热处理和化学处理对梨离体植株中病毒的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果茎沟病毒(Apple stem grooving virus,ASGV)和苹果褪绿叶斑病毒(Apple
     chlorotic leaf spot virus,ACLSV)是梨树上两种重要病毒,广泛分布于世界各梨、苹果种植区。在梨树上这两种病毒通常不产生明显的症状,但影响树势和降低产量。栽培无病毒种苗是减轻这些病毒危害的重要途径,热处理和化学处理是获得无病毒果树种质的重要途径。为探索适合这两种病毒的脱病毒处理条件,建立更加有效的脱病毒技术,本研究以砂梨离体植株为研究体系,对热处理和化学处理进程中ASGV和ACLSV在离体植株及其茎尖的分布动态变化进行了研究,取得如下进展。
     1.采用酶联免疫吸附法(ELISA)和RT-PCR技术相结合,对砂梨‘黄花’的20个芽系的ASGV和ACLSV,筛选出带有这两种病毒的芽系共13个,通过在MS培养基上扩繁,建立了用于本研究的离体培养体系。
     2.采用组织免疫印迹技术对ASGV和ACLSV在‘黄花’离体植株茎干各部位分布特点进行了分析,通过改进病毒抗体吸附方法和延长洗涤时间有效降低了非特异反应,根据最终产生紫色反应可以判断病毒存在部位。采用该方法对植株纵切面印迹分析的结果表明,ASGV和ACLSV在‘黄花’离体植株茎干的顶端和基部含量均很高,茎干中部也有病毒分布,但反应颜色相对较浅。
     3.合成了这两种病毒的特异性生物素标记探针,建立了病毒斑点杂交和组织印迹原位杂交技术。采用组织印迹原位杂交技术对‘黄化’离体植株茎干纵切面和各部位的横切面印迹进行了病毒检测,其结果与组织免疫印迹相似,但特异性更强,杂交后免疫检测产生的紫色反应更明显。
     4.采用恒温(37℃)和变温(32℃/39℃,8h/16h交替)热处理技术对‘黄化’离体植株进行了脱病毒处理,采用以上建立的免疫印迹和组织印迹原位杂交技术对处理不同时间进程中植株茎干病毒浓度变化进行了分析。结果显示,在热处理过程中植株茎干病毒含量随处理时间的延长而逐渐降低,且茎干顶端病毒浓度的变化较基部更大,恒温处理至35d或变温处理至50d后,茎尖基本无病毒产生的特异性紫色反应,而这种紫色反应在基部仍清晰可见。在处理不同时期,取1~5mm茎尖(37℃)或0.5~5mm(32℃/39℃)茎尖进行了再培养,采用ELISA对再生植株病毒检测的结果显示,所取茎尖越小或处理时间愈长,ELISA检测吸光值愈低,表明随着处理时间的延长,病毒含量自茎尖向基部逐渐降低,这种变化趋势与组织印迹观察到的现象一致。ELISA和斑点杂交的结果表明,恒温处理35d后取1mm茎尖或变温处理45d后取0.5mm茎尖可以脱除ASGV和ACLSV。
     5.比较热处理再生植株的ELISA和斑点杂交检测结果显示,对未处理植株采用ELISA法可以有效检测这两种病毒,而经热处理后,植株体内病毒含量降低,此时需采用更灵敏的斑点杂交技术以确保获得无病毒种质。
Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV) are two important viruses in pear, which are worldwide distributed. In commercially cultivated pear, these two viruses usually do not cause visible symptoms, but they decrease the growth and productivity of infected trees. One of most effective measures for the controlling of these virus diseases is utilizing certified healthy propagation materials. Thermotherapy and chemotherapy are the most widely used measures for the production of virus-free plant materials. In these studies, for obtaining higher virus elimination efficiency, the virus distribution features in in vitro pear plants during thermotherapy and chemotherapy were analyzed in this study. Seeking results are listed as following.
