀起了一股研究热潮。
     目前超磁致伸缩执行器的研究主要集中在对其输出位移的研究,而关于执行器输出力的研究相对较少,本文针对以力的形式输出的超磁致伸缩执行器在精密与超精密加工领域中应用的需要,以超磁致伸缩执行器的输出力为直接研究对象进行了建模与实验研究。建立了超磁致伸缩执行器输出力的Preisach模型,测量了主磁滞回线和一阶折返线,得出了Preisach模型的F函数表,进行了如下两种预测实验:一是已知输入电流预测执行器的输出力;二是Preisach模型的非线性补偿,即已知期望的输出力,反求系统的输入电流,使系统的实际输出尽量接近期望的目标力。在进行非线性补偿实验时,提出了基于均值迟滞线和动态步长的Preisach模型非线性补偿方法,并与另外两种非线性补偿算法进行了实验比较,最后运用该方法对正弦曲线进行了非线性补偿实验研究。
     在对执行器的输出力建模与实验研究之后,进行了执行器的输出力控制研究。介绍了执行器输出力控制系统的组成与控制方法,完善了控制系统的硬件并编写了控制系统的软件。设计了基于Preisach模型前馈补偿的PID控制算法,并进行了实验研究:即改变执行器的输出力控制目标,测试不同的控制方法对执行器达到目标力的控制效果。针对执行器的恒力控制,分析了恒力控制原理,提出了利用Preisach模型前馈补偿求解电流与变速积分PID相结合的控制方法。即,先利用前馈补偿确定执行器输出力达到目标力时的电流,使输出力快速接近恒力目标,再通过变速积分PID控制方法,使输出力精确达到恒力目标,实现执行器的恒力控制。实验结果表明:当对执行器施加位移扰动后,控制系统能够控制执行器输出位移快速跟进,使输出力保持在恒力目标值附近,与变速积分PID控制方法相比,加快了调节速度。
     本文关于超磁致伸缩执行器的输出力模型及控制方法的研究成果,为执行器输出力的工程应用提供了借鉴,在精密、超精密加工领域中具有良好的应用前景,如精密机械抛光加工中的压力控制,需要一种具有恒定输出力或输出力可控的驱动机构;在恒力切削方面也有良好的应用前景。
Because of its magnetostriction positive and inverse effect, the giant magnetostrictive material can either be used to drive or sense. With characteristics of a large magnetostriction coefficient, high energy density, low driving magnetic field, and rapid response capacity, the giant magnetostrictive material and its related devices have been extensively studied for application, especially the giant magnetostrictive actuator, which has set off a wave of research boom with the highlight of large output displacement and force, wide temperature range and low-voltage operationa.
     Now there have been a large number of studies on giant magnetostrictive actuator output displacement, but few studies on the output force. To meet the need of applications of output force giant magnetostrictive actuator in precision and ultra precision machining, the article made theorial and experimental research with the study object of output force for giant magnetostrictive actuator. The study established a Preisach model of giant magnetostrictive actuator output force, measured the main hysteresis loop and first order reentrant line, and obtained the table of F function for the Preisach model, then completed two experiments:first, predicting the output force of actuator under the premise of input current; second, nonlinear compensating of Preisach model, which is to seek the input current under the premise of desired output force. A non-line compensation method was put forward based on mean hysteresis line and dynamic step for Preisach model during the experiment of nonlinear compensation, and then two comparison test was made. Finally, the nonlinear compensation experiment of sinusoidal was studied.
     After seting up the model of output force for actuator, output force control of actuator was reseached, and output force control system component and control method was presented while the hardware and software of control system was improved. Then a PID control algorithm was designed with the feedforward compensation based on the Preisach model, and experiment was studied, which is to test the effect of achieving the target force of different control methods. As for constant control of actuator, the principle of constant force control was analyzed, and the method of combination between feed-forward compensation based on Preisach model and PID control was proposed. Its process is as follows:first use the feed-forward compensation to determine the current when actuator output force get to the target which will make the output force fast approach constant target, then obtain the constant force by variable speed integral PID control method. The experiment result showed that when the displacement disturbance was imposed on the actuator, the control system can control the actuator displacement and maintain the constant force at the target, the adjustment speed was accelarated compared with variable speed integral PID control method.
     The study's results about the model and control method of the giant magnetostrictive actuator output force provide a reference for the engineering application of the actuator output force, and have a good application prospects in the field of precision and ultra precision machining such as pressure control in precision mechanical polishing which has the need for a constant output force or output force controllable, and in the field of constant cutting it also has a good prospect.
引文
[1]徐彭有.超磁致伸缩驱动器精密位移驱动控制研究[D].上海:上海交通大学,2010.
