在水热合成的纳米碳载体和非传统环境下钯的电催化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米材料的制备及其功能化目前是一个热门课题。而水热碳化为碳纳米材料的制备及其功能化提供了一种便宜且有效的方法。前驱体决定着最终碳化产物的性能。生物质富含多样的功能基团如胺基,羟基和羧基等,因此水热碳化生物质为合成功能化碳纳米材料提供了多样的可能性。但是这些材料的制备往往涉及苛刻的合成条件和复杂后处理过程,制约其商业化。钯基电催化剂在一些电化学过程中如氧气还原反应和有机小分子氧化反应都表现出了高的电催化活性。在本论文中,论文以碳纳米材料的制备为背景,针对水热碳化为碳纳米的制备及功能化,开展深入研究,具有重要的实际应用价值,此外探索性研究了固体电解质界面和本征微孔聚合物中纳米钯的电催化。主要研究结论总结如下:
     (1)以壳聚糖为前驱体,经过在不同温度(180°C/200°C/230°C)下12个小时不完全水热碳化制备了胺基功能化的碳纳米颗粒。拉曼光谱分析显示该碳纳米颗粒具有无定形的碳核,但是电化学测试显示该碳纳米颗粒是电绝缘体。在与另一种表面具有苯磺酸根碳纳米颗粒(Emperor2000)物理混合,进一步的电化学测试表明该颗粒的阴离子吸附容量的值70Cg(-1)。
     (2)水热碳化制备了具有核壳结构的碳纳米材料。表面具有苯磺酸根的碳纳米颗粒(Emperor2000,卡博特公司)和在乙酸溶液中质子化壳聚糖超声分散,接着水热碳化处理,得到了具有pH响应的核壳碳纳米材料。用有最佳核壳比率(根据小角中子散射谱计算表明壳的平均厚度为4nnm)的碳纳米材料修饰电极显示该材料具有高pH响应的电阻,电容和法拉第电子转移响应(基于溶液体系中,共价配位和水热嵌入氧化还原探针)。为了解释观察到的pH开关效应,我们讨论了一种壳的“双层排斥”机理。
     (3)基于碳纳米颗粒(Emperor2000,卡博特公司),在乙二酸溶液中质子化壳聚糖以及氯化钯,用水热碳化一步合成了一种钯-核壳碳纳米复合材料。该复合材料修饰电极不仅具有pH响应的电容电流和法拉第电流,而且具有对小分子的选择性电催化。我们还讨论了这种复合材料对小分子选择性电催化在燃料电池上的应用。
     (4)研究了在固体盐电解质和加湿氮气条件下纳米钯颗粒的电化学催化性能。具体涉及到两种相关的氧化还原体系:(1)甲酸的氧化;(2)氢气的氧化。还研究了不同固体盐,甲酸的分压和加湿气体流速对纳米钯颗粒电催化的影响。观察到了一种显著的固体盐效应并讨论了“盐电池”在传感器的潜在应用。盐(其中硫酸铵最为有效),钯纳米颗粒和气相的三相接触界面即为电化学氧化过程进行的界面。膜电极被同时用作对电极和工作电极(用外部饱和甘汞电极),在于硫酸铵和加湿氮气接触条件下,研究了对苯二酚的氧化还原过程并得到了清晰的氧化还原响应。
     (5)研究了两种本征微孔聚合物(PIMs)(i)二乙基葸(分子量为70kDa,BET比表面积为1027m~2,PIM-H)(ii)二甲基联苯基甲烷(分子量为100kDa,BET比表面积为47m~2,PIM-L)的吸附性能及其作为催化剂载体负载钯的电催化。用二价酸性靛蓝阴离子和二价PdCl42阴离子作为吸附物,电化学测试表明溶液类型显著影响在两种聚合物的结合位点和结合容量。研究了高比表面面积聚合物和低比表面积聚合物的薄膜厚度对纳米钯颗粒的甲酸氧化的影响。这个具有更规整和高表面积的本征微孔聚合物显示出“开孔”特征和在孔中钯颗粒可能具有高催化活动性。
Carbon nanomaterials preparation and their functionalization have currently become a hot topic. Hydrothermal carbonization synthesis based biomass offers a cost-effective method for preparation and functionalization of carbon nanomaterials due to cheap and environmentally friendly precursors. In addition, biomass rich in various functional moieties such as amino, hydroxyl and carboxyl also offers versatile possibility for carbon nanomaterials functionalization. Palladium-based electrocatalyst exhibits high catalytic activity in several electrochemical processes such as oxygen reduction reaction (ORR) and reduction of small organic molecules. In this thesis, the first part is concerned with Pd electrocatalysis in amino-functionalized hydrothermal carbon nanomaterials based chitosan. The second part concerns palladium electrocatalysis in non-conventional environments such as salt matrix and the pore of the polymers of intrinsic microporisity (PIMs). These conclusions are summarized as follows:
     (1) The preparation of amino-functionalized carbon nanoparticles via partial hydrothermal carbonization from chitosan at180℃(or200℃,230℃) for12h. Raman analysis suggests amorphous carbon core but film electrodes show completely electrically insulating. Anion adsorption capability is exploited in conjuction with a second negatively charged carbon nanoparticles Emperor2000. The useful positive charge is maximized at a hydrothermal carbonization temperature of200℃with a specific anion binding capacity of70Cg-1
