铀(Ⅵ)、钍(Ⅳ)和铕(Ⅲ)在磁性富羧基复合物上的吸附行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯酸钠和富羧基碳化合物表面均含有大量羧基官能团,对重金属及放射性核素有良好的吸附性能,有望在放射性废物的处理中得到应用。近年来,利用磁性纳米材料具有尺寸小、比表面积大、表面活性位点多和在外加磁场作用下快速响应等特性,研究其吸附分离废液中的重金属离子,已受到人们的极大关注。本文制备了磁性聚丙烯酸钠改性有机膨润土纳米复合物(PSA/O-BT-Fe3O4),探讨了该磁性纳米复合物的制备及表征,研究了U(Ⅵ)、Th(Ⅳ)和Eu(Ⅲ)在该复合物上的吸附性能及吸附机理,考察了平衡时间、吸附剂用量、pH、离子强度、腐殖质(富里酸和胡敏酸)和温度等对吸附的影响,通过解吸和再生实验考察了该吸附剂的循环利用性能。本文又制备了磁性富羧基碳复合材料(10ACA-C/Fe3O4),并研究了其对Pb(Ⅱ)、Ni(Ⅱ)、Hg(Ⅱ)和U(Ⅵ)的吸附性能。
     第一章介绍了本工作的研究背景以及国内外水凝胶和磁性纳米材料的研究现状与最新进展。
     第二章采用共沉淀法制备了磁性有机膨润纳米颗粒(O-BT-Fe3O4),并将其在聚丙烯酸钠溶液中共聚合制备得到磁性聚丙烯酸钠改性有机膨润土纳米复合物(PSA/O-BT-Fe3O4).采用扫描电子显微镜(SEM)、红外光谱分析(FTIR、X射线衍射(XRD)、热重差热分析(TGA)、振动样品磁强计(VSM)、 zeta电位分析以及元素分析等手段对磁性聚丙烯酸钠改性有机膨润土纳米复合物的形貌、磁性、组成、结构以及表面电荷特性等进行了表征,结果表明所合成的材料磁响应性良好,具有良好的热稳定性,表面为强酸性位点。采用溶胀动力学实验测定了该纳米复合物的溶胀动力学,纳米复合物在去离子水和0.2%NaCl溶液中均在60分钟内达到溶胀平衡,纳米复合物在去离子水中的溶胀倍率要远远大于在0.2%NaCl溶液中。
     Th(IV)在PSA/OBT-Fe3O42#表面的吸附随固液比的增大而增大;吸附动力学符合准二级动力学模型:pH强烈影响吸附,受离子强度影响较弱,可以推测在低pH值时主要以外层配合作用和/或离子交换作用为主,在较高pH值时主要以内层配合作用和/或表面沉淀为主;HA/FA的存在与否均对Th(Ⅳ)的吸附没有影响;升高温度有利于Th(IV)在PSA/OBT-Fe3O42#上吸附,吸附足吸热过程,吸附反应是自发进行的;具有优良的重复利用性能,从经济性考虑使用0.1mol/L HC1作为洗脱剂最佳,经5次吸附-解吸实验后吸附容量依然高达3.6mmol/g。
     U(VI)在PSA/OBT表面上的吸附受pH值、离子强度影响显著,离子强度对U(VI)在PSA/OBT表面上的吸附有促进效应,可以推测U(VI)在PSA/OBT表面以内层配合形式吸附;固液比显著影响吸附,吸附百分数随固液比的增大先增大后减小再增大,吸附量随固液比增大而减小;升高温度有利于U(VI)在PSA/OBT上吸附,吸附是吸热过程,吸附反应自发进行,且吸附等线符合Langmuir模型。吸附前后的红外谱图证实了内层配合物的形成足PSA/OBT作为吸附剂吸附去除U(VI)的主要机理。
     Eu(Ⅲ)在PSA/OBT-Fe3O42#上的吸附量随Eu(Ⅲ)初始浓度的增加而增加直到到达最大洗发量,吸附百分数随初始浓度增加而降低,且吸附等温线符合Langmuir模型。
     第三章采用水热法合成了富羧基碳(10ACA-C),进一步采用共沉淀法合成了不同配比的磁性富羧基碳复合材料(10ACA-C/Fe3O4)。采用TEM、FTIR、 VSM、XRD、TGA、zeta电位分析及BET等手段读磁性富羧基碳复合材料的形貌、磁性、组成、结构以及表面电荷特性等进行了表征。结果表明所合成的材料磁响应性良好,具有良好的热稳定性,10ACA-C和10ACA-C/Fe3O4在pH大于3.0时表面总体表现为电负性。采用静态法研究了Pb(Ⅱ)、Ni(Ⅱ)、Hg(Ⅱ)和U(Ⅵ)仆磁性富羧基碳复合材料的吸附性能。Pb(Ⅱ)、Ni(Ⅱ)、Hg(Ⅱ)和U(Ⅵ)在:10ACA-C上的吸附容量要高于在10ACA-C/Fe3O42#上。该吸附剂是重金属污水和放射性废液处理领域中极具发展前景的吸附材料。
     上述研究结果表明,磁性富羧基碳复合物对金属离子及放射性核素具有吸附速率快、吸附容量大、可循环利用,并且在外加磁场下可以实现与净化介质有效分离等优点,在重金属污水及放射性废液处理等方面具有良好的应用前景。
Poly(sodium acrylate) and carboxylate-rich carbonaceous materials contain carboxylic groups, which has endowed sorbents with very high sorption capacities to heavy metal ions and radionuclides. The application of these carboxylate-rich materials as sorbents for the safety and reasonable treatment of radio-waste is expected. An innovative technology is the use of magnetic materials for magnetic separation of pollutants from effluents rapidly. The unique and attractive property of magnetic carrier materials, is small size, great specific surface area, high surface activity and readily be collected from sample solutions using an external magnetic field. In this work, poly(sodium acrylate)/organo-bentonite-Fe3O4(PSA/OBT-Fe3O4) magnetic superabsorbent nanocomposites were prepared and characterized. The effects on sorption (such as contact time, solid content, pH, ion strengthen, humic substances, temperature etc.) and desorption (the kind and concentration of desorbing agent, recyclability) of U(Ⅵ), Th(Ⅳ) and Eu(Ⅲ) on magnetic nanocomposites was investigated to discuss the sorption behavior and mechanism. Magnetically modified carboxylate-rich carbonaceous composite materials (10ACA-C/Fe3O4) were also prepared, characterized and applied to study the sorption capacities of Pb(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and U(Ⅵ).