    1. 20 in vitro plant clones of Pyrus pyrifolia cv.'Huanghua'were detected by ELISA and RT-PCR for ASGV and ACLSV. Results showed that 13 clones were infected by both ASGV and ACLSV. These clones were propagated on MS medium for the following studies.
    2. Tissue printing immunoassy was used for the detection of ASGV and ACLSV in different parts of stems of in vitro pear plants. Non-specific reaction was decreased by improving the absorbance protocols of polyclonal antibodies against these two viruses, prolonging the periods of washing steps. The distribution of viruses in vertical sections of plants could be easily observed based on the present of purples products. Results showed that both ASGV and ACLSV had a high concentration in the base and tip of these plants, and the intermediate section also had virus distribution with a lower amount.
    3. Biotinylated cDNA probes specific to ASGV and ACLSV were prepared from cloned fragments. The dot-blot hybridization and tissue-printing hybridization methods were studies for the detection of these viruses in plant crude extracts and tissues, respectively. These viruses in both vertical and horizontal sections of the stem of in vitro plants were detected by in situ tissue-printing hybridization. Similar results were achieved as tissue printing immunoassy, but with a more intensive reaction-signal.
    4. In vitro plant clones of Pyrus pyrifolia cv. 'Huanghua' were treated under 37℃ and 32℃/39℃ (8h /16h alteration) respectively. Changes of virus titers in stems of treated plants during thermotherapy were analyzed by tissue printing immunoassy and in situ tissue-printing hybridization established formerly. Results indicated that virus titers showed a decreasing tendency while the treatment periods were prolonged, and the tendency was more obvious in shoot tips than bases. When plants were treated for 35 days under 37℃ or 50 days under 32℃/39℃, no purple signal was observed in shoot tips,
引文
1.蔡瑜,向本春,席德慧,都业娟,刘升学.节果褪绿叶斑病毒库尔勒香梨分离物外壳蛋白基因的序列分析.石河子大学学报,2004,22(3):1997-200
    2.陈林蚊,缪颖,陈德海.原位PCR技术及其应用.生物工程进展.2000,20(2):58-63
    3.邓晓云,洪霓,胡红菊,王国平.检测砂梨潜隐病毒的IC-RT-PCR和TC-RT-PCR的研究.果树学报,2004,21(6):569-572
    4.洪霓,刘福昌,王国平,王小凤.A蛋白酶联法检测苹果叶斑病毒和茎沟病毒的研究.中国果树,1992,(1):44-47
    5.洪霓,王国平,Boscia D,Martelli G P.苹果褪绿叶斑病毒提纯及抗血清制备技术.中国果树,1999b,(1):15-18
    6.洪霓,王国平,于济民,董雅凤,张尊平.苹果茎沟病毒的分离纯化及血清学检验.中国农业科学,1997,30(5):6-12
    7.洪霓,王国平,张尊平,董雅凤,薛光荣.梨病毒脱除技术研究.中国果树,1995,4:5-7
    8.洪霓,王国平.苹果褪绿叶斑病毒生物学及生化特性研究.植物病理学报,1999a,29(1):77-81
    8.侯义龙,张开春,吴雅琴,李春敏.节果褪绿叶斑病毒检测:PCR技术与ELISA技术灵敏度比较.大连大学学报,2001,22(6):19-22
    10.黄培堂译.PCR技术实验指南.科学技术出版社,1999,162-172
    11.柳濑春夫,仲谷房治,宗形隆,町田郁夫.酵素结合抗体法直接二抗体法並间接法(F(ab’)_2法)apple chlorotic leaf spot virus apple stem grooving virus 各种系统出.Bull.Fruit Tree Res Stn A.1986,13:69-81
    12.马代夫,李洪民,李秀英,李强,唐君,马飞,谢逸萍.甘薯病毒检测技术的改进与组培苗病毒分布特征研究.江苏农业科学,2003,(3):32-34
    13.马琦.原位PCR技术及其应用前景.生物化学与生物物理进展,1996,23(6):488-492
    14.孟清,张鹤玲,宋伯符.应用Dot-ELISA检测PVX,PVY和PVS[J].中国病毒学,1993,8(4):366-372.
