周期性张应变对椎间盘纤维环细胞蛋白多糖表达的影响及其信号转导的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     下腰痛是一个重要的公共卫生问题,给家庭和社会带来沉重的负担。虽然引起下腰痛的原因很多,但是椎间盘退变仍是主要因素。目前临床应用的治疗方法主要解决临床症状,而非针对退变早期的病理过程,并未延缓或逆转椎间盘退变。关于椎间盘退变的原因,虽然做出了许多有益的探讨,但其确切发病机制仍然不清楚。只有在全面了解椎间盘退变机理之后,才可能进一步研究阻止其退变甚或使其再生的方法。
     目前的观点认为,椎间盘退变是一个由生物化学和生物力学因素相互作用的复杂病理过程。椎间盘始终处于负荷状态,尤其是椎间盘纤维环细胞总是受到不同形式的拉伸应力作用。纤维环蛋白多糖含量的下降和/或成分的改变,可以引起纤维环的退变,进而导致整个椎间盘退变的发生。Aggrecan是椎间盘中蛋白多糖的主要成分。小鼠的Aggrecan基因突变后,可以发生椎间盘的退变。同时椎间盘蛋白多糖的更新速率较快,对外界刺激更为敏感。在本实验中采用周期性张应变模拟作用于纤维环的张应力情况,观察其对椎间盘纤维环细胞蛋白多糖表达的影响。
     力学信号转化为生物化学信号是一个非常复杂的过程,涉及到很多细胞内、外成分。在很多类型的细胞中,力学刺激可以使细胞内钙离子浓度升高和ERK1/2发生磷酸化,因此,钙离子和ERK1/2信号通路被认为是细胞力学信号转导的共同通路。至于纤维环细胞是如何将机械应力这一力学信号转化成为细胞的生物化学信号,目前对其过程了解甚少。本实验对纤维环细胞力学信号转导的过程进行探讨,旨在揭示机械应力在纤维环退变中的作用,从生物力学角度探讨椎间盘退变的发生机理。
     实验方法
     1.大鼠椎间盘纤维环细胞的培养和鉴定采用酶消化法分离大鼠椎间盘纤维环细胞,进行单层培养,观察其形态结构和生物学特性,通过甲苯胺蓝、免疫细胞化学和碱性磷酸酶染色、透射电镜观察等方法对其表型进行鉴定。
     2.种植于硅橡胶膜上的大鼠纤维环细胞的表型特征研究
BACKGROUND
     Low back pain is a significant public health issue in our society, which accounts for much individual suffering and societal costs. Although there are multiple causes involved, degeneration of intervertebral disc has been implicated as the leading pathogenic process. Currently, the only available treatment modalities for disc-related low back pain focus on alleviating symptoms rather than addressing the underlying cause of degeneration. It is likely that clinical outcomes for patients with painful intervertebral disc degeneration would improve if therapies were developed that could slow, halt or reverse this process. While the factors that initiate and perpetuate disc degeneration are not well understood, it is a commonly held belief that disc degeneration is a multifactoral process involving both biochemical and biomechanical contributions. Within the disc, it is under overload from the forces of the muscles constrain motion and hydrostatic pressures at certain time, even at rest. Especially, annulus fibrosus (AF) cells are constantly subject to different stretch stresses in duration, intensity, and frequency in vivo. It is been shown in recent years that sensitivity to mechanical forces is a general property of all living tissues and all cultured cells. Many believe that disc degeneration has a cellular basis. So it is essential to study the effects of biomechanical stimulations on annulus fibrosus cells.
     Some evidence indicates that intervertebral disc degeneration begins with a progressive decrease in proteoglycan content. The major proteoglycan of the disc is aggrecan, which is thought to play a role in maintaining the collagen network and in collagen fibrillogenesis. Because aggrecan has a rapid turnover, the decreased production of aggrecan could significantly induce disc degeneration. Furthermore, researchers have shown that an autosomal recessive mutation in the aggrecan gene leads to intervertebral disc degeneration in mice. Taken together, it is shown that proteoglycan plays a main role in disc degeneration.
引文
1. Conrad DA, et al. Cost of low back pain problems: an economic analysis [M]. In: Weinstein JN, Gordon SL (eds). Low Back Pain: a Clinical and Scientific Overview. AAOS publishers: Rosemont, IL, 1996.
    2. Diwan AD, Parvataneni HK, Khan SN, et al. Current concepts in intervertebral disc restoration [J]. Orthop Clin N A, 2000; 31: 453-464.
    3. Crean JKG, Roberts S, Jaffrat DC, et al. Matrix metalloproteinases in the human intervertebral disc: Role in disc degeneration and scoliosis [J]. Spine, 1997; 22:2877- 2884.
    4. Fujita K, Nakagawa T, Hirabayashi K, et al. Neutral proteinases in human intervertebral disc [J]. Spine, 1993; 18:1766-1773.
    5. Sedowofia KA, Tomlinson IM, Weiss JB, et al. Collagenolytic enzyme systems in human intervertebral disc [J]. Spine, 1982; 7: 213-221.
    6. Hernick S, Walker JM, Paule WJ. Age changes to the annulus fibrosus in human intervertebral disc [J]. Spine, 1991; 16: 520-524.