     In the first chapter, the curren situation and the latest progress in research of hydrogels and magnetic nanoparticles were briefly reviewed.
     In the second chapter, the organo-bentonite-Fe3O4magnetic nanoparticles (O-BT-Fe3O4) were prepared by using co-precipitation technique, then a series of poly(sodium acrylate)/organo-bentonite-Fe3O4(PSA/OBT-Fe3O4) magnetic superabsorbent nanocomposites were prepared by copolymerization reaction of partially neutralized acrylic acid (SA) and organo-bentonite/Fe3O4(OBT-Fe3O4). The morphology, paramagnetic properties, contents, structures and surface charge properties of PSA/OBT-Fe3O4have been characterized by using SEM, FT-IR, XRD, TGA, VSM, zeta potential and ICP-AES. The experimental results showed that the nanocomposites were well responded to magnetic fields, thermodynamic stabilized and strong acid sites on surface. Swelling kinetic of the nanocomposites was measured. The water absorbency sharply increased and the equilibrium swelling was achieved after60min in distilled water and0.2%NaCl, and the higer swelling was obtained in distilled water than0.2%NaCl.
     The sorption percentage of Th(Ⅳ) on PSA/OBT-Fe3O42#increases with increasing adsorbent content. Sorption processes can be described accurately by the pseudo-second order rate model. The sorption of Th(Ⅳ) is affected strongly by pH and weakly by sodium ions, which indicated that the ion exchange and/or outer-sphere complexes were the main sorption species at low pH, and inner-sphere and/or surface precipitation complexes dominated at high pH range. The presence of humic substances (HA/FA) have no effect on the soption of Th(Ⅳ). Th(Ⅳ) sorption on PSA/OBT-Fe3O42#is promoted at higher temperature and sorption processes were spontaneous and endothermic. Furthermore, the PSA/OBT-Fe3O4superabsorbent could be regenerated through the desorption of Th(Ⅳ) using0.1mol/L HCI solution and the sorption capacity is still higher than3.6mmol/g after five consecutive sorption-desorption processes.
     The sorption of U(Ⅵ) on PSA/OBT was strongly dependent on pH and ionic strength. U(Ⅵ) sorption amount is increasing with salinity growing, inner-sphere complexes dominated U(Ⅵ) sorption on PSA/OBI. The sorption processes were strongly affected by solid-to-liquid ratio (m/V), the sorption percentage increases, decreases and then increase with solid-to-liquid ratio increases, U(Ⅵ) sorption amount is decreasing with solid-to-liquid ratio increases. IJ(Ⅵ) sorption on PSA/OBT is promoted at higher temperature and sorption processes were spontaneous and endothermic. Sorption Isotherms can be fitted accurately by the Langmuir model. FTIR spectra of before and after sorption confirmed that inner-sphere complexes formation is the major mechanism for U(VI) sorption on PSA/OBT.
     The sorption amount is increasing with initial Eu(Ⅲ) concentration increases until equilibrium soption was achieved, the sorption percentage of Eu(Ⅲ) on PSA/OBT-Fe3O42#decreases with initial concentration increases. Sorption isotherms can be described by the Langmuir model.
     In the third chapter, Carboxylate-rich carbonaceous materials were prepared using hydrothermal, followed by co-precipitation method to obtain magnetic carboxylate-rich carbons. The morphology, paramagnetic properties, contents, structures and surface charge properties of10ACA-C/Fe3O4have been characterized by TEM, FT-IR, VSM, XRD, TGA, zeta potential and BET. The experimental results showed that the composites were thermodynamic stabilized and well magnetic responsiveness. The surface charge of10ACA-C and10ACA-C/Fe3O4is negative at pH>3.0. The sorption behavior of Pb(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and U(Ⅵ) from aqueous solution to10ACA-C and10ACA-C/Fe3O4was investigated by batch experiment. The sorption capacity of Pb(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and U(Ⅵ) on10ACA-C is higher than10ACA-C/Fe3O4, and the sorption capacity of Pb(Ⅱ) and Hg(Ⅱ) on10ACA-C and10ACA-C/Fe3O4is higher than Ni(Ⅱ). Magnetic carboxylate-rich carbon is a promising sorption material for water treatment of heavy metal ions and radionuclides.
     The results of the present thesis confirmed that magnetic carboxylate-rich composites provides sorbent materials with many advantages like fast response, high capacity, reusability and readily be collected from sample solutions using an external magnetic field for the removal of heavy metal ions and radionuclides from aqueous solution, which indicated that magnetic carboxylate-rich composites have a good prospect in the heavy metal containing sewage as well as nuclear waste treatment.
引文
1.刘期风等:放射性核素迁移研究现状与进展.化学研究与应用2006,18:465-471.
    2.奚旦立,孙裕生,刘秀英.环境检测-2版(修订版).北京:高等教育出版社1996.
    3.姜圣阶,任凤仪.核燃料后处理工学北京:原子能出版社1995.
    4. Giles CH, MacEwan TH, Nakhwa SN, Smith D:Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc.1960,4: 3973-3993.
    5.李法虎:吸附等温线.In.土壤物理化学北京:化学工业出版社2006.148-153.
    6. Langmuir I:THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. J. Am. Chem. Soc.1918,40:1361-1403.
    7. Tseng RL, Wu FC:Analyzing a liquid-solid phase countercurrent two- and three-stage adsorption process with the Freundlich equation. J. Hazard. Mater.2009,162:237-248.
    8. Hatch CD, Wiese JS, Crane CC, Harris KJ. Kloss HG, Baltrusaitis J:Water adsorption on clay minerals as a function of relative humidity:application of BET and Freundlich adsorption models. Langmuir.2012,28:1790-1803.
    9. Sawyer CN, McCarty PL, Parkin GF. Chemistry for Environmental Engineering and Science (5th ed.). New York:McGraw-Hill 2003.