    15.牛建新,朱军,马兵钢.库尔勒香梨的节果褪绿叶斑病毒cDNA探针检测技术研究.西北农业学报,2005,14(2):58-63
    16.史新慧,覃闯登,宋建兰,夏晓平,王贺.水稻及其他禾本科植物体内硅结合蛋白的免疫印迹检测.生物化学与生物物理进展.2005,32(4):371-376
    17.宋瑞琳,吴如健,柯冲.茎尖嫁接脱除柑桔主要病原的研究.植物病理学报,1999,29(3):275-279
    18.孙琦,张春庆.植物病毒与检测研究进展.山东农业大学学报,2003,34(2):307-310
    19.王国平,洪霓,张尊平,张少瑜,姜修凤.我国北方梨产区主要品种病毒种类的鉴定研究.中国果树,1994,2:1-4
    20.王国平,洪霓.果树病毒检测与脱除技术的研究进展.华中农业大学学报,2004,23(6):685-691
    21.王小凤,李秋波,王荣,洪霓,王国平,刘福昌.苹果褪绿叶斑病毒和苹果茎沟病毒的鉴定,提纯和酶联检测.微生物学报,1992,32(2):137-144
    22.吴雅琴,陈霜莹,王文慧.三种方法检测苹果褪绿叶斑病毒与苹果茎沟病毒比较.植物保护学报,1998,25(3):245-248
    23.邢继英.血清学检测甘薯病毒制样技术研究[J].江苏农业科学,1999,(3):33-35.
    24.杨峰,洪霓,王远程.分泌抗苹果茎沟病毒单克隆抗体杂交瘤细胞株的建立.中国农业科学,1996,29(2):85-89
    25.张虹,洪霓,王国平.梨树茎尖培养及其在病毒脱除中的应用.华中农业大学学报,2004,23(3):370-374
    26.郑银英,洪霓,王国平,胡红菊.苹果茎沟病毒梨分离物外壳蛋白基因的克隆与序列分析.植物病理学报,2006,36(1):62-67
    27.郑银英,洪霓,王国平.苹果茎沟病毒部分分离物的生物学特性与分子鉴定.植物保护学报,2005,32(3):266-270
    28.仲乃琴.ELISA技术检测马铃薯病毒的研究[J].甘肃农业大学学报,1998,33(2):178-181.
    宗形隆.茎顶培养一化.植物防疫,1987,41(9):6-11
    29. Barba M, Clark M F, Detection of strains of apple chlorotic leaf spot virus by F(ab)_2-based indirect ELISA. Acta Horticulturae, 1986, 193:297-30
    30. Brlansky R H, Lee R F, and Garnsey S M. In stiu immunofluorescence for the detection of citrus virus inclusion bodies. Plant Dis, 1988, 72:1039-1041
    31. Cieslifiska M. Elimination of apple chlorltic leaf spot virus (ACLSV) from pear by in vitro thermotherapy and chemotherapy. Acta Horticulturae, 2002, 596:481-484
    32. Clark M D, Flegg C L, Bar-Joseph M, and Rottem S. The detection of spiroplasma citri by enzyme-linked immunosorbent assay(ELISA). Phytopathol Z, 1978, 92:332-337
    33. Deogratias J M, Dosba F, Lutz A. Elimination of PPV, NRSV and CLSV from sweet cherries by means of in vitro culture. Acta Horticulturae, 1988, 235:189
    34. Desvignes J C, and Boye R. Different diseases caused by the chlorotic leaf spot virus on the fruit trees. Acta Horticulturae, 1989,235: 31-38
    35. Dietzgen R G, Xu Z, and Teycheney P Y. Digoxigenin labeled cRNA probes for the detection of two potyviruses infecting peanut (Arachis hypogaea). Plant Disease, 1994, 78:708-711.