    7. Scott JE, Bosworth TR, Gribb AM, et al. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus [J]. J Anat, 1994; 184: 73-82.
    8. Watanabe H, Nakata K, Kimata K, et al. Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective aggrecan [J]. Proc Natl Acad Sci USA, 1997; 94:6943-6947.
    9. Ohshima H, Urban JPG, Bergel DH. Effects of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique [J]. J Orthop Res, 1995; 13:22-29.
    10. Terahata N, Ishihara H, Ohshima H, et al. Effects of axial traction stress on solute transport and proteoglycan synthesis in the porcine intervertebral disc in vitro [J]. Eur Spine J, 1994; 3:325-330.
    11. Ishihara H, Tsuji H, Hirano N, et al. Effects of continuous quantitative vibration on rheologic and biological behaviors of the intervertebral disc [J]. Spine, 1992; 17:s7-s12.
    12. Ishihara H, McNally DS, Urban JP, Hall AC. Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk [J]. J Appl Physiol 1996;80:839–46.
    13. Buckwalter JA. Spine update: Aging and degeneration of the human intervertebral disc [J]. Spine, 1995; 20:1307-1314.
    14. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton [J]. Science, 1993; 260:1124-1127.
    15. Elfervig MK, Minchew JT, Francke E, et al. IL-1beta sensitizes intervertebral disc annulus cells to fluid-induced shear stress [J]. J Cell Biochem, 2001; 82:290-298.
    16. Rannou F, Richette D, Benallaoua M, et al. Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cell through production of nitrite oxide [J]. J Cell Biochem, 2003; 90:148-157.
    17. Wu QQ, Chen Q. Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals [J]. Exp Cell Res, 2000; 256:383-391.
    18. Jones DB, Bingmann D. How do osteoblasts respond to mechanical stimulation [J]? Cells Materials, 1991; 1:329-340.
    19. Duncan RL, Kizer N, Bany EL, et al. Antisense oligodeoxynucleotide inhibition of aswelling-activated cation channel in osteoblast-like osteosarcoma cells [J]. Proc Natl Acad Sci USA, 1996; 93:1864-1869.
    20. Meredith JE Jr, Winitz S, Lewis JM, et al. The regulation of growth and intracellular signaling by integrins [J]. Endocr Rev, 1996; 17: 207-220.
    21. Komoru IS, Kudo T, Yamszaki Y, et al. Mechanical stretch activates the tress-activated protein kinases in cardiac myocytes [J]. FASEB J, 1996; 10: 631-636.
    22. MacKenna DA, Dolfi F, Vuori K, et al. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts [J]. J Clin Invest, 1998; 101: 301-310.
    23. Li YJ, Shyy S, Li J, et al. The Ras-JNK pathway is involved in shear-induced gene expression [J]. Mol Cell Biol, 1996; 16: 5947-5954.
    1. Gruber HE, Hanley EN Jr. Recent advances in disc cell biology [J]. Spine, 2003; 28: 186-193.
    2. Rannou F, Pioraudeau S, Foltz V, et al. Monolayer annulus fibrosus cell cultures in a mechanically active environment: Local culture condition adaptation and cellphenotype study [J]. J Lab Clin Med, 2000; 136(5): 412-421.
    3. Pioraudeau S, Monteiro I, Anract P, et al. Phenotype characteristics of rabbit intervertebral disc cells: comparison with cartilage cells from the same animals [J]. Spine, 1999; 24(9): 837-844.
    4. Chelberg MK, Banks GM, Geiger DF, et al. Identification of heterogeneous cell populations in normal human intervertebral disc [J]. J Anat, 1995; 186: 43-53.
    5. Gruber EG, Stasky AA, Hanley EN. Characterization and phenotypic stability of human disc cells in vitro [J]. Matrix Biol, 1997; 16: 285-288.
    6. Gruber HE, Hanley EN Jr. Human disc cells in monolayer vs 3D culture: Cell shape, division and matrix formation [J]. BMC Masculoskelet Disord, 2000; 1: 1-10.
    7. 周泉, 王拥军, 施杞. 椎间盘纤维环细胞的培养[J]. 脊柱外科杂志, 2003; 1(4): 226-229.
    8. Ashton IK, Eisenstein SM. The effect of substance P on proliferation and proteoglycan deposition of cells derived from rabbit intervertebral disc [J]. Spine, 1996; 21: 421-426.
    9. Gruber HE, Hanley EN Jr. Ultrastructure of the human intervertebral disc during aging and degeneration: Comparison of the surgical and control specimens [J]. Spine, 2002; 27: 798-805.
    10. Alini M, Li W, Markovic P, et al. The potential and limitation of a cell seeded collagen/hyaluronan scaffold to engineer: An intervertebral disc-like matrix [J]. Spine, 2003; 28: 446-454.
    11. Shingo M, Shoichi K. Changes with age in proteoglycan synthesis in cells cultures in vitro from the inner and outer rabbit annulus fibrosus responses to interleukin-1 and interleukin-1 receptor antagonist protein [J]. Spine, 2000; 25: 166-169.
    12. 杨吉成, 宋礼华, 周建华, 等主编. 医用细胞工程[M].上海: 上海交通大学出版社. 2003: 45-46.