     (2) The preparation of hydrothermal core-shell nanocarbon. Carbon nanoparticles with phenylsulfonate negative surface functionality (Emperor2000, Cabot Corp.) are coated with positive chitosan followed by hydrothermal carbonization to give pH-responsive core shell nanocarbon composites. With optimised core-shell ratio (resulting in an average shell thickness of ca.4nm, estimated from SANS data) modified electrodes exhibit highly pH-sensitive resistance, capacitance and Faradaic electron transfer responses (solution based, covalently bound, or hydrothermally embedded). A shell "double layer exclusion" mechanism is discussed to explain the observed pH switching effects.
     (3) A nanocomposite of carbon nanoparticles (Emperor2000TM), chitosan, and nano-palladium is synthesized in a one-step hydrothermal process with oxalate used as reducing agent. Nano-palladium composites show selective electrocatalysis toward small molecules as well as strong pH effects on capacitive and Faradaic current responses. Implications of selective electrocatalysis toward small molecules in fuel cell application are discussed.
     (4) An alternative electrochemical system with the gas phase in closer contact to palladium nanoparticle catalyst is investigated based on a glassy carbon electrode and a solid salt electrolyte. Two relevant redox systems is under investigation:(i) the oxidation of formic acid and (ii) the oxidation of hydrogen. The effects of the type of salt, the partial pressure of formic acid, and the gas flow rate are investigated. A significant salt effect on the palladium catalyzed reaction is observed and potential future applications of "salt cells" in sensing are discussed. It is demonstrated that the reaction zone of salt (here (NH4)2SO4is most effective), palladium nanoparticle catalyst, and gas phase, is where the electrochemical oxidation process occurs. MEA is employed as both a counter electrode and working electrode (with an external SCE reference electrode) for oxidation of hydroquinone in contact with ammonium sulphate under humidified nitrogen gas. A well-defined redox response could be observed.
     (5) Two intrinsically microporous polymers (PIMs)(i) ethanoanthracene TB-PIM (MW70kDa, BET surface area1027m2) and (ii) dimethyldiphenylmethane TB-PIM (MW100kDa, BET surface area47m2or PIM-L) are investigated as emerging novel membrane and catalyst support materials. Binding sites and binding ability/capacity in aqueous environments are compared in films deposited onto glassy carbon electrodes for (i) indigo carmine dianion immobilisation (weakly binding from water-ethanol) and (ii) PdCl42-immobilisation (strongly binding from acidic media). Electrocatalytic oxidation of formic acid (at pH6) is investigated for PIM-L and PIM-H as a function of film thickness. The more rigid high BET surface area material PIM-H exhibits "open-pore" characteristics with much more promising electrocatalytic activity at Pd within polymer pores.