    36. Faggioli F. In vitro micrografting of pyrus communis shoot tips. Advances in Horticultural Science, 1997, 11(1): 25-29
    37. Foster T M, Lough T J, Emerson S J, Lee R H, Bowman J L, Forster R L S, and Lucas W J. A surveillance system regulates selective entry of RNA into the shoot apex. Plant cell, 2002,14:1497-1508
    38. Fridlund P R. Distribution of chlorotic leafspot virus on various lengths of apple budsticks in successive years. Acta Hort, 1983,130: 85-87
    39. Galipienso L, Vives M C, Navarro L, Moreno P, and Guerri J. Detection of citrus leaf blotch virus using digoxigenin-labeled cDNA probes and RT-PCR. European Journal of Plant Pathology, 2004, 110:175-181.
    40. Gella R. Effect of some virus diseases on the performance of two clones of Agua de Aranjuez pear. Acta Horticulturae, 1990,256: 137-142
    41. German S, Candresse T, Lanneau M, Huet J C, Dunez J. Nucleotide Sequence and Genomic Organization of Apple Chlorotic Leaf Spot Closterovirus [J]. Virology, 1990, 179: 104-112
    42. German-Retana S, Bergey B, Delbos R P, Candresse T, and Dunez J. Complete nucleotide sequence of the genome of a severe cherry isolate of Apple Chlorotic Leaf Spot trichovirus [J]. Archives of Virology, 1997, 142: 833-841
    43. Hansen A J. Effect of ribavirin on green ring mottle causal agent and necrotic ring spot virus in Prunus species. Plant Disease, 1984,68: 216-218
    44. Harper K, and Creamer R. Hybridisation detection of insect-transmitted plant viruses with digoxigenin-labeled probes. Plant Disease, 1995, 79: 563-567.
    45. Hatta I, Francki R I B. Identification of small polyhedral virus particles in thin sections of plant cells by an enzyme cytochemical technique. Journal of Ultrastructure Research, 1981,74: 116-129
    46. Isac M. Obtaining plum varieties free of viruses by in vitro technique. Acta Horticulturae, 1986, 193: 213-216
    47. James D. A simple and reliable protocol for the detection of apple stem grooving vurus by RT-PCR and in a multiplex PCR assay. Journal of Virology Methods, 1999, 83: 1-9
    48. James D. Long term assessment of the effects of invitro chemotherapy as a tool for apple stem grooving virus elimination. Acta Horticulturae, 2002, 550: 459- 461
    49. Johansen B O. Annals of Botany. 1997, 80: 697-700
    50. Joseph P. Virus tested pear germplasm available at the national clonal germpalasm repository in Corvalis Oregon. Fruit Varieties Journal, 1988, 42(3): 109-115
    51. Kinard G R, Scott S W. Detection of apple chlorotic leaf spot and apple stem grooving viruses using RT-PCR. Plant Disease, 1996, 80: 616-621
    52. Knapp E, Da camara Machado A, Puhringer H, Wang Q, Hanzer V, Weiss H, Weiss B, Katinger H, Laimer da camara Machado M. Localizatin of fruit viruse by immuno-tissue printing in infected shoots of Malus sp. and Prunus sp. Joural of Virological Meththods, 1995a, 55: 157-173
    53. Knapp E, Hanzer V, Weiss H, New aspects of virus elimination in fruit trees. Acta Horticulturae, 1995b, 386: 409-418
    54. Langer P R, Waldrop A A, Ward D C. Enzymatic synthems of biotin labeled polynucleotides novel nucleic acid affinity probes[J]. Proc Natl Acad Sci USA, 1981
    55. Leary J, Brigati D J, Ward D C. Rapid and sensitive colorimetric method for visualizing biotin labeled DNA probes hybridzed to DNA or RNA immlbiliezd on nitroccllulose: Bio blots [J]. Proc Natl Acad Sci USA, 1983, 80 (13): 4045-4049.
    56. Lin N S, Hsu Y H, Hsu H T. Immunological detection of plant viruse and a mycoplasmlike organism by direct tissue blotting on nitrocellulose membrabes. Phytopathology, 1990, 80: 824-828.