    [2]Dapino M J, Flatau A B, Calkins F T. Statistical analysis of Terfenol-D material properties [J]. Journal of Intelligent Material Systems and Structures,2006,17 (7):587-599.
    [3]孙宝元等.现代执行器技术[M].长春:吉林大学出版社,2003.
    [4]葛春亚.超磁致伸缩力传感执行器及其恒力控制研究[D].大连:大连理工大学,2010.
    [5]陶玉昆.超磁致伸缩执行器特性分析及其控制策略研究[D].焦作:河南理工大学,2010.
    [6]梁轶瑞.铁磁类材料若干多场耦合行为的实验研究[D].兰州:兰州大学,2010.
    [7]顾郑强.超磁致伸缩复合棒换能器研究[D].哈尔滨:哈尔滨工程大学,2008.
    [8]曹淑英.超磁致伸缩致动器的磁滞非线性动态模型与控制技术[D].天津:河北工业大学,2010.
    [9]黎文献,余琨,谭敦强.稀土超磁致伸缩材料的研究[J].矿冶工程,2000,20(3):64-67.
    [10]Savge H T, Clark A E, Pickart S J, et al. Effects of annealing on the coercivity of amorphous TbFe2 [J]. IEEE Transactions on Magnetics,1974,10(3):807-809.
    [11]Clark A E, Lindgren E A. Development of Terfenol-D transducer material [J]. Journal of Applied Physics,1998,83(11):7282-7284.
    [12]Abbundi R, Clark A E. Low temperature magnetization and magnetostriction of single crystal TmFe2 [J]. Journal of Applied Physics,1978,49(3):1969-1971.
    [13]Evangelos Hristoforoua, Aphrodite Ktena. Magnetostriction and magnetostrictive materials for sensing applications[J]. Journal of Magnetism and Magnetic Materials,2007,3(16):372-378.
    [14]Sinearsin G B, D'Eleeterio G T, Hughes P. C. Dynamics of an elastic multibody chain: PartD-Modeling of joints[J], Dynamics and Stability of systems,1993,8(2).
    [15]Eda H, Ohmura E, Sahashi M, et al. Ultraprecise Machine Tool Equipped with a Giant Magnetostriction actuator-development of new materials, TbxDyl-x, (FeyMnl-y)n, and their application [J]. CIRP Annals-Manufacturing Technology,1992,41 (1):421-424.
    [16]Etrema products, Inc., http://etrema-usa.com/actuation/index.asp.
    [17]Sergey F. Tsodikov, Vadim I. Rakhovsky Magnetostrictive force actuators for superpricise position. IEEE 18th Int. Symp, on Discharges and Dlectrical Insulation in Vacuum-Eindhoven-1998:713~719.
    [18]吕福在,项占琴,戚宗军,等.高精度非圆界面加工机构设计及其控制方法研究[J].机械科学与技术,2000,19(5):767-769.
    [19]Wu Y J, Xiang Z Q. Machining principle for non-cylinder pin hole of piston based on giant magnetostrictive material [J]. Journal of Zhejiang University,2004,39(9): 1185-1189.
    [20]Sun H G, Yuan H Q, Feng G B, et al. Coupled magneto-elastic model of a giant magnetostrictive transducer for non-circular cutting [J]. Chinese Journal of Mechanical Engineering,2009,20(18):2231-2235.
    [21]Kiesewetter L. The application of Terfenol in linear motors [C]. Proceeding 2nc. International Conference Giant Magnetostrictive Alloys, Marbella, Spain,1988.
    [22]Kim W J, Sadighi A. A novel low-power linear magnetostrictive actuator with local three-phase excitation [J]. IEEE-ASME Transactions on Mechatronics,2010,15(2): 299-307.
    [23]Yang B T, Guang M, Feng Z Q, et al. Giant magnetostrictive clamping mechanism for heavy-load and precise positioning linear inchworm motors [J]. Mechatronics,2011, 21(1):92-99.
    [24]郭东明,杨兴,贾振元,等.超磁致伸缩执行器在机电工程中的应用研究现状[J].中国机械工程,2001,12(6):724-727.
    [25]Zhu H Q, Liu J G, Wang X R, et al. Applications of Terfenol-D in China [J]. Journal of Alloys Compounds,1997,258(8):49-52.
    [26]Wakiwaka H, Aoki K, Yoshikawa T, et al. Maximum output of a low frequency sound source using giant magnetostrictive material [J]. Journal of Alloys Compounds,1997, 258(8):87-92.
    [27]Steel G A. A 2 kHz magnetostrictive transducer [C]. Transducers for sonics and ultrasonics, Lancaster, PA:Technomic, Inc.,1993:250-258.
    [28]周利生,曹荣,唐良雨,等.多边稀土换能器[J].声学与电子工程,1996,(1):8-10.