    10. Stumm W, Morgan JJ. Aquatic Chemistry:Chemical Equilibria and Rates in Natural Waters (3rd ed.). New York, N.Y:John Wiley & Sons, Inc 1996.
    11. Recillas S, Colon J, Casals E, Gonzalez E. Puntes V, Sanchez A, et al.\Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. J. Hazard. Mater.2010,184:425-431.
    12. Nilchi A, Garmarodi SR, Darzi SJ:Removal of arsenic from aqueous solutions by an adsorption process with titania-silica binary oxide nanoparticle loaded polyacrylonitrile polymer. J. Appl. Polym. Sci.2011,119:3495-3503.
    13. Chen Q, Yin D, Zhu S, Hu X:Adsorption of cadmium(Ⅱ) on humic acid coated titanium dioxide. J. Colloid Interface Sci.2012,367:241-248.
    14. Masters G, Ela W. Introduction to Environmental Engineering and Science (3rd ed.)\ Prentice Hall Englewood Cliffs, NJ 2007.
    15. Ho YS, Ng JCY, McKay G:Kinetics of pollutant sorption by biosorbents:Review. Separ. Purif. Method.2000,29:189-232.
    16. Ho YS:Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientome/rics 2004,59:171-177.
    17. Rudzinski W, Plazinski W:Kinetics of solute adsorption at solid/solution interfaces:A theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport. J. Phys. Chem. B 2006,110:16514-16525.
    18. Ozcan AS, Ozcan A:Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J. Colloid Interface Sci.2004,276:39-46.
    19. Ho YS:Removal of metal ions from sodium arsenate solution using tree fern. Process. Saf. Environ.2003.81:352-356.
    20. Ho YS, McKay G:Pseudo-second order model for sorption processes. Process Biochem. 1999,34:451-465.
    21. Liu Y:New insights into pseudo-second-order kinetic equation for adsorption. Colloids Surf., A 2008,320:275-278.
    22. Shahwan T, Akar D. F.roglu AE:Physicochemical characterization of the retardation of aqueous Cs ions by natural kaolinite and clinoptilolite minerals.J. Colloid Interface Sci. 2005,285:9-17.
    23. Tsai S-C, Wang T-H, Li M-H. Wei Y-Y. Teng S-P:Cesium adsorption and distribution onto crushed granite under different physicochemical conditions.J. Hazard. Mater.2009. 161:854-861.
    24. Tsai S-C, Wang T-H, Wei Y-Y, Yeh W-C, Jan Y-L. Peng S-P:Kinetics of Cs adsorption/desorption on granite by a pseudo first order reaction model.J. Radioanal. Nucl. Ch.2008,275:555-562.
    25. Banerjee K, Amy GL, Prevost M Nour S. Jekel M, Gallagher PM, et al.:Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Res.2008,42:3371-3378.
    26. Fan QH, Wu WS, Song XP, Xu JZ, Hu J, Niu ZW:Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th(Ⅳ) on attapulgite. Radiochiin. Acta 2008, 96:159-165.
    27. Fan Q. Li Z. Zhao H, Jia Z, Xu J, Wu W:Adsorption of Pb(Ⅱ) on palygorskite from aqueous solution:Effects of pH. ionic strength and temperature. Appl. Clay. Sci.2009,45: 111-116.
    28. Niu ZW, Pan QH, Wang WH, Xu JZ. Chen L, Wu WS:Effect of pH. ionic strength and humic acid on the sorption of uranium(Ⅵ) to attapulgite. Appl. Radial. Iso.2009,67: 1582-1590.
    29. Li YH. Di ZC. Ding J, Wu DH. Luan ZK. Zhu YQ:Adsorption thermodynamic. kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res.2005.39:605-609.
    30. Chen C, Li X. Zhao D, Tan X. Wang X:Adsorption kinetic, thermodynamic and desorption studies of Th(Ⅳ) on oxidized multi-wall carbon nanotubes. Colloids Surf., A 2007,302: 449-454.
    31. Ho Y-S. Ofoinaja AE:Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem. EMg.J.2006.30:117-123.
    32. Zhao G, Li.1, Ren X, Chen C. Wang X:Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environ. Sci. Technol.2011, 45:10454-10462.
    33. Lyubchik SI. Lyubchik AI. Galushko OL, Tikhonova LP, Vital J, Fonseca IM, ett al: Kinetics and thermodynamics of the Cr(Ⅲ) adsorption on the activated carbon from co-mingled wastes. Colloids Surf, A 2004.242:151-158.
    34. Tao ZY, Wang XK, Dai XX, Du JZ:Adsorption characteristics of 47 elements on a calcareous soil, a red earth and an alumina:a multitracer study. Appl. Radial. Iso.2000,52: 821-829.
    35. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G:Sorption of Eu(Ⅲ) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ. Sci. Technol.2009,43: 5776-5782.
    36. Qian LJ, Zhao JN, Hu PZ, Geng YX, Wu WS:Effect of pH, filvic acid and temperature on sorption of Th(Ⅳ) on zirconium oxophosphate. J. Radioanal. Nucl. Ch.2010,283: 653-660.
    37. Pan DQ, Fan QH, Li P, Liu SP, Wu WS:Sorption of Th(Ⅳ) on Na-bentonite:Effects of pH, ionic strength, humic substances and temperature. Chem. Eng. J.2011,172:898-905.
    38. Tsai SC, Wang TH, Li MH, Wei YY, Teng SP:Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater.2009,161: 854-861.
    39.吴景贵,席时权,姜岩:土壤腐殖酸的分析化学研究进展.分析化学1997,25:1221-1227.
    40. Jansen SA, Malaty M, Nwabara S, Johnson E, Ghabbour E, Davies G. et al.:Structural modeling in humic acids. Materials Science and Engineering:C 1996,4:175-179.
    41.朱海军:十壤腐殖酸的提取及其对U、Eu币和241Am的吸附.四川大学硕十毕业论文2006.
    42. Bradl H:Adsorption of Heavy Metal Ions on Clays. In:Hubbard AT. Encyclopedia of Surface and Colloid Science.2nd. New York:Marcel Dekker, Inc 2002.1-13.