    57. Lin Y, Ruaell P A., Xie L, and Powell C A. In situ immunoassay for detection of Citrus tristeza virus. Plant Disease, 2000, 84: 937-940.
    58. Lizarrage C, Fermandez-Northcote E N. Detection of potato viruses X and Y in sap extracts by a modified indirect enzyme-linked immunosorbent assay on nitrocellulose membrances (NCM-ELIS)[J]. Plant Dis, 1989, 73: 11-14.
    59. Maliowski T, Komorowaka B, Candrerse T, Cieslinska M, Zawadzka B. Charaterization of Sx/2 an apple chlorotic leaf spot virus isolate showing unusual coat protein properties. Acta Horticulturae, 1998b, 474: 43-50
    60. Manganaris G A, Economou A S, Boubourakas I N, and Katis N I. Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture in nectarine. Plant Cell Report, 2003, 22: 195-200
    61. Martelli G P, and Ruso M. Virus-host relationships, symptomatological and ultrastructural aspects. In The Plant Viruses, 1985, Vol I, PP163-205
    62. Martelli G P, Candresse T, Namba S. Trichovirus, a new genus of plant viruses. Archives of Virology. 1994, 142: 1929-1932
    63. Mei-Hao Sun, Wen Xu, Ya-Fang Zhu, Wei-Ai Su, and Zhang-Cheng Tang. A Simple Method for In Stiu Hybridization to RNA in Guard Cell of Vicia Faba L. The Expression of Aquporins in Guard Cells. Plant Molecular Biology Reporter, 2001, 19: 129-135,
    64. Murashige T, Bitters W P, Rangan T S, Mauer E M, Roistacher C N, Holliday P B. A technique of shoot apex grafting and its utilization towards recovering virus-free citrus clone. HortScience, 1972, 7: 118-119
    65. Narvaez G, Skander B S, Ayllon M A, Rubio L, Guerri J, and Moreno P A new procedure to differentiate citrus tristeza virus isolates by hybridisation with digoxigenin-labeled cDNA probes. Journal of Virological Methods, 2000, 85: 83-92
    66. Navarro L, Roistacher C N, Murashige T. Improvement of shoot tip grafting in vitro for virus-free citrus. J Am Soc HorticSci, 1975, 100: 471-479
    67. Nemeth M. Virus, Mycoplasma and rickettsia diseases of fruit trees. M N P. 1986: 153-223
    68. O'Herlihy E A, Croke J T and Cassells A C. Influence of in vitro factors on titre and elimination of model fruit tree viruses. Plant Cell Tissue and Organ Culture. 2003, 72: 33-42
    69. Pappu H R, Manjunath K L, Lee R F, Niblett C L. Molecular characterization of a structural epitope that is largely conserved among severe isolates of a plant virus [J]. Proc Natl Acad Sci USA, 1993, 90:3641-3644
    70. Peter R, Jody L M, Avelina S, David J D, Sau-wan C, David W T Ho, Alan M M, Andrea J C, and Peter L D. Comparision of a Commercial Enzyme-Liked Immunosorbent Assay with Immunofluorescence and Complement Fixation Tests for Detection of Coxiella burnetii(Q Fever) Immunoglobulin M. Journal of Clinical Microbiology, 2000, p.1645-1647.
    71. Postman J D, Hadid A. Elimination of apple scar skin viroid from pears by in vitro thermotherapy and apical meristem culture. Acta Horticulturae, 1995, 386: 536-543
    72. Powel A. Protection agairtst tobacco mosaic virus in transgenic plants that express tobaoeo mosaic virus antisevse RNA [J]. Proc Natl Acad Sci USA, 1989, 89: 6949-6958
    73. Riedel D, Lesemann D E, Maiss E. Ultrastructural localization of nonstructural and coat proteins of 19 potyviruses using antisera to bacterially expressed proteins of plum pox potyvirus. Archives of Virology, 1998, 143: 2133-2158
    74. Roman A Z, Tatynan N E, Dietrich E L, Wilhelm J, and Alexey A. Processing and subcellular localization of the leader papain-like proteinase of Beet yellows closterovirus. Journal of General Virology, 2003, 84: 2265-2270.