    1. Schwarzer AC, Aprill CN, Derby R, et al. The relative contributions of the disc and the zygapophyseal joint in chronic low back pain [J]. Spine, 1994; 19: 801-806.
    2. Brown TD. Techniques for mechanical stimulation of cells in vitro: a review [J]. J Biomech, 2000; 33:3-14.
    3. Poiraudeau S, Monteiro I, Anract P, et al. Phenotypic characteristics of rabbit intervertebral disc cells. Comparison with cartilage cells from the same animals [J]. Spine, 1999; 24: 837-844.
    4. Handa T, Ishihara H, Ohshima H, et al. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc [J]. Spine, 1997; 22:1085-1091.
    5. Elfervig MK, Minchew JT, Francke E, et al. IL-1β sensitizes intervertebral disc annulus cells to fluid-induced shear stress [J]. J Cell Biochem, 2001; 82: 290-298.
    6. Rannou F, Richette P, Benallaoua M, et al. Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cells through production of nitrite oxide [J]. J Cell Biochem, 2003; 90:148-157.
    7. Matsumoto T, Kawakami M, Kuribayashi K, et al. Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro [J]. Spine, 1999; 24: 315-319.
    8. Brodkin KR, Garcia AJ, Levenston ME. Chondrocyte phenotypes on different extracellular matrix monolayers [J]. Biomaterials, 2004; 25: 5929-5938.
    9. Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation [J]. EMBO J, 2002; 21: 3919-3926.
    10. Lewis JM, Truong TN, Schwartz MA. Integrins regulate the apoptotic response to DNA damage through modulation of p53 [J]. Proc Natl Acad Scai USA, 2002; 99: 3627-3632.
    11. Hynes RO. Integrins: bidirectional, allosteric signaling machines [J]. Cell, 2002; 110: 673-687.
    12. Danen EHJ, Yamada KM. Fibronectin, integrins, and growth control [J]. J Cell Physiol, 2001; 189: 1-13.
    13. Nettles AL, Richardson WJ, Setton LA. Integrin expression in cells of the intervertebral disc [J]. J Anat, 2004; 2204:515-520.
    1. Johnson WEB, Caterson B, Eisenstein SM, et al. Human intervertebral disc aggrecan inhibits nerve growth in vitro [J]. Arthritis Rheum, 2002; 46: 2658-2664.
    2. Johnson WEB, Caterson B, Eisenstein SM, et al. Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro [J]. Spine, 2005; 30: 1139-1147.
    3. Watanabe H, Nakata K, Kimata K, et al. Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective aggrecan [J]. Proc Natl Acad SciUSA, 1997; 94:6943-6947.
    4. Gruber HE, Hanley EN Jr. Recent advances in disc cell biology [J]. Spine, 2003; 28: 186-193.
    5. Sedowofia KA, Tomlinson IM, Weiss JB, et al. Collagenolytic enzyme systems in human intervertebral disc [J]. Spine, 1982; 7: 213-221.
    6. Hernick S, Walker JM, Paule WJ. Age changes to the annulus fibrosus in human intervertebral disc [J]. Spine, 1991; 16: 520-524.
    7. Scott JE, Bosworth TR, Gribb AM, et al. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus [J]. J Anat, 1994; 184: 73-82.
    8. Buckwalter JA.Spine update: Aging and degeneration of the human intervertebral disc [J]. Spine, 1995; 20:1307.
    9. Ohshima H, Urban JPG, Bergel DH. Effects of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique [J]. J Orthop Res, 1995; 13:22-29.
    10. Terahata N, Ishihara H, Ohshima H, et al. Effects of axial traction stress on solute transport and proteoglycan synthesis in the porcine intervertebral disc in vitro [J]. Eur Spine J, 1994; 3:325-330.
    11. Ishihara H, Tsuji H, Hirano N, et al. Effects of continuous quantitative vibration on rheologic and biological behaviors of the intervertebral disc [J]. Spine, 1992; 17: s7-s12.
    12. Ishihara H, McNally DS, Urban JP, Hall AC. Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk [J]. J Appl Physiol 1996; 80: 839–846.
    13. Broberg KB. On the mechanical behavior of intervertebral discs [J]. Spine, 1983; 8: 151-165.
    14. Klein JA, Hukins DW. Radial bulging of the annulus fibrosus during compression of the intervertebral disc [J]. J Biomechanics, 1983; 16: 211-217.
    15. Stokes IAF. Surface strain on human intervertebral discs [J]. J Orthop Res, 1987; 5: 348-355.
    16. Ebara S, Iatridis JC, Setton LA, et al. Tensile properties of non degenerate human annulus fibrosus [J]. Spine, 1996; 21: 452-461.
    17. Liu G, Ishihara H, Osada R, et al. Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure[J]. Spine, 2001; 26: 134-141.
    18. Long P, Gassner R, Agarwal S. Tumor necrosis factor alpha-dependent proinflammatory gene induction is inhibited by cyclic tensile strain in articular chondrocytes in vitro [J]. Arthritis Rheum, 2001; 44: 2311–2319.
    19. Basson MD. Paradigms for mechanical signal transduction in the intestinal epithelium. Category: molecular, cell, and developmental biology [J]. Digestion, 2003; 68: 217–225.