    43. Apak R:Adsorption of Heavy Metal Ions on Soil Surfaces and Similar Substances. In: Hubbard AT. Encyclopedia of Surface and Colloid Science.2nd. New York:Marcel Dekker, Inc 2002.385-417.
    44. Bradl HB:Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 2004,277:1-18.
    45. Sparks DL:Sorption. In:Hillel D. Encyclopedia of Soil in the Environment. Burlington: Academic Press 2004.532-537.
    46. Sparks DL:Metal and oxyanion sorption on nautrally occurring oxide and clay mineral surfaces. In:Grassian VH. Environmental Catalysis:Taylor and Francis 2005.3-36.
    47. Simoni E:Metal Sorption on Oxide, Silicate, and Phosphate Solids:Thermodynamical and Structural Point of View. In:Hubbard AT. Encyclopedia of Surface and Colloid Science. 2nd. New York:Marcel Dekker. Inc 2002.3283-3301.
    48. Lutzenkirchen J:Surface Complexation Models of Adsorption. In:Hubbard AT. Encyclopedia of Surface and Colloid Science.2nd. New York:Marcel Dekker, Inc 2002. 5028-5046.
    49. Ohshima H, Johannes L:Chapter 3 Diffuse double layer equations for use in surface complexation models:approximations and limits In. Interface Science and Technology: Elsevier 2006.67-87.
    50. He YT, Wan J, Tokunaga T:Kinetic stability of hematite nanoparticles:the effect of particle sizes. Journal of Nanoparticle Research 2008,10:321-332.
    51. Guzman KAD, Finnegan MP, Banfield JF:Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol.2006,40:7688-7693.
    52. Manning BA, Goldberg S:Adsorption and stability of arsenic(Ⅲ) at the clay mineral-water interface. Environ. Sci. Technol.1997.31:2005-2011.
    53. Tessier A. Fortin D, Belzile N. DeVitre RR, Leppard GG:Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter:Narrowing the gap between field and laboratory measurements. Geochim. Cosmochim. Acta 1996,60:387-404.
    54. Westall J. Hohl H:A comparison of electrostatic models for the oxide/solution interface. Adv. Colloid Inlerfac 1980,12:265-294.
    55. Yates DE, Levine S, Healy TW:Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases 1974,70.
    56. Osada Y. Khokhlov AR. Polymer Gels and Networks (1st ed.) New York:Marcel Dekker, Inc 2002.
    57.邹新禧.超强吸水剂-2版.北京:化学工业出版社2002.
    58. Pourjavadi A, Mahdavinia GR. Zohuriaan-Mehr MJ:Modified chitosan. Ⅱ. H-ChitoPAN, a novel pH-responsive superabsorbent hydrogel.J. Appl. Polym. Sci.2003,90:3115-3121.
    59. Dulong V. Mocanu G, Le Cerf D:A novel amphiphilic pH-scnsitive hydrogel based on pullulan. Colloid Polym. Sci.2007,285:1085-1091.
    60. Birgersson E, Lib H, Wua S:Transient analysis of temperature-sensitive neutral hydrogels. J. Mech. Phys. Solids.2008,56:444-466.
    61.张先正,卓仁禧:快速温度敏感聚(N-异丙基丙烯酰胺-co-丙烯酰胺)水凝胶得制备及性能研究.高等学校化学学报2000:1309-1311.
    62. Shang J, Shao Z. Chen X:Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 2008,9:1208-1213.
    63. Ganji F, Vasheghani-Farahani E:Hydrogels in Controlled Drug Delivery Systems. Iran. Polvm.J.2009,18:63-88.
    64. Hoare TR, Kohane DS:Hydrogels in drug delivery:Progress and challenges. Polymer 2008, 49:1993-2007.
    65. Liu C, Gan X, Chen Y:A novel pll-sensitive hydrogels for potential colon-specific drug delivery:Characterization and in vitro release studies. Starch-starkc 2011,63:503-511.
    66. Bekiari V, Sotiropoulou M, Bokias G, Lianos P:Use of poly(N,N-dimelhylacrylamide-co-sodium acrylate) hydrogel to extract cationic dyes and metals from water. Colloids Surf., A 2008.312:214-218.
    67. Thomas PC, Cipriano BH, Raghavan SR:Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange. Soft Matter 2011,7:8192-8197.
    68.史艳茹,李奇.王丽,王爱勤:三维网络水凝胶在重金属和染料吸附方面的研究进展.化工进展2011:2294-2303.
    69.郑易安.王金磊,王爱勤:聚(丙烯酸-co-丙烯酰胺)/膨润土/腐植酸钠三维网络凝胶吸附剂对Cd2吸附性能研究.环境工程学报2009:1719-1724.
    70. Abedi-Koupai J, Sohrab F, Swarbrick G:Evaluation of hydrogel application on soil water retention characteristics.J. Plant Nutr.2008,31:317-331.
    71. Sadeghi M, Hosseinzadeh H:Synthesis and superswelling behavior of carboxymethylcellulose-poly(sodium acrylate-co-acrylamide) hydrogel. J. Appl. Polym. Sci. 2008,108:1142-1151.
    72.郑易安,王文波,王爱勤:腐植酸高吸水性树脂研究进展.高分子通报2011:38-47.
    73. Zhao G-z, Liu Y-q, Tian Y, Sun Y-y, Cao Y:Preparation and properties of macromelecular slow-release fertilizer containing nitrogen, phosphorus and potassium. J. Polym. Res.2010, 17:119-125.
    74. Liu M, Liang R, Zhan F, Liu Z, Niu A:Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym. Int.2007,56:729-737.
    75.刘建树,邹黎明,王依民:国外可生物降解高吸水材料的研究状况.合成技术及应用2001:27-29.
    76.陈有梅,陈煜:天然高分子系高吸水性树脂的研究.化工新型材料2003:22-24.
    77.魏春红:玉米淀粉接枝丙烯酸制备高吸水性树脂及其应用研究.黑龙江八一农垦大学硕士学位论文2009.
    78. Guilherme MR, Reis AV, Paulino AT, Fajardo AR, Muniz EC, Tambourgi EB: Superabsorbent hydrogel based on modified polysaccharide for removal of Pb2+ and Cu2+ from water with excellent performance. J. Appl. Polym. Sci.2007,105:2903-2909.