    75. Sanchez-Navarro J A, Aparicio F, Herranz M C, Minafra A, Myrta A and Pallas V. Simultaneous detection and identification of eight stone fruit viruses by one-step RT-PCR. European Journal of Plant Pathology, 2005, 111: 77-84
    76. Sato K, Yoshikawa N, Takahashi T, and Taira H. Expression subcellular location and modification of the 50 kDa protein encoded by ORF2 of the apple chlorotic leaf spot trichovirus genome. Journal of General Virology, 1995, 76: 1503-1507
    77. Sato K, Yoshikawa N, Takahashi T. Complete nucleotide sequence of an apple isolate of apple chlorotic leaf spot virus [J]. Journal of General Virology, 1993, (74): 1927-1931
    78. Sato K, Yoshikawa N, Takahashi T. Complete nucleotide sequence of the genome of an apple isolate Virus. Journal of General Virology, 1993, 74: 1927-1931
    79. Satoh H, Matsuda H, Kawamura T, Isogai M, Yoshikawa N, Takahashi T. Intracellular distribution, cell-to-cell trafficking and tubul-indueing activity of the 50 kDa movement protein of Apple chlorotic leaf spot virus fused to gmen fluorescent protein. Journal of General Virology, 2000, 81: 2085-2093
    80. Stark-Lorenzen P, Guitton M C, Werner R, Muhlbach H P. Detection and tissue distribution of potato viroid in infected tomato plants by tissue hybridization [J]. Archives of Virology, 1997, 142: 1289-1296
    81. Tanne E, Shlamovitz N, and Spiegel-Roy P. Rapidly diagnosing grapevine corky bark by in vitro micrografting [J]. Hortscience, 1993, 28(6): 667-668.
    82. Tatyana N, Erokhina M V. Vitushkina R A. Zinovkin D E. Lesemann W, Jelkmann E V K and Alexey A A. Ultrastructural localization and epitope mapping of the methyltransferase-like and helicase-like proteins of Beet yellows virus. Journal of General Virology, 2001, 82: 1983-1994
    83. Uchiumi T. Plant Cell Phystol. 1998, 39(7): 790-794
    84. Voinnet O, lederer C, Bauleombe D C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 2000, 103:157-167
    85. Wisniewski L A, Powell P A. Local and systemic spread of tobacco mosaic virus in transgenic tobacco plants [J]. The Plant Cell, 1990, 2: 559-567
    86. Yoshikawa N, Gotoh S, Umezawa M, Satoh N, Satoh H, Takahashi T, Ito T, and Yoshida K. Transgenic Nicotiana occidentalis plants expressing the 50-kDa protein of apple chlorotic leaf spot virus display increased susceptibility to homologous virus, but strong resistance to Grapevine berry inner necrosis virus. Phytopathology, 2000, 90: 311-316
    87. Yoshikawa N, Oogake S, Terada M, Miyabayashi S, Ikeda Y, Takahashi T, Ogawa K. Apple chlorotic leaf spot virus 50kD protein is targeted to plasmod esmata and accumulates in sieve elements in transgenic plant leaves. Archives of Virology, 1999, 144: 2475-2483
    88. Yoshikawa N, Sakaki E, Kato M, Takashashi T. The nucleotide sequence of apple stem grooving capillovirus genome [J]. Virology, 1992, 191(1): 98-105
    89. Yoshikawa N, Saski E, Kato M, Takahashhi T. The nucleotide sequence of apple stem grooving Capillovirus genome. Virology, 1992, 191: 98-105
    90. Zilka S, Faingersh E, Rotbaum A, Tam Y, Spiegel S, and Malca N. In vitro production of virus-free pear plants. Acta Horticulturae, 2002, 596: 477-479.