引文
[1]http://en.wikipedia.org/wiki/Carbon (13th, Oct.2012 last accessed)
    [2]H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R. E. Smalley, C60:Buckminsterfullerene, Nature,318,1985,162-163.
    [3]S.Iijama, helical microtubules of graphitic carbon, Nature 354 1991,56.
    [4]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,A. A. Firsov, electric field effect in atomically thin carbon films,Science,306,2004,666-669.
    [5]A.L. Dicks, the role of carbon in fuel cells, J. Power Sources,2006,156(2),128-141.
    [6]S.Saga, H. Hidetoshi, K Saito, M Minagawa, A. Tanioka, polyelectrolyte membranes based on hydrocarbon polymer containing fullerene, J. Power Sources 2008,176 (1),16-22.
    [7]H.B. Wang, R. DeSousa, J. Gasa, K. Tasaki, G.Stucky, B. Jousselme, F.Wudl, fabrication of new fullerene composite membranes and their application in proton exchange membrane fuel cells, J. Membr. Sci.2007,289(2),277-283.
    [8]C. Wang, M.Waje,X.Wang, J.M. Tang,R.C. Haddon, RC, Y.S. Yan, proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Lett.2004,4 (2),345-348.
    [9]Z.L. Liu, X.H.Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir,2002,18 (10),4054-4060.
    [10]B.Seger, P.V.Kamat, electrocatalytically active graphene-platinum nanocomposites:role of 2-D carbon support in PEM fuel cells, J. Phys. Chem. C,2009113 (19),7990-7995.
    [11]E.Yoo, T. Okata,T. Akita, M. Kohyama, J. Nakamura, I. Honma, Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface, Nano Lett.20099 (6) 2255-2259
    [12]R. O. Loutfy, S. Katagiri, perspectives of fullerene nanotechnology (Ed:E. Osawa), Kluwer Academic Publishers, Dordrecht,2002,357-367
    [13]B.J.Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P.Raffaelle, carbon nanotubes for lithium ion batteries, Energy Environ. Sci.2009,2 (6),638-654
    [14]Z. S. Wu, W.Ren, L.Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou,F. Li, H. M. Cheng, graphene anchored with CO3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance,ACS Nano 2010,4,3187-3194.
    [15]H. Pan, J.Y. Li, Y.P. Feng, carbon nanotubes for supercapacitor nanoscale, Research Letters, 2010,5(3),654-66.
    [16]C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, graphene-based supercapacitor with an ultrahigh energy density, Nano Lett.,2010,10(12),4863-4868.
    [17]L.M.Dai, D.W. Chang, J.B. Baek, W. Lu, carbon nanomaterials for advanced energy conversion and storage, Small,2012,8(8),1130-1166.
    [18]J. Jeong, Jinyoung, E.Yun, Y. Choi, H.Y. Jung, S.J. Chung, N.W. Song, B.H. Chung, photoreversible cellular imaging using photochrome-conjugated fullerene silica nanoparticles, Chem. Comm.,2011,47(38),10668-10670.
    [19]P.K. Avti, B.Sitharaman, luminescent single-walled carbon nanotube-sensitized europium nanoprobes for cellular imaging, Int. J. Nanomed.,2012,7,1953-1964.
    [20]X.M. Sun, Z. Liu, K.Welsher, J.T. Robinson, A.Goodwin, S. Zaric, H.J. Dai, nano-graphene oxide for cellular imaging and drug delivery, Nano Research,2008,1(3),203-212.
    [21]W.C. Poh, K.P. Loh, W. D. Zhang, S. Triparthy, biosensing properties of diamond and carbon nanotubes, Langmuir,2004,20 (13),5484-5492.
    [22]Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano,2010,4(4),1790-1798.
    [23]S. Prakash, M. Malhotra, W.Wei, C. Tomaro-Duchesneau, S. Abbasi, Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy, Adv. Drug Delivery Rev.,2011,63,1340-1351.