    79. Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J:Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J. Colloid Interface Sci.2006,301:55-62.
    80. Pourjavadi A. Amini-Fazl MS, Barzegar S:Optimization of synthesis conditions of a novel carrageenan-based superabsorbent hydrogel by Taguchi method and investigation of its metal ions adsorption. J. Appl. Polym. Sci.2008,107:2970-2976.
    81. Yan WL, Bai RB:Adsorption of lead and humic acid on chitosan hydrogel beads. Water Res.2005,39:688-698.
    82.张剑波,冯金敏:离子吸附技术在废水处理中的应用和发展.环境污染治理技术与设备2000:46-51.
    83. Wang SB, Soudi M, Li L, Zhu ZH:Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. J. Hazard. Mater.2006,133:243-251.
    84.吴能表,付启吕,龙云,阳义健,朱利泉,王小佳:不同小球藻对工业废水中金属离子吸附能力比较.西南农业大学学报(自然科学版)005:111-113.
    85. Subbaiah MV, Yuvaraja G, Vijaya Y, Krishnaiah A:Equilibrium, kinetic and thermodynamic studies on biosorption of Pb(Ⅱ) and Cd(Ⅲ) from aqueous solution by fungus (Trametes versicolor) biomass. Journal of the Taiwan Institute of Chemical Engineers 2011,42:965-971.
    86. Na P, Jia X, Yuan B, Li Y, Na J, Chen Y, et al.:Arsenic adsorption on Ti-pillared montmorillonite.J. Chem. Technol. Biot.2010,85:708-714.
    87.曾德芳,李娟,袁继祖:天然高分子絮凝剂在工业污水处理中的应用.工业水处理2004:20-22.
    88. Shukla SR, Pai RS:Adsorption of Cu(Ⅱ), Ni(Ⅱ) and Zn(Ⅱ) on modified jute fibres. Bioresource. Technol.2005,96:1430-1438.
    89. Ulusoy U, Akkaya R:Adsorptive features of polyacrylamide-apatite composite for Pb2' UO22+ and Th4+. J. Hazard. Mater.2009,163:98-108.
    90. Kasgoz H, Ozgumus S, Orbay M:Preparation of modified polyacrylamide hydrogels and application in removal of Cu(II) ion. Polymer 2001,42:7497-7502.
    91. Kasgoz H, Ozgumus S, Orbay M:Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer 2003,44:1785-1793.
    92. Kasgoz H, Durmus A. Kasgoz A:Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym. Advan. Technol.2008,19:213-220.
    93. Li S, Liu X, Zou T, Xiao W:Removal of Cationic Dye from Aqueous Solution by a Macroporous Hydrophobically Modified Poly(acrylic Acid-acrylamide) Hydrogel with Enhanced Swelling and Adsorption Properties. Clean-Soil Air Water 2010,38:378-386.
    94. Liu Y. Kang Y, Huang D, Wang A:Cu2+ removal from aqueous solution by modified chitosan hydrogels. Journal of Chemical Technology & Biotechnology 2012:n/a-n/a.
    95.李杰,马凤国,谭惠民:羧甲基纤维素接枝聚磺甲基化丙烯酰胺的制备及其吸附性能的研究.化工进展 2004:532-535.
    96.赵宝秀,王鹏,郑彤.舒静:新型重金属吸附树脂的的微波合成及性能研究.材料科学与工艺2006,14:4.
    97.彭清华:环评中确定卫生防护距离的原则和方法.科技创新导报2008:168-169.
    98. Zheng YA, Huang DJ, Wang AQ:Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery. Anal. Chim. Ada 2011,687:193-200.
    99.谢建军,梁吉福,刘新容.刘赛:聚丙烯酸/丙烯酰胺高吸水性树脂吸附性能.化工学报2007:1762-1767.
    100.谢建军.吴海刚,蒋佳星.屠国平:PAAS吸水树脂对重金属离子盐溶液的吸液及吸附性能.功能材料2007:1331-1333.
    101. Sprynskyy M, Buszewski B, Terzyk AP, Namiesnik J:Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interface Sci.2006,304:21-28.
    102. Hazcr O, Kartal S:Use of amidoximated hydrogel for removal and recovery of U(Ⅵ) ion from water samples. Tulanta 2010.82:1974-1979.
    103. Ozay O. Ekici S, Baran Y. Aktas N, Sahiner N:Removal of toxic metal ions with magnetic hydrogels. Water Res.2009,43:4403-4411.
    104. Anirudhan TS, Sreekumari SS:Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons.J. Environ. Sci-China 2011,23:1989-1998.
    105. Atta AM. Saved SA, Farag AB, Ismail HS, Mohamed ZM, Eraky AM:Application of Crosslinked Acrylamidoximc/2-Acrylamido-2-methylpropane Sulfonic Acid Copolymer in Waslewater Treatment.J. Disper. Sci. Technol 2011.32:1285-1295.
    106. Bulut Y. Akcay G, Elma D, Serhatli IE:Synthesis of clay-based superabsorbent composite and its sorption capability.J. Hazard. Mater.2009.171:717-723.
    107. Santiago F. Mucientes AE, Osorio M, Rivera C:Preparation of composites and nanocomposites based on bentonite and poly(sodium acrylate). Effect of amount of bentonite on the swelling behaviour. Eur. Polym.J.2007,43:1-9.
    108. Chen H, Wang AQ:Adsorption characteristics of Cu(Ⅱ) from aqueous solution onto poly(acrylamide)/attapulgite composite.J. Hazard. Mater.2009,165:223-231.
    109. Santiago F, Mucientes AE, Talavera B:Synthesis, Characterization and Swelling Behaviour of Poly(Sodium Acrylate)/Palygorskite Superabsorbent Composites Based on Palygorskite and Organo-Palygorskite. J. Polym. Eng.2009,29:409-427.
    110. Wang JL, Wang WB, Zheng YA, Wang AQ:Effects of modified vermiculite on the synthesis and swelling behaviors of hydroxyethyl cellulose-g-poly(acrylic acid)/vermiculite superabsorbent nanocomposites.J. Polym. Res.2011,18:401-408.
    111. Zheng Y, Wang AQ:Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J. Hazard. Mater.2009,171:671-677.
    112. Wang X, Zheng Y, Wang A:Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites.J. Hazard. Mater.2009,168:970-977.