    20. Deschner J, Hofman CR, Piesco NP, et al. Signal transduction by mechanical strain in chondrocytes [J]. Curr Opin Clin Nutr Metab, 2003; Care 6: 289–293.
    21. Fujisawa T, Hattori T, Takahashi K, et al. Cyclic mechanical stress induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1 [J]. J Biochem, 1999; 125: 966-975.
    1. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton [J]. Science, 1993; 260:1124-1127.
    2. Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells [J]. J Biomech, 2005; 38: 1949-1971.
    3. Ishihara H, McNally DS, et al. Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk [J]. J Appl Physiol 1996; 80: 839–846.
    4. Elfervig MK, Minchew JT, Francke E, et al. IL-1beta sensitizes intervertebral discannulus cells to fluid-induced shear stress [J]. J Cell Biochem, 2001; 82:290-298.
    5. Russo A, Banes A, Elfervig M, et al. The effect of vibration on annulus fibrosus cell signaling [J]. Spine J, 2002; 2:4S.
    6. Russo A, Banes A, Elfervig M, et al. Human annulus fibrosus cell response to vibratory loading and modulation of the effect by interleukin-1B [J]. Spine J, 2002; 2: 66S-67S.
    7. Labrador V, Chen KD, Li YS, et al. Interactions of mechanotransduction pathways [J]. Biorheology, 2003; 40: 47–52.
    8. 刘颖, 周征, 郑翼, 等. 机械压力对体外培养的成骨样细胞内Ca2+浓度影响的研究[J]. 口腔正畸学, 2004; 1: 19-20.
    9. Yellowley CE, Jacodes CR, Li Z, et al. Effects of fluid flow on intracellular calcium in bovine articular chondrocytes [J]. Am J Physiol. Cell Physiol, 1997; 273: C30-C36.
    10. You J, Yellowley CE, Donahue HJ, et a1. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow [J]. J Biomech Eng, 2000; 122: 387-393.
    11. Wu QQ, Chen Q. Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals [J]. Exp Cell Res, 2000; 256:383-391.
    12. Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction [J]. J Cell Sci, 2004; 117: 2449-2460.
    13. 唐丽灵, 王远亮, 谷俐, 等.成骨细胞对周期性拉伸刺激的生理响应和胞内Ca2+浓度的变化[J]. 科学通报, 2003; 48: 149-153.
    14. Lieu DK, Pappone PA, Barakat A. Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells [J]. Am J Physiol Cell Physiol, 2004; 286: C1367-C1375.
    15. Qiu WP, Hu QH, Paolocci N, et al. Differential effects of pulsatile versus steady flow on coronary endothelial membrane potential [J]. Am J Physiol Heart Circ Physiol, 2003; 285: H341-H346.
    16. Mason MJ, Hussain JF, Mahaut-Smith MP. A novel role for membrane potential in the modulation of intracellular Ca2+ oscillations in rat megakaryocytes [J]. J Physiol, 2000; 524: 437-446.
    1. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton [J]. Science, 1993; 260:1124-1127.
    2. Elfervig MK, Minchew JT, Francke E, et al. IL-1beta sensitizes intervertebral disc annulus cells to fluid-induced shear stress [J]. J Cell Biochem, 2001; 82:290-298.
    3. Rannou F, Richette D, Benallaoua M, et al. Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cell through production of nitrite oxide [J]. J Cell Biochem, 2003; 90:148-157.
    4. Wu QQ, Chen Q. Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals [J]. Exp Cell Res, 2000; 256:383-391.
    5. Russo A, Banes A, Elfervig M, et al. The effect of vibration on annulus fibrosus cell signaling [J]. Spine J, 2002; 2:4S.
    6. Russo A, Banes A, Elfervig M, et al. Human annulus fibrosus cell response to vibratory loading and modulation of the effect by interleukin-1B [J]. Spine J, 2002; 2: 66S-67S.
    7. Yellowley CE, Jacodes CR, Li Z, et al. Effects of fluid flow on intracellular calcium in bovine articular chondrocytes [J]. Am J Physiol. Cell Physiol, 1997; 273: C30-C36.
    8. Lelievre S, Weaver VM, Bissell MJ. Extracellular matrix signaling from the cellular membrane skeleton to the nuclear skeleton: a model of gene regulation [J]. Recent Prog Horm Res, 1996; 51: 417–432.
    9. Lee MS, Trindade MC, Ikenoue T, et al. Effects of shear stress on nitric oxide and matrix protein gene expression in human osteoarthritic chondrocytes in vitro [J]. J Orthop Res, 2002; 20: 556-561.
    10. Matsuo K, Galson DL, Zhao C, et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-fos [J]. J Biol Chem, 2004; 279: 26475–26480.
    11. Ranger AM, Gerstenfeld LC, Wang J, et al. The nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a repressor of chondrogenesis [J]. J Exp Med, 2000; 191: 9–22.
    12. Crabtree GR. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT [J]. Cell, 1999; 96: 611–614.
    13. Hughes-Fulford M. Signal transduction and mechanical stress [J]. Sci STKE 2004; RE12.
    14. Deschner J, Hofman CR, Piesco NP, et al. Signal transduction by mechanical strain in chondrocytes [J]. Curr Opin Clin Nutr Metab, 2003; Care 6: 289–293.