    [24]R. M. Allen-King, P. Grathwohl,W. P. Ball, new modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks, Adv. Water Resour.2002,25,985-1016.
    [25]K Pyrzynska, application of carbon sorbents for the concentration and separation of metal ions. Anal. Sci.2007,23 (6),631-637.
    [26]G.X. Zhao, J.X. Li, X.M.Ren, C.L. Chen, X.K. Wang, few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ.Sci.Technol.,2011,45(24),10454-10462.
    [27]R.O. Loutfy, E.M. Wexler, W.J. Li. perspectives of fullerene nanotechnology (Ed:E.Osawa), Springer,2002,293-303
    [28]Y. Chan, J.M. Hill, hydrogen storage inside graphene-oxide, Nanotechnol.,2011,22 (30),305403.
    [29]C.W. Tan, K.H. Tan, Y.T. Ong, A.R.Mohamed, S.H.S. Zein, S.H. Tan, Energy and environmental applications of carbon nanotubes, Environ.Chem.Let.,2012,10 (3),265-273
    [30]H.Hatori, H. Takagi, Y. Yamada, Y, Gas separation properties of molecular sieving carbon membranes with nanopore channels, Carbon,2004,42,1169-1173.
    [31]Y. Amao, Probes and polymers for optical sensing of oxygen, Microchimi.Acta,2003,143, 1,1-12.
    [32]F. Valentini, V. Biagiotti, C. Lete, G. Palleschi, J. Wang, the electrochemical detection of ammonia in drinking water based on multi-walled carbon nanotube/copper nanoparticle composite paste electrodes, Sens. Actuators B,2007,128,326-333.
    [33]S. N.Kim, J. F. Rusling, F. Papadimitrakopoulos, carbon nanotubes for electronic and electrochemical detection of biomolecules, Adv. Mater.2007,19,3214-3228.
    [34]B.L.Allen, P.D.Kichambare, A.Star, carbon nanotube field-effect-transistor-based biosensors, Adv. Mater.2007,19,1439-1451.
    [35]B. Hu, K.Wang, Wu, L.H. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, engineering carbon materials from the hydrothermal carbonization process of biomass, Adv.Mater.2010,22 (7),813-828.
    [36]D. Pan, J. Zhang, Z. Li, M.Wu, hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots, Adv. Mater.,2010,22,734-738.
    [37]X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker.W. A. Scrivens, electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc.,2004,126,12736-12737.
    [38]J.Zhao, J.Zhang,Y. Su,Z. Yang, L.Wei, Y.Zhang Synthesis of straight multi-walled carbon nanotubes by arc discharge in air and their field emission properties, J. Mater. Sci.,2012, 47,6535-6541.
    [39]C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A,2001,72,573-580.
    [40]H.J. Huang, R. Maruyama, K. Noda, H. Kajiura, K. Kadono, Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation, J. Phys.Chem.B 2006 110 (14),7316-7320.
    [41]L. Zheng, Y. Chi,Y. Dong, J. Lin,B. Wang, electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite, J. Am. Chem. Soc.,2009,131, 4564-4565.
    [42]H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent Carbon nanoparticles with electrochemiluminescence properties, Chem. Commun.,2009, 5118-5120.
    [43]A. Jaiswal, S. S. Ghosh, A. Chattopadhyay, one step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol),Chem. Commun.,2012,48,407-409.
    [44]J.M.C. Moreno, M. Yoshimura,Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon, J. Am. Chem. Soc.,2001,123 (4),741-742.
    [45]T. Hirose, T. Fujino,T. Fan,H.Endo,Toshihiro Okabe, Masahiro Yoshimura, effect of carbonization temperature on the structural changes of woodceramics impregnated with liquefied wood, Carbon,2002,40,761-765
    [46]Y.g. Gogotsi, M.Yoshimura, Formation of carbon-films on carbides under hydrothermal conditions, Nature,1994,367,628-630
    [47]B. Hu, S.H. Yu, K.Wang, L.Liu, X.W. Xu, Functional carbonaceous materials from hydrothermal carbonization of biomass:an effective chemical process, Dalton Trans.,2008, 40,5414-5423.