    113. Alvarez-Ayuso E, Garcia-Sanchez A, Querol X:Purification of metal electroplating waste waters using zeolites. Water Res.2003,37:4855-4862.
    114. Liu Y, Wang W, Wang A:Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination.2010,259:258-264.
    115. Yilmaz SS, Kul D, Erdol M, Ozdemir M, Abbasoglu R:Synthesis of a novel crosslinked superabsorbent copolymer with diazacyclooctadecane crown ether and its sorption capability. Eur. Polym. J.2007,43:1923-1932.
    116. Yetimoglu EK, Kahraman MV, Ercan O, Akdemir ZS, Apohan NK: N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels:Synthesis, characterization and their application in the removal of heavy metals. React. Funct. Polym.2007,67:451-460.
    117. Zendehdel M, Barati A, Alikhani H:Removal of heavy metals from aqueous solution by poly(acrylamide-co-acrylic acid) modified with porous materials. Polym. Bull.2011,67: 343-360.
    118. Hua S, Wang A:Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohyd. Polym.2009,75: 79-84.
    119. Chu M, Zhu S-Q, Huang Z-B, Li H-M:Influence of potassium humate on the swelling properties of a poly(acrylic acid-co-acrylamide)/potassium humate superabsorbent composite. J. Appl. Polym. Sci.2008,107:3727-3733.
    120. Zhang JP, Wang AQ:Adsorption of Pb(Ⅱ) from Aqueous Solution by Chitosan-g-poly(acrylic acid)/Attapulgite/Sodium Humate Composite Hydrogels. J. Chem. Eng. Data 2010,55:2379-2384.
    121. Wang L, Zhang J, Wang A:Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2008,322:47-53.
    122. Li Q, Zhao Y, Wang L, Aiqin W:Adsorption characteristics of methylene blue onto the N-succinyl-chitosan-g-polyacrylamide/attapulgite composite. Korean J. Chem. Eng.2011. 28:1658-1664.
    123. Dalaran M, Emik S. Guclu G, Iyim TB. Ozgumus S:Removal of acidic dye from aqueous solutions using poly(DMAEMA-AMPS-HEMA) terpolymer/MMT nanocomposite hydrogels. Polym. Bull.2009,63:159-171.
    124.蒋月秀.张雪,徐慧娟.姚宗林,童张法:改性膨润土对酸性靛蓝的吸附性能研究.//金属矿2007:63-65.
    125.冯琳,宋延林,万梅香,江雷:磁性氧化铁纳米粒子的研究进展.科学通报2001:1321-1325.
    126. Park SJ. Kim S, Lee S, Khim ZG, Char K, Hyeon T:Synthesis and magnetic studies of uniform iron nanorods and nanospheres.J. Am. Chem. Soc.2000,122:8581-8582.
    127. Chen Y, Liew KY, Li J:Size controlled synthesis of Co nanoparticles by combination of organic solvent and surfactant. Appl. Surf. Sci.2009,255:4039-4044.
    128. Kim YI, Kim D, Lee CS:Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B: Condensed Matter 2003,337:42-51.
    129. Qu SC, Yang HB, Ren DW, Kan SH. Zou GT, Li DM, et al.:Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions.J. Colloid Interface Sci.1999.215:190-192.
    130. Xu J, Yang H, Fu W, Du K, Sui Y. Chen J, et al.:Preparation and magnetic properties of magnetite nanoparticles by sol-gel method.J. Magn. Magn. Mater.2007,309:307-311.
    131. Boutonnet M, Kizling J, Stenius P, Maire G:The preparation of monodisperse colloidal metal particles from microemulsions. Colloids and Surfaces 1982.5:209-225.
    132. Vijayakumar R, Koltypin Y. Felner 1, Gedanken A:Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Materials Science and Engineering:A 2000.286:101-105.
    133. Hyeon T, Lee SS. Park J, Chung Y, Bin Na H:Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process.J. Am. Chein. Soc.2001,123:12798-12801.
    134. Chatterjee J, Bettge M, Haik Y, Chen C.I:Synthesis and characterization of polymer encapsulated Cu-Ni magnetic nanoparticles for hyperthermia applications.J. Magn. Magn. Mater.2005.293:303-309.
    135. Jia X, Chen D, Jiao X, He T, Wang H, Jiang W:Monodispersed Co, Ni-ferrite nanoparticles with tunable sizes:Controlled synthesis, magnetic properties, and surface modification.Journal of Physical Chemistry C 2008,112:911-917.
    136. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y:Monodisperse magnetic single-crystal ferrite microspheres. Angew Client Int Ed Engl 2005.44:2782-2785.
    137.秦昆华.马文石:纳米Fe3O4磁性粒子的制备及其表面改性研究进展.中国粉体技术2008:59-63.
    138.邱礼平,温其标,姚玉静.陈琼:磁性交联高链玉米淀粉颗粒形貌和磁性粒子分布的研究.粮油加工2006:86-89.
    139.李玉慧,彭婷婷,张丽,欧阳丽,谢青季,苏孝礼,et al:羧甲基壳聚糖磁性纳米粒子的合成及应用.应用化学2010:87-91.
    140. Liu J-F, Zhao Z-S, Jiang G-B:Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol.2008,42: 6949-6954.
    141.熊雷,姜宏伟,王迪珍:Fe3O4磁性纳米粒子表而修饰研究进展.材群导报2008:31-34+48.
    142.孙汉文,张连营,朱新军,孔春燕,张存兰,姚思德:PEGMA磁性纳米凝胶的光化学原位合成、表征及载药性能研究.中国科学(B辑:化学)2008:999-1005.
    143.李贵平,黄凯,张辉,刘峰,陈旭坚:Herceptin介导的肿瘤靶向治疗用免疫磁性纳米微粒的制备.南方医科大学学报2010:2539-2542+2545.
    144. Peak D, Sparks DL:Mechanisms of Selenate Adsorption on Iron Oxides and Hydroxides. Environ. Sci. Technol.2002,36:1460-1466.
    145. Li P, Fan QH, Pan DQ,Liu SP, Wu WS:Effects of pH, ionic strength, temperature, and humic acid on Eu(Ⅲ) sorption onto iron oxides. J. Radioanal. Nucl. Ch.2011,289: 757-764.