    15. Basson MD. Paradigms for mechanical signal transduction in the intestinal epithelium. Category: molecular, cell, and developmental biology [J]. Digestion, 2003; 68: 217– 225.
    16. Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways [J]. Cardiovasc Res, 2000; 47: 23–37.
    17. Huang H, Kamm RD, Lee RT. Cell mechanics and mechanotransduction: pathways, probes, and physiology [J]. Am J Physiol, Cell Physiol, 2004; 287: C1–C11.
    18. Thamilselvan V, Basson MD. Pressure activates colon cancer cell adhesion by inside-out focal adhesion complex and actin cytoskeletal signaling [J]. Gastroenterology, 2004; 126: 8–18.
    1. Meredith JE Jr, Winitz S, Lewis JM, et al. The regulation of growth and intracellular signaling by integrins [J]. Endocr Rev, 1996; 17:207-220.
    2. Komoru IS, Kudo T, Yamszaki Y, et al. Mechanical stretch activates the tress-activated protein kinases in cardiac myocytes [J]. FASEB J, 1996; 10: 631-636.
    3. MacKenna DA, Dolfi F, Vuori K, et al. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts [J]. J Clin Invest, 1998; 101:301-310.
    4. Li YJ, Shyy S, Li J, et al. The Ras-JNK pathway is involved in shear-induced gene expression [J]. Mol Cell Biol, 1996; 16: 5947-5954.
    5. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation [J]. Physiol Rev. 2001; 81:807-869.
    6. Pereda J, Sabater L, Cassinello N, et al. Effect of simultaneous inhibition of TNF-alpha production and xanthine oxidase in experimental acute pancreatitis: the role of mitogen activated protein kinases [J]. Ann Surg,2004;240:108-116.
    7. 姜勇,龚小卫. MAPK 信号转导通路对炎症反应的调控[J]. 生理学报,2000;52: 267-271.
    8. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference [J]. Nat Biotechnol. 2004; 22:326-330.
    9. Hamada K, Takuwa N, Yokoyama K, et al. Stretch activated Jun N-terminal kinase/ stress2activated protein kinase in vascular smooth muscle cells through mechanisms involving autocrine ATP stimulation of purinoceptors [J]. J Biol Chem, 1998; 273: 6334-6340.
    10. Jo H, Sipos K, Go Y-M,et al. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells [J]. J Bio Chem, 1997; 272(2):1395-1401.
    11. Bodero AJ, Ye R, Lees2Miller SP. UV2light induces P38 MAPK-dependent phosphorylation of Bcl10 [J]. Biochem Biophys Res Commun. 2003; 301:923-926.
    12. Taro M, Ingela T, Majlis B, et al. P38MAP Kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis [J]. J Cell Biology, 2002; 156: 149-160.
    13. Chakravortty D, Kato Y, Koide N, et al. Extracellular matrix components prevent lipopolysaccharide2induced bovine arterial endothelial cell injury by inhibiting P38 mitogen-activated protein kinase [J] . Thromb Res, 2000; 98: 187-189.
    14. Granet C, Boutahar N, Vico L, et al. MAPK and SRC-kinases control EGR-1 and NF-kappa B inductions by changes in mechanical environment in osteoblasts [J]. Biochem Biophys Res Commun, 2001; 284 622-631.
    15. Azuma N, Duzgun SA, Ikeda M, et al. Endothelial cell response to different mechanical forces [J]. J Vasc Surg. 2000; 32: 789-794.
    16. Traub O, Berk BC. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force [J]. Arterioscler Thromb Vasc Biol. 1998; 18: 677-685.
    17. Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/ paracrine mechanism [J]. EMBO, 1993; 12: 1681-1692.
    18. Yamazaki T, Tobe K, Hoh E, et al. Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myotytes [J]. J Biol Chem, 1993; 268: 12069-12076.
    19. Ishida T, Peterson TE, Kovach NL, et al. Map kinase activation by flow in endothelial cells: role of b1 integrins and tyrosine kinase [J]. Circ Res, 1996; 79: 310-316.
    20. Bogoyetivch MA, Gillespie-Brown J, Ketterman AJ, et al. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart [J]. Circ Res, 1996; 79: 162-173.
    21. Iqbal J, Zaidi M. Molecular regulation of mechanotransduction [J]. BBRC, 2005; 328: 751-755.
    1. Huang H, Kamm RD, Lee RT. Cell mechanics and mechanotransduction: pathways, probes, and physiology [J]. Am J Physiol, Cell Physiol, 2004; 287: C1–C11.
    2. Deschner J, Hofman CR, Piesco NP, et al. Signal transduction by mechanical strain in chondrocytes [J]. Curr Opin Clin Nutr Metab Care, 2003; 6: 289-293.
    3. Goldring MB. The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models [J]. Connective Tiss Res, 1999; 40:1–11.
    4. Lee DA, Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose [J]. J Orthop Res, 1997; 15:181–188.
    5. Ragan PM, Badger AM, Cook M, et al. Down-regulation of chondrocyte aggrecan and type-II collagen gene expression correlates with increases in static compression magnitude and duration [J]. J Orthop Res, 1999; 17:836– 842.