    [48]A.Funke, F. Ziegler,Hydrothermal carbonization of biomass:a summary and discussion of chemical mechanisms for process engineering, Biofuels, BioprodBiorefin., 2010,4(2),160-177.
    [49]Bergius F. Die Anwendung hoher Drucke bei chemischen Vorgangen und eine Nachbildung des Entstehungsprozesses der Steinkohle. Halle a. S., Germany:Konigliche Bibliothek Berlin; 1913
    [50]Demir-Cakan, RezanN. Baccile, M. Antonietti, M.M Titirici, carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid, Chem. Mater.,2009 (21),3,484-490.
    [51]X. Cui, M.Antonietti S.H. Yu, structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates, Small,2006 2 (6) 756-759,
    [52]S.H. Yu, X.J. Cui, L. Li, K. Li, B. Yu, M. Antonietti, H, Colfen, H, From starch to metal/carbon hybrid nanostructures:hydrothermal metal-catalyzed carbonization, Adv. Mater.,2004,16(18),1636-1640.
    [53]H.S. Qian, S.H.Yu, L.B. Luo, J.Y. Gong, L.F. Fei, X.M. Liu, synthesis of uniform Te@Carbon-rich composite nanocables with photoluminescence properties and Carbonaceous nanofibers by the hydrothermal carbonization of glucose, Chem. Mater., 2006,18,2102-2108.
    [54]W.J. Kang, H.B. Li, Y.Yan, P..P Xiao, L.L. Zhu, K.B. Tang, Y.C. Zhu, Y.T. Qian, worm-Like palladium/carbon core-shell nanocomposites:one-step hydrothermal reduction carbonization synthesis and electrocatalytic activity, J. Phys.Chem.C.,2011,115(14), 6250-6256.
    [55]T. Boronat, D. Garcia-Sanoguera, J. Pascual, F.Peris, L. Sanchez-Nacher, comparative study of the rheological behavior of multiwalled carbon nanotubes and nanofiber composites prepared by the dilution of a master batch of polypropylene, J.Appl.Polym.Sci., 2012,126(3),1044-1052.
    [56]S. H. Yoon, S. Lim, S. H. Hong, I. Mochida, B. An, K. Yokogawa, Carbon nano-rod as a structural unit of carbon nanofibers, Carbon 2004,42,3087-3095.
    [57]L.Rassaei, M. Sillanp, M. J. Bonne, F. Marken, carbon nanofiber-polystyrene composite electrodes for electroanalytical processes, Electroanal.,2007,19(14),1461-1466.
    [58]W.Zhang and P. N. Pintauro, high-performance nanofiber fuel cell electrodes, Chem.Sus.Chem.2011,4,1753-1757.
    [59]M.A. Murphy, F. Marken, J.Mocak, sonoelectrochemistry of molecular and colloidal redox systems at carbon nanofiber-ceramic composite electrodes, Electrochim. Acta,2003,48, (23),3411-3417
    [60]T.I. Oh, T. E. Kim, S., Yoon, K. J. Kim, E. J. Woo, R. J. Sadleir. flexible electrode belt for EIT using nanofiber web dry electrodes, Physiol. Meas.,2012,331603-1616.
    [61]S. Siddiqui, P.U.Arumugam, H Chen, J.Li, M. Meyyappan, characterization of carbon nanofiber electrode arrays using electrochemical impedance spectroscopy:effect of scaling down electrode size,2010, ACS nano,4 (2),955-961.
    [62]T.E.McKnight, A.V. Melechko, M.A.Guillorn, Merkulov, V.I, Merkulov, Fleming, J.T. Fleming,.Hensley, E. Hullander, J. McPherson, N.D. Nivens.;G.S.Sayler; Lowndes, D.H.Lowndes, M.L. Simpson, carbon nanofiber-based electrode interface to microbial biofilms, Nanotech.,2003,3,293-296.