    146. Fan QH. Li P. Chen YF. Wu WS:Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(Ⅵ) from aqueous solution. J. Hazard. Mater. 2011,192:1851-1859.
    147. Chang YC, Chang SW, Chen DH:Magnetic chitosan nanoparticles:Studies on chitosan binding and adsorption of Co(Ⅱ) ions. React. Funct. Polym.2006,66:335-341.
    148.沈吴宇,赵永纲,胡美琴,夏清华:高分子聚羧酸-纳米Fe3O4磁性复合颗粒的制备及其对水中对羧基苯甲酸酯类化合物的吸附作用.复合材群学报2009:68-73.
    149. Phuengprasop T, Sittiwong J, Unob F:Removal of heavy metal ions by iron oxide coated sewage sludge. J. Hazard. Mater.2011,186:502-507.
    150. Zhou Y-T, Nie H-L, Branford-White C, He Z-Y, Zhu L-M:Removal of Cu2+from aqueous solution by chitosan-coated magnetic nanoparticles modified with alpha-ketoglutaric acid. J. Colloid Interface Sci.2009,330:29-37.
    151.张娟,邓慧萍,薮谷智规,安澤幹人:新型磁性聚谷氨酸吸附剂对水中Pb2+的吸附去除.环境科学2011:3348-3356.
    152. Bee A, Talbot D, Abramson S, Dupuis V:Magnetic alginate beads for Pb(Ⅱ) ions removal from wastewater. J. Colloid Interface Sci.2011,362:486-492.
    153.Ngomsik A-F, Bee A, Siaugue J-M, Talbot D, Cabuil V, Cote G:Co(Ⅱ) removal by magnetic alginate beads containing Cyanex 272 (R). J. Hazard. Mater.2009,166: 1043-1049.
    154. Zhang J, Wang L, Wang A:Preparation and properties of chitosan-g-poly(acrylic acid)/montmorillonite superabsorbent nanocomposite via in situ intercalative polymerization. Ind. Eng. Chem. Res.2007,46:2497-2502.
    155. Liu YS, Liu P, Su ZX, Li FS, Wen FS:Attapulgite-Fe3O4 magnetic nanoparticles via co-precipitation technique. Appl. Surf. Sci.2008,255:2020-2025.
    156. Ho Y-S, Ofomaja AE:Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber.J. Hazard. Mater.2006,129:137-142.
    157. Liu ZR, Ye R, Sun XH:Adsorption of Th (Ⅳ) by peal moss. Desalin. Water Treat.2011, 28:196-201.
    158. Zhao DL, Feng SJ, Chen CL, Chen SH, Xu D, Wang XK:Adsorption of thorium(Ⅳ) on MX-80 bentonite:Effect of pH, ionic strength and temperature. Appl. Clay. Sci.2008,41: 17-23.
    159. Wu W, Fan Q, Xu J, Niu Z. Lu S:Sorption-desorption of Th(IV) on attapulgite:effects of pH, ionic strength and temperature. Appl. Rudiat. Iso.2007,65:1108-1114.
    160. Yu SM, Chen CL, Chang PP, Wang TT, Lu SS. Wang XK:Adsorption of Th(Ⅳ) onto Al-pillared rectorite:Effect of pH, ionic strength, temperature, soil humic acid and fulvic acid. Appl. Clay. Sci.2008,38:219-226.
    161.Korichi S, Bensmaili A:Sorption of uranium (Ⅵ) on homoionic sodium smectite experimental study and surface complexation modeling.J. Hazard. Mater.2009,169: 780-793.
    162. Baeyens B, Bradbury MH:A mechanistic description of Ni and Zn sorption on Na-montmorillonite.1. Titration and sorption measurements.J. Contam. Hydrol.1997,27: 199-222.
    163. Wang XK. Chen CL. Du JZ, Tan XL, Xu D, Yu SM:Effect of pH and aging time on the kinetic dissociation of Am-243(Ⅲ) from humic acid-coated gamma-Al2O3:A chelating resin exchange study. Environ. Sci. Technol.2005.39:7084-7088.
    164. Wu W. Fan Q, Xu J. Niu Z, Lu S:Sorption-desorption of Th(IV) on attapulgite:Effects of pH, ionic strength and temperature. Appl. Radial. Iso.2007,65:1108-1114.
    165. Yang K, Xing B:Adsorption of fulvic acid by carbon nanotubes from water. Environ. Pollut.2009.157:1095-1100.
    166. Xu D. Wang XK, Chen CL, Zhou X, Tan XL:Influence of soil humic acid and fulvic acid on sorption of thorium(IV) on MX-80 bentonite. Radiochim. Ada 2006,94:429-434.
    167. Chen CL, Wang XK:Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(Ⅳ) onto gamma-Al2O3 Appl. Ceochem.2007,22:436-445.
    168. Pan DQ. Fan QH, Ding KF, Li P, Lu Y. Yu T, el al.:The sorption mechanisms of Th(Ⅳ) on attapulgite. Sci. China Chem.2011.54:1138-1147.
    169. Zuo LM, Yu SM, Zhou H, Tian X. Jiang J:Th(IV) adsorption on mesoporous molecular sieves:effects of contact time, solid content. pH, ionic strength, foreign ions and temperature.J.Radioanal. Nucl. Ch.2011,288:379-387.
    170. Khouya E, Fakhi S, Hannache H, Ichcho S, Pailler R, Naslain R. et al.:Production of a new adsorbent from Moroccan oil shale by chemical activation and its adsorption characteristics for U and Th bearing species.J. Phys. Iv.2005,123:87-93.
    171. Gok C, Turkozu DA, Aytas S:Removal of Th(IV) ions from aqueous solution using bi-functionalized algae-yeast biosorbent.J. Radioanal. Nucl. Ch.2011,287:533-541.
    172. Sharma P. Tomar R:Sorption behaviour of nanocrystalline MOR type zeolite for Th(Ⅳ) and Eu(Ⅲ) removal from aqueous waste by batch treatment.J. Colloid Interface Sci.2011, 362:144-156.