    6. Quinn TM, Allen RG, Schalet BJ, et al. Matrix and cell injury due to subimpact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress [J]. JOrthop Res, 2001; 19:242–249.
    7. Fermor B, Weinberg JB, Pisetsky DS, et al. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants [J]. J Orthop Res, 2001; 19:729–737.
    8. Bonassar LJ, Grodzinsky AJ, Srinivasan A, et al. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage [J]. Arch Biochem Biophys, 2000; 379:57–63.
    9. Frenkel SR, Di Cesare PE. Degradation and repair of articular cartilage [J]. Front Biosci, 1999; 15:D671-D685.
    10. Williams JM, Moran M, Thonar EJ, et al. Continuous passive motion stimulates repair of rabbit knee articular cartilage after matrix proteoglycan loss [J]. Clin Orthop, 1994; 304:252–262.
    11. Salter RB. History of rest and motion and the scientific basis for early continuous passive motion [J]. Hand Clin, 1996; 12:1–11.
    12. Salter RB. The physiologic basis of continuous passive motion for articular cartilage healing and regeneration [J]. Hand Clin, 1994; 10:211–219.
    13. Salter DM, Millward-Sadler SJ, Nuki G, et al. Integrin-interleukin-4 mechanotransduction pathways in human chondrocytes [J]. Clin Orthop, 2001; 391 (Suppl.): S49-S60.
    14. Millward-Sadler SJ, Wright MO, Lee H, et al. Integrin-regulated secretion of interleukin 4: a novel pathway of mechanotransduction in human articular chondrocytes [J]. J Cell Biol, 1999; 145:183–189.
    15. Gassner R, Buckley MJ, Georgescu H, et al. Cyclic tensile stress exerts anti- inflammatory actions on chondrocytes by inhibiting inducible nitric oxide synthase [J]. J Immunol, 1999; 63: 2187–2192.
    16. Xu Z, Buckley MJ, Evans CH,et al. Cyclic tensile strain acts as an antagonist of interleukin-1b actions in chondrocytes [J]. J Immunol, 2000; 165:453–460.
    17. Long P, Gassner R, Agarwal S. Tumor necrosis factor alpha-dependent proinflammatory gene induction is inhibited by cyclic tensile strain in articular chondrocytes in vitro [J]. Arthritis Rheum, 2001; 44:2311–2319.
    18. Agarwal S, Long P, Gassner R, et al. Cyclic tensile strain suppresses catabolic effects of IL-1 in chondrocytes from temporomandibular joint [J]. Arthritis Rheum, 2001;44:608–614.
    19. Quinn TM, Allen RG, Schalet BJ, et al. Matrix and cell injury due to subimpact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress [J]. J Orthop Res, 2001; 19:242–249.
    20. Bonassar LJ, Grodzinsky AJ, Srinivasan A, et al. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage [J]. Arch Biochem Biophys, 2000; 379:57–63.
    21. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation [J]. Physiol Rev, 2001; 81(1): 807-869.
    22. Davis RJ. Signal transduction by the JNK group of MAP kinases [J]. Cell, 2000; 103:239-252.
    1. Frenkel SR, Di Cesare PE. Degradation and repair of articular cartilage [J]. Front Biosci, 1999; 15:D671-D685.
    2. Hughes-Fulford M. Signal transduction and mechanical stress [J]. Sci STKE 2004; RE12.
    3. Deschner J, Hofman CR, Piesco NP, et al. Signal transduction by mechanical strain in chondrocytes [J]. Curr Opin Clin Nutr Metab, 2003; Care 6: 289–293.
    4. Basson MD. Paradigms for mechanical signal transduction in the intestinal epithelium. Category: molecular, cell, and developmental biology [J]. Digestion, 2003; 68: 217–225.
    5. Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways [J]. Cardiovasc Res, 2000; 47: 23–37.
    6. Zerath E. Effects of microgravity on bone and calcium homeostasis [J]. Adv Space Res, 1998; 21: 1049–1058.
    7. Semb H. Experimental limb disuse and bone blood flow [J]. Acta Orthop Scand, 1969; 40: 552–562.
    8. Inoue Y, Espat NJ, Frohnapple DJ, et al. Effect of total parenteral nutrition on amino acid and glucose transport by the human small intestine [J]. Ann Surg, 1993; 217: 604–612, discussion 612–604.
    9. Liu G, Ishihara H, Osada R, et al. Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure [J]. Spine, 2001; 26: 134-141.
    10. Arokoski JP, Jurvelin JS, Vaatainen U, et al. Normal and pathological adaptations of articular cartilage to joint loading [J]. Scand J Med Sci Sports, 2000; 10:186–198.
    11. Guilak F, Mow VC. The mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions in articular cartilage [J]. J Biomech, 2000; 33:1663–1673.
    12. Elliott DM, Guilak F, Vail TP, et al. Tensile properties of articular cartilage are altered by meniscectomy in a canine model of osteoarthritis [J]. J Orthop Res, 1999; 17:503–508.
    13. Guilak F, Jones WR, Ting-Beall HP, et al. The deformation behavior and mechanical properties of chondrocytes in articular cartilage [J]. Osteoarthritis Cartilage, 1999; 7:59–70.
