双向拉伸机保温腔温度控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度是工业生产、科学研究中常见和最基本的工艺参数之一,温度控制广泛应用于社会生活的各个领域。传统的控制方法多采用PID控制,但PID的参数不易实现在线调整,特别是用在高精度温度控制时,由于存在外界因素的干扰,严重地影响了控制的品质。
     随着科学技术的进步,控制理论也在不断地发展,模糊控制是一种正在兴起的控制技术。模糊控制不需要装置的精确模型,仅依赖于操作人员的经验和直观判断,非常容易应用,并且模糊控制对被控对象参数变化有强鲁棒性,对控制系统干扰有较强抑制能力。本文在分析国内外温度控制系统的基础上,针对拉伸机保温腔的特点,提出了以PLC为中心,在温度控制中应用模糊控制技术,从而有效提高温度控制精度,满足温度控制的需求。
     本文以双向拉伸机的保温腔为研究对象,完成了对整个温度控制系统的开发设计。通过分析可知,温度是一种不确定、大惯性、非线性严重的控制对象,本文采用模糊控制策略实现温度控制,其具有控制对象参数不敏感,与PID控制相比超调小等显著特点,从而使系统取得较好的控制品质。双向拉伸机保温腔温度控制系统为强耦合多变量温度控制系统,系统是以中央温度和均匀温度作为输入,以加热炉功率和风机速度作为输出,形成了双输入-双输出温度控制系统。根据这些特点本文采用具有解耦功能的模糊控制器,提出了分段控制算法,成功地进行了温度控制。文中主要介绍了控制理论的产生、发展以及控制算法的步骤,并从技术上分析、研究设备的控制系统、温度控制器、加热元件、温度传感器、以及变频调速控制系统等的选择和确定,并进行了软件编程。实践表明该系统切实可行,达到了所要求的控制精度。
Temperature is a common and one of the most basic process variables in industrial production, scientific research and daily life. Temperature control exists widely in every aspect of social life, and PID is the mainly adopted control algorithm in practice. Due to the environment variation PID parameters in-process tuning is not attainable, which negatively effects control quality.Control theory is ceaselessly updated with the development of science and technology. Fuzzy Control is newly emerging control technology. Fuzzy control needs not the exact mode of equipment but experiences and intuitional judge of the operator. It is easy to be used, fuzzy control is big robust to the parameter of the controlled object and has the strong restrain ability to disturb the system. Based on the analyses of temperature control system both inside and outside, aiming at the characters of the heat preservation of the bidirectional pull machine, this paper presents the whole system's design. PLC is the core, uses fuzzy control in the temperature system, so it can effectively improve the control precision and adapt to the different temperature's requirements.The research object is the heat preservation of the bidirectional pull machine, finish the exploitation and design of the whole temperature control system. By analyzing, the control temperature in the machine is an uncertainty, big inertia, and serious non-linearity object. So the fuzzy control was adapted to realize the control, because it had a thick skin to controlled object's parameters and a less exceed amplitude modulation than PID.This paper shows a strong coupling and multiple variable temperature control system, it's input variables are center temperature and average one, and the output variables are heating components and hot wind's velocity, these form a double input-double output temperature control system. Based on these, fuzzy control method that can decoupling is used, divided control arithmetic is given. The control arithmetic steps are introduced. It is a practical plan and reaches the temperature control quality.
引文
[1] 王耀南.智能控制系统.模糊逻辑·专家控制·神经网络控制.湖南:湖南大学出版社,1996
    [2] K. K. Tan, T. H. Lee. Enhanced Automatic Tuning Procedure for Process Control of PI/PID Controllers. AICHE Journal, 1996, 42(9): 2555~2562
    [3] K.J. Astrom. Automatic Tuning and Adaption for PID Controllers-A Survey. Control Eng Practice, 1993, 1(4): 331~334
    [4] K. J. Astrom. Automatic Tuning of PID Controllers. Research Triangle Park. Nothe Carolina: Instrument Society of America, 1998
    [5] 戴汝为.人工神经网络与形象思维.现代化,1991(3):431~434
    [6] Kangling Fang, Zhongjie Shen. A Neural-Fuzzy Control in Resistance Furnace. 1997 IEEE International Conference on Intelligent Processing Systems, 1997
    [7] 贺剑锋,陈晖,黄石生.模糊控制的最近发展.控制理论与应用,1994,11(2):223~228
    [8] 刘曙光,王志宏,费佩燕等.模糊控制的发展和展望.机电工程,2000,17(1):9~12
    [9] 韩瑞珍,陈国定,杨马英.基于模糊推理的自整定PID控制器.基础自动化,2002,9(2):38~40