    173. Akkaya R. Ulusoy U:Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pbr2+, UO22+, and Th4+.J. Hazard. Mater.2008,151:380-388.
    174. Chen CL, Li XL, Zhao DL. Tan XL. Wang XK:Adsorption kinetic, thennodynamic and desorption studies of Th(Ⅳ) on oxidized multi-wall carbon nanotubes. Colloids Surf, A 2007,302:449-454.
    175. Humelnicu D. Dinu MV, Dragan ES:Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents.J. Hazard. Mater. 2011,185:447-455.
    176. Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D: Thorium removal by different adsorbents. J. Hazard. Mater.2003,97:71-82.
    177.Akyil S, Eral M:Preparation of composite adsorbents and their characteristics. J. Radioanal. Nucl. Ch.2005,266:89-93.
    178. Maheria K, Chudasama U:Studies on kinetics, thermodynamics and sorption characteristics of an inorganic ion exchanger-Titanium phosphate towards Pb(Ⅱ), Bi(Ⅲ) and Th(IV).J. Indian Inst. Sci.2006,86:515.
    179. Zhu W, Liu Z, Chen L, Dong Y:Sorption of uranium(VI) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, temperature and humic acid. J. Radioanal. Nucl.Ch.2011,289:781-788.
    180. Wazne M. Korfiatis GP, Meng XG:Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ. Sci. Technol.2003,37:3619-3624.
    181. Wang M, Qiu J, Tao X, Wu C, Cui W, Liu Q, et al:Effect of pH and ionic strength on U(IV) sorption to oxidized multiwalled carbon nanotubes. J. Radioanal. Nucl. Ch.2011, 288:895-901.
    182. Zhao D, Yang S, Chen S, Guo Z, Yang X:Effect of pH, ionic strength and humic substances on the adsorption of Uranium (VI) onto Na-rectorite. J. Radioanal. Nucl. Ch. 2011,287:557-565.
    183. Guillaumont R, Fanghanel T, Fuger J, Ingmar Grenthe, Neck V, Palmer DA, et al. Chemical Thermodynamics Series Volume 5:Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium In:Chemical Thermodynamics Series Elsevier 2003. pp. pp 570.
    184. Wang WB, Xu JX, Wang AQ:A pH-, salt- and solvent-responsive carboxymethylcellulose-g-poly(sodium acrylate/medical stone superabsorbent composite with enhanced swelling and responsive properties. Express Polymer Letters 2011,5: 385-400.
    185.裴兴:Fe304纳米粒杂化的温敏纳米凝胶的制备与表征.华中科技大学2008.
    186. Goldberg S:Inconsistency in the triple layer model description of ionic strength dependent boron adsorption.J. Colloid Interface Sci.2005,285:509-517.
    187. Filius JD, Lumsdon DG, Meeussen JCL, Hiemstra T, Van Riemsdijk WH:Adsorption of fulvic acid on goethite. Geochim. Cosmochim. Acta 2000,64:51-60.
    188. Yusan S, Erenturk S:Sorption behaviors of uranium (VI) ions on alpha-FeOOH. Desalination.2011,269:58-66.
    189. El-Sayed AA:Kinetics and thermodynamics of adsorption of trace amount of uranium on activated carbon. Radiochim. Acta 2008,96:481-486.
    190. Sun Y, Yang S, Sheng G, Guo Z, Tan X, Xu J, et al.:Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina. Sep. Purif, Technol.2011,83:196-203.
    191. Tian G, Geng J, Jin Y, Wang C, Li S. Chen Z, et al.:Sorption of uranium(Ⅵ) using oxime-grafted ordered mesoporous carbon CMK-5.J. Hazard. Mater.2011,190:442-450.
    192. Qian L, Hu P, Jiang Z, Geng Y, Wu W:Effect of pH, fulvic acid and temperature on the sorption of uranyl on ZrP2O7. Sci. China Chem.2010,53:1429-1437.
    193. Mueller K, Foerstendorf H, Meusel T. Brendler V, Lefevre G, Comarmond MJ, el ai: Sorption of U(V1) at the TiO2-water interface:An in situ vibrational spectroscopic study. Geochim. Cosmochim. Acta 2012,76:191-205.
    194. Lefevre G, Noinville S. Fedoroff M:Study of uranyl sorption onto hematite by in situ attenuated total reflection-infrared spectroscopy.J. Colloid Interface Sci.2006,296: 608-613.
    195. Lefevre G, Kneppers J, Fedoroff M:Sorption of uranyl ions on titanium oxide studied by ATR-1R spectroscopy.J. Colloid Interface Sci.2008,327:15-20.
    196. Lefevre G:In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interfac 2004,107:109-123.
    197. Bhattacharyya KG, Sen Gupta S:Adsorptive accumulation of Cd(Ⅱ), Co(Ⅱ). Cu(Ⅱ), Pb(Ⅱ), and Ni(Ⅱ) from water on montmorillonite:Influence of acid activation.J. Colloid Interface Sci.2007,310:411-424.
    198. Qin Q, Wang Q. Fu D, Ma J:An efficient approach for Pb(Ⅱ) and Cd(Ⅱ) removal using manganese dioxide formed in situ. Chem. Eng.J.2011.172:68-74.
    199. Yantasee W. Warner CL, Sangvanich T, Addleman RS. Carter TG, Wiacek RJ, et al: Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Technol.2007.41:5114-5119.
    200, Chouyyok W, Shin Y, Davidson J, Samuels WD, Lafemina NH, Rutledge RD, et al: Selective Removal of Copper(Ⅱ) from Natural Waters by Nanoporous Sorbents Functionalized with Chelating Diamines. Environ. Sci. Technol.2010,44:6390-6395.
    201.贾明畅,戴友芝,杜婷,刘川:磁性海泡石的研制及吸附Cr(VI)特性.环境化学2011:1546-1552.
    202. Chen C, Hu J, Shao D, Li J, Wang X:Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(Ⅱ) and Sr(Ⅱ).J. Hazard. Mater.2009,164: 923-928.
    203. Chen CL, Wang XK. Nagatsu M:Europium Adsorption on Multiwall Carbon Nanotube/lron Oxide Magnetic Composite in the Presence of Polyacrylic Acid. Environ. Sci. Technol.2009.43:2362-2367.