    14. Lee DA, Noguchi T, Frean SP, et al. The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs [J]. Biorheology, 2000; 37:149–161.
    15. Lee DA, Frean SP, Lees P, et al. Dynamic mechanical compression influences nitric oxide production by articular chondrocytes seeded in agarose [J]. Biochem Biophys Res Commun, 1998; 251:580–585.
    16. Lee DA, Noguchi T, Knight MM, et al. Response of chondrocyte subpopulations cultured within unloaded and loaded agarose [J]. J Orthop Res, 1998; 16:726–733.
    17. Lee DA, Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose [J]. J Orthop Res, 1997; 15:181–188.
    18. Ragan PM, Badger AM, Cook M, et al. Down-regulation of chondrocyte aggrecan and type-II collagen gene expression correlates with increases in static compression magnitude and duration [J]. J Orthop Res, 1999; 17:836– 842.
    19. Quinn TM, Allen RG, Schalet BJ, et al. Matrix and cell injury due to subimpact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress [J]. J Orthop Res, 2001; 19:242–249.
    20. Fermor B, Weinberg JB, Pisetsky DS, et al. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants [J]. J Orthop Res, 2001; 19:729–737.
    21. Bonassar LJ, Grodzinsky AJ, Srinivasan A, et al. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage [J]. Arch Biochem Biophys, 2000; 379:57–63.
    22. Chowdhury TT, Bader DL, Lee DA. Dynamic compression inhibits the synthesis of nitric oxide and PGE (2) by IL-1beta-stimulated chondrocytes cultured in agarose constructs [J]. Biochem Biophys Res Commun, 2001; 285:1168–1174.
    23. Buschmann MD, Kim YJ, Wong M, et al. Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow [J]. Arch Biochem Biophys, 1999; 366:1–7.
    24. Gassner R, Buckley MJ, Georgescu H, et al. Cyclic tensile stress exertsanti-inflammatory actions on chondrocytes by inhibiting inducible nitric oxide synthase [J]. J Immunol, 1999; 63: 2187–2192.
    25. Xu Z, Buckley MJ, Evans CH,et al. Cyclic tensile strain acts as an antagonist of interleukin-1b actions in chondrocytes [J]. J Immunol, 2000; 165:453–460.
    26. Bonassar LJ, Grodzinsky AJ, Frank EH, et al. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I [J]. J Orthop Res, 2001; 19:11–17.
    27. Li KW, Williamson AK, Wang AS, et al. Growth responses of cartilage to static and dynamic compression [J]. Clin Orthop, 2001; 391 (Suppl.): S34–S48.
    28. Kiviranta I, Jurvelin J, Tammi M, et al. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs [J]. Arthritis Rheum, 1987; 30:801–809.
    29. Haapala J, Arokoski JP, Hyttinen MM, et al. Remobilization does not fully restore immobilization induced articular cartilage atrophy [J]. Clin Orthop, 1999; 362: 218–229.
    30. Williams JM, Moran M, Thonar EJ, et al. Continuous passive motion stimulates repair of rabbit knee articular cartilage after matrix proteoglycan loss [J]. Clin Orthop, 1994; 304:252–262.
    31. Salter RB. History of rest and motion and the scientific basis for early continuous passive motion [J]. Hand Clin, 1996; 12:1–11.
    32. Salter RB. The physiologic basis of continuous passive motion for articular cartilage healing and regeneration [J]. Hand Clin, 1994; 10:211–219.
    33. Buckwalter JA, Lane NE. Athletics and osteoarthritis [J]. Am J Sports Med, 1997; 25:873–881.
    34. Lequesne MG, Dang N, Lane NE. Sport practice and osteoarthritis of the limbs [J]. Osteoarthritis Cartilage, 1997; 5:75–86.
    35. Spector TD, Harris PA, Hart DJ, et al. Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls [J]. Arthritis Rheum, 1996; 39:988–995.
    36. Huang H, Kamm RD, Lee RT. Cell mechanics and mechanotransduction: pathways, probes, and physiology [J]. Am J Physiol, Cell Physiol, 2004; 287: C1–C11.
    37. Thamilselvan V, Basson MD. Pressure activates colon cancer cell adhesion by inside-out focal adhesion complex and actin cytoskeletal signaling [J]. Gastroenterology, 2004; 126: 8–18.
    38. Han O, Li GD, Sumpio BE, et al. Strain induces Caco-2 intestinal epithelial proliferation and differentiation via PKC and tyrosine kinase signals [J]. Am J Physiol, 1998; 275: G534–G541.
    39. MacKenna DA, Dolfi F, Vuori K, et al. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrixspecific in rat cardiac fibroblasts [J]. J Clin Invest, 1998; 101: 301–310.
    40. Salter DM, Millward-Sadler SJ, Nuki G, et al. Integrin-interleukin-4 mechanotransduction pathways in human chondrocytes [J]. Clin Orthop, 2001; 391(Suppl.): S49-S60.
    41. Loeser RF. Integrins and cell signaling in chondrocytes [J]. Biorheology, 2002; 39: 119-124.
    42. Millward-Sadler SJ, Wright MO, Lee H, et al. Integrin-regulated secretion of interleukin 4: a novel pathway of mechanotransduction in human articular chondrocytes [J]. J Cell Biol, 1999; 145:183–189.