    [29]刘楚辉.超磁致伸缩材料的工程应用研究现状[J].机械制造,2005,43(8):25-27.
    [30]E. Quandt. Giant magnetostrictive thin film materials and applications. Journal of Alloys and Compounds,1997,258(1-2):126-132.
    [31]贾振元,武丹,杨兴,等.薄模型超磁致伸缩微执行器的研究现状[J].压电与声光,2000(3):157-159.
    [32]Bushko D A, Goldie J H. High Performance Magnetostrictive Actuators[J]. IEEE AES Systems Magazine,1991,6(11):21-25.
    [33]夏春林,丁凡,陶国良.GMM电-机械转换器驱动的气动压力阀[J].液压气动与密封,1999(3):21-22.
    [34]Chen P, Lu Q G, Chen D F, et al. The design of giant magnetostrictive flow valve and its COMSOL simulation [J]. Materails Science and Engineering Applications,2011, 160-162:1146-1150.
    [35]ETREMA Products Inc, Terfenol-D magnetostrictive actuator from: www. terfenoltruth.com, www, eterma. com.
    [36]Moon S J, Lim C W, Kim B H, et al. Structural vibration control using linear magnetostrictive actuators [J]. Journal of Sound and Vibration,2007,22(4-5): 875-891.
    [37]杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究[D].大连:大连理工大学,2001.
    [38]杨贵新.超磁致伸缩换能器驱动系统的设计[J].天津:河北工业大学,2006.
    [39]Ohmata K, Zaike M, Koh T. A three-link arm type vibration control device using magnetostrictive actuators [J]. Journal of Alloys and Compounds,1997,255(8): 74-78.
    [40]顾仲权,朱金才,彭福军等.磁致伸缩材料作动器在振动主动控制中的应用研究[J].振动工程学报,1998,11(4):381-388.
    [41]Wada M, Uchida H. Effects of the compositional change and the contamination on the magnetic and magnetostrictive characteristics of TbxDyl-xFe2(x=0~1) films [J]. Journal of Alloys and Compounds,1997,258(1-2):174-178.
    [42]Hiroyuki Wakiwaka, Muneo Mitamura. New Magnetostrictive type torque sensor for sterring shaft. Sensors and Actuators, A.91(2001):103~106.
    [43]Kleinke D K, Uras H M. A noncontacting magnetostrictive strain sensor [J]. Review of Scientific Instruments,1993,64(8):2361-2367.
    [44]Hristoforou E, Ktena A. Magnetostriction and magnetostrictive materials for sensing applications. Journal of Magnetism and Magnetic Materials,2007, 316(2):372~378.
    [45]Baudendistel T A, Turner M L. A novel inverse-magnetostrictive force sensor [J]. IEEE Sensors Journal,2007,7(2):245-250.
    [46]郭沛飞,贾振元,杨兴等.压磁效应及其在传感器中应用[J].压电与声光,2001,23(1):26-29.
    [47]Yang Q X, Yan R G, Fan C Z, et al. A magneto-mechanical strongly coupled model for giant magnetostrictive force sensor [J]. IEEE Transactions on Magnetics.2007, 43 (4):1437-1440.
    [48]杨雪锋,李威,王禹桥.压电陶瓷驱动电源的研究现状及进展[J].仪表技术与传感器,200,11:109-112
    [49]王悦.基于超磁致伸缩加工非圆柱孔控制方法研究[D].杭州浙江大学,2010.
    [50]唐志峰.超磁致伸缩执行器的基础理论与实验研究[D].杭州:浙江大学,2008.
    [51]龚大成,吕福在,潘晓弘等Preisach非线性补偿的GMA精密轨迹跟踪与实验优化.光学精密工程,2007,15(s):1242-1246.
    [52]魏燕定,吕永桂,陈子辰.基于压电驱动器的微动平台开环精密定位控制研究.机械工程学报,2004,40(12):81-85.
    [53]郑加驹.超磁致伸缩换能器滞回非线性模型的研究[D].天津:天津大学,2008.
    [54]卢全国,陈定方,陈昆,钟毓宁,李亚强等.基于Preisach修正模型的GMA前馈补偿研究[J].武汉理工大学学报,2007,29(1):48-51.
    [55]张磊,付永领,刘永光,等.磁致伸缩作动器的建模与控制研究.压电与声光,2005,27(5):5033-506.
    [56]卢全国.基于GMM的微致动研究及应用.[D].武汉:武汉理工大学,2007.
    [57]唐志峰,吕福在,项占琴.超磁致伸缩微位移驱动器的非线性磁滞建模及控制方法[J].机械工程学报,2007,43(6):55-61.
    [58]舒亮.超磁致伸缩制动器精密定位与控制研究[D].武汉:武汉理工大学,2008.