    [10] 罗海福,毛义梅,张晶.一种参数自适应模糊PID控制器的设计与仿真.自动化与仪器仪表,2001(3):10~12
    [11] 赵建华,沈永良.一种自适应PID控制算法.自动化学报,2001,7(3):45~47
    [12] 吴晓帆.智能PID控制.自动化与仪表,2001
    [13] 王亚刚,邵惠鹤.一种基于灵敏度的自整定最优PI控制器.自动化学报,2001,7(3):23~25
    [14] Khatun P, Bingham C. M., Schofield N. Application of Fuzzy Control Algorithms for Electric Vehicle Antilock Braking/Traction Control Systems. Vehicular Technology. IEEE Transactions on Industry Applications, 2003, 52(5): 1356~1364
    [15] Brandt S.G, G Shavit. Simulation of the PID Algorithm for Direct Digital Control Application. Workshop on HVAC Controls. Modeling and Simulation, Atlanta: Georgia Institute of Tech, 1984
    [16] Ibrahim Z, Levi E. A Comparative Analysis of Fuzzy Logic and PI Speed Control in High-Performance AC Drives Using Experimental Approach. IEEE Transactions on Industry Applications, 2002, 38(5): 1210~1218
    [17] 张军英,方敏.智能PID控制器及其自学习.黑龙江自动化技术与应用,1999
    [18] 陶永华.新型PID控制及其应用.北京:机械工业出版社,1998
    [19] 韦巍.智能控制技术.北京:机械工业出版社,1999
    [20] 李人厚,秦世引.智能控制理论和方法.西安:西安交通大学出版社,1994
    [21] 邹伯敏.自动控制理论.北京:机械工业出版社,1998
    [22] 冯培梯.系统辨识.浙江大学出版社,1999
    [23] L.A. Zadeh, FuzzySets. Information and Control. 1965, 8 (3): 338~353
    [24] 雷金莉.基于模糊理论的除氧器温度控制系统的研究.西安:西安科技大学出版社,2005
    [25] 诸静.模糊控制原理与应用.北京:机械工业出版社,1995
    [26] Kiendl. H, Ruger. J. T. Stability Analysis of Fuzzy Control Systems Using Facet Functions. Fuzzy sets and systems, 1995, 12(7): 275~285
    [27] 刘曙光,魏俊民,竺志超.模糊控制技术.北京:中国纺织出版社,2001
    [28] 王树青.先进控制技术及应用.北京:化学工业出版社,2001
    [29] 李朝阳.基于模糊控制的温控系统的研究.新疆:新疆大学出版社,2002
    [30] 汤兵勇,路林吉,王文杰.模糊控制理论与应用技术.北京:清华大学出版社,2002
    [31] Zhang Yi, Pheng Ann Heng. Stability of Fuzzy Control Systems with Bounded Uncertain Delays. IEEE Transactions on Fuzzy Systems, 2002, 10 (1): 92~97
    [32] Lee T. H, Lam H.K, Leung F.H.F. A Practical Fuzzy Logic Controller for the Path Tracking of Wheeled Mobile Robots. Control Systems Magazine, IEEE, 2003, 23(5): 60~65
    [33] Driankow D, Hellendoorn H, Reinfrank M. An Introduction to Fuzzy Control. New York: springier-verlag, 1993
    [34] Lu Yong Zai, He Min, Xu Chen wei. Fuzzy Modeling and Expert Optimization Control for Industrial Processed. IEEE Trans on Control Systems Technology, 1997, 5(1): 2~11
    [35] D. Atherton, D.P. Sable. Simulation Analysis of Continuous System Driven by Gaussian White Noise. Amsterdam: Elsevier Science Publishers BV, 1992
    [36] Kim Euntai, Park Minkee, Park Mignon. A New Approach to Fuzzy Modeling. IEEE Trans. Fuzzy Syst, 1997, 5(3): 328~337
    [37] Hamid R Beren, Khedkar. Learning and Tuning Fuzzy Logic Controller through Reingforcements. IEEE Trans on Neural Networks, 1992, 3(5): 724~740
    [38] 吴麟.自动控制原理.北京:清华大学出版社,1987
    [39] 刘国荣.模糊自适应PID控制器控制与决策.1995,10(3):557~562
    [40] 滕青芳,秦春林,党建武.神经元自适应PID控制.兰州铁道学院学报,2003,22(1):87~89
    [41] 王耀南.计算机智能信息处理技术及其应用.长沙:湖南大学出版社,1999
    [42] 卢伯英,于海勋.现代控制工程(第一版).北京:电子工业出版社,2000
    [43] 马明建,周长城.数据采集与处理技术.西安交通大学出版社,1998
    [44] 邵裕森.过程控制系统及仪表.北京:机械工业出版社,1999
    [45] 陈健,刘影,成丽波.论VB及其编程.松辽学刊(自然科学版),1999(4):45~49
    [46] 宋伟,吴建国.中文VB 6.0编程基础.北京:清华大学出版社,1999
    [47] 唐连章.VB编程中的几个技巧.现代计算机,1997(3):51~52
    [48] SIMATIC S7-200 PLC用户指南.SIMATIC,1998
    [49] 钟肇新,王颧.可编程序控制器入门教程(SIMATIC S7-200).广州:华南理工大学出版社,2000
    [50] 邱晓林.基于MATLAB的动态模型与系统仿真工具Simulink 3.0/4.x.西安:西安交通大学出版社,2003
    [51] 张国良.模糊控制及其MATLAB应用.西安:西安交通大学出版,2003
    [52] 楼顺天.基于MATLAB的系统分析与设计—模糊系统.西安:西安电子科技大学出版社,2001
    [53] 覃强.模糊PID温度控制方案的仿真优选及其实现.北京:中国科学院研究生院,2002
    [54] 汤兵勇,路林吉,王文杰.模糊控制理论与应用技术.北京:清华大学出版社,2002
    [55] 戴义保.高精密温度测量的研究与实现.自动化仪表,2003,24(3):35~39
    [56] 郭少朋.铂电阻多点测温控温设计.传感器技术,2004,23(1):56~59
    [57] DAC-7113B 32通道隔离型单端A/D输入卡用户手册
    [58] 郑阿奇,曹戈.Visual Basic实用教程.北京:电子工业出版社,2000