    43. Knothe Tate ML, Adamson JR, Tami AE, et al. The osteocyte [J]. Int J Biochem Cell Biol, 2004; 36: 1–8.
    44. Guharay F, Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle [J]. J Physiol, 1984; 352: 685–701.
    45. Hu H, Sachs F. Stretch-activated ion channels in the heart [J]. J Mol Cell. Cardiol, 1997; 29: 1511–1523.
    46. Mikuni-Takagaki Y. Mechanical responses and signal transduction pathways in stretched osteocytes [J]. J Bone Miner Metab, 1999; 17: 57–60.
    47. Chen NX, Ryder KD, Pavalko FM, et al. Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts [J] Am J Physiol Cell Physiol, 2000; 278: C989–C997.
    48. You J, Reilly GC, Zhen X, et al. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts [J]. J Biol Chem, 2001; 276: 13365–13371.
    49. Fitzgerald J, Hughes-Fulford M. Mechanically induced c-fos expression is mediated bycAMP in MC3T3-E1 osteoblasts [J]. FASEB J, 1999; 13: 553–557.
    50. Matsuo K, Galson DL, Zhao C, et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-fos [J]. J Biol Chem, 2004; 279: 26475–26480.
    51. Ranger AM, Gerstenfeld LC, Wang J, et al. The nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a repressor of chondrogenesis [J]. J Exp Med, 2000; 191: 9–22.
    52. Crabtree GR. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT [J]. Cell, 1999; 96: 611–614.
    53. Long P, Gassner R, Agarwal S. Tumor necrosis factor alpha-dependent proinflammatory gene induction is inhibited by cyclic tensile strain in articular chon- drocytes in vitro [J]. Arthritis Rheum, 2001; 44:2311–2319.
    54. Lelievre S, Weaver VM, Bissell MJ. Extracellular matrix signaling from the cellular membrane skeleton to the nuclear skeleton: a model of gene regulation [J]. Recent Prog Horm Res, 1996; 51: 417–432.
    55. Zhang J, Li W, Sumpio BE, et al. Fibronectin blocks p38 and jnk activation by cyclic strain in Caco-2 cells [J]. Biochem Biophys Res Commun, 2003; 306: 746–749.
    56. Goldring MB. The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models [J]. Connective Tiss Res, 1999; 40:1–11.
    57. Stefanovic-Racic M, Mollers MO, Miller LA, et al. Nitric oxide and proteoglycan turnover in rabbit articular cartilage [J]. J Orthop Res, 1997; 15:442–449.
    58. Evans CH. Nitric oxide: what role does it play in inflammation and tissue destruction [J]? Agents Actions, 1995; 47:107–116.
    59. Lotz M. Cytokines in cartilage injury and repair [J]. Clin Orthop, 2001; 391(Suppl.): S108–S115.
    60. Pelletier JP, DiBattista JA, Raynauld J-P, et al. The in vivo effects of intraarticular corticosteroid injections on cartilage lesions, stromelysin, interleukin-1 and oncogene protein synthesis in experimental osteoarthritis [J]. Lab Invest, 1995; 72:578–588.
    61. Pelletier JP, Jovanovic D, Fernandes JC, et al. Reduced progression of experimental osteoarthritis in vivo by selective inhibition of inducible nitric oxide synthase [J]. Arthritis Rheum, 1998; 41:1275–1286.
    62. Poole R. An introduction to the pathophysiology of osteoarthritis [J]. Front Biosci, 1999; 4:662–670.
    63. Amin AR, Dave MN, Attur MG, Abramson SB. COX-2, NO and cartilage damage and repair [J]. Curr Rheumatol Rep, 2000; 2:447–453.
    64. Attur MG, Patel IR, Patel RN, et al. Autocrine production of IL-1[beta] by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2 and IL-8 [J]. Proc Assoc Am Phys, 1998; 110:1–8.
    65. Ehrlich MG, Armstrong AL, Treadwell BV, et al. The role of proteases in the pathogenesis of osteoarthritis [J]. J Rheumatol, 1987; 14:30–32.
    66. Martel-Pelletier J, McCollum R, Fujimoto N, et al. Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis [J]. Lab Invest, 1994; 70:807–815.
    67. Testa V, Capasso G, Maffulli M, et al. Proteases and antiproteases in cartilage homeostasis: a brief review [J]. Clin Orthop, 1994; 308:79–84.
    68. Jin G, Sah RL, Li YS, et al. Biomechanical regulation of matrix metalloproteinase-9 in cultured chondrocytes [J]. J Orthop Res, 2000; 18:899–908.
    69. Agarwal S, Long P, Gassner R, et al. Cyclic tensile strain suppresses catabolic effects of IL-1 in chondrocytes from temporomandibular joint [J]. Arthritis Rheum, 2001; 44:608–614.
    70. Kishikawa H, Miura S, Yoshida H, et al. Transmural pressure induces IL-6 secretion by intestinal epithelial cells [J]. Clin Exp Immunol, 2002; 129: 86–91.
    71. Handa T, Ishihara H, Ohshima H, et al. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc [J]. Spine, 1997; 22: 1085-1091.