    [63]J. Jang, J. Bae, carbon nanofiber/polypyrrole nanocable as toxic, Sens. Actuators B-Chem, 2007,122,7-13.
    [64]B.Zhang, R.W. Fu, M.Q. Zhang,X.M. Dong, L.C. Wang, C.U. Pittman, Gas sensitive vapor grown carbon nanofiber/polystyrene sensors, Mater. Res. Bull.,2006,41(3),553-562.
    [65]L. Li, J.Li, C.M. Lukehart, Graphitic carbon nanofiber-poly(acrylate) polymer brushes as gas sensors, Sens. Actuators B-Chem.,2008,130 (2),783-78.
    [66]S.C. Kang, J.S. Im, S.H. Lee, T.S. Bae,Y.S. Lee, high-sensitivity gas sensor using electrically conductive and porosity-developed carbonnanofiber, Colloid Surf. A: Physicochem. Eng. Aspects,201138 4297-303.
    [67]D.J. Chen, S. Lei,, R.H. Wang. M.Pan, Y.Q. Chen., dielectrophoresis carbon nanotube and conductive polyaniline nanofiber NH3 gas sensor, Chin.J.Anal. Chem.2012,40(1),145-149.
    [68]Y Zhou,. F. Pervin, S. Jeelani;, P. K Mallick, Improvement in Mechanical Properties of Carbon Fabric-Epoxy Composite using Carbon Nanofibers J Mater Process Technol 2008, 198,445.
    [69]A.K. Kothari,, K.Q. Jian, J.Rankin,,B.W. Sheldon, Comparison between carbon nanotube and carbon nanofiber reinforcements in amorphous silicon nitride coatings, J. Am. Ceram. Soc.,2008,91 (8),2743-2746.
    [70]J. N. Butler and A. C. Makrides, hydrogen evolution at dilute platinum and palladium amalgam electrodes, Trans. Faraday Soc.,1964,60,938-946.
    [71]M. Shao, T. Yu, J. H. Odell, M.g Jin and Y. Xia, structural dependence of oxygen reduction reaction on palladium nanocrystals, Chem. Commun.,2011,47, 6566-6568
    [72]N.Tian, Z.Zhou, S.Sun, YDing, Z.Wang, synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science,2007,732-735.
    [73]R. V. Niquirilo, E. Teixeira-Neto, G. S. Buzzo and H. B.Suffredini, formic acid oxidation at Pt and Pbox-based catalysts and calculation of their approximate electrochemical active areas, Int. J.Electrochem.Sci.,2010,5,344-354.
    [74]R. K. Pandey and V. Lakshminarayanan. Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium, J.Phys.Chem.C,2009,113(52),21596-21603.
    [75]J. Lichtenberger, D. Lee and E. Iglesia, catalytic oxidation of methanol on Pd metal and oxide clusters at near-ambient temperatures, Phys. Chem. Chem. Phys.,2007,9,4902-4906.
    [76]S.B. Yin, M. Cai, C.X. Wang, P.K.Shen, tungsten carbide promoted Pd-Fe as alcohol-tolerant electrocatalysts for oxygen reduction reactions, Energy Environ. Sci.,2011, 4558.
    [77]Y. Liu and C. Xu, nanoporous Pd-Ti alloys as non-platinum oxygen-reduction reaction electrocatalysts with enhanced activity and durability, ChemSusChem,
    [78]D.L. Wang, H.L. Xin, Y.C. Yu, H.S. Wang, E. Rus, D.A. Muller, H.D.Abruna, Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction, J. Am.Chem. Soc.,2010,132,17664.
    [79]K. Lee, O. Savadogo, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, oxygen reduction reaction electrocatalysts based on Pd-3d transition metal alloys for direct methanol fuel cells, J. Electrochem. Soc.2006, A20.
    [80]A.Sarkar, A.V. Murugan, A.Manthiram, low cost Pd-W nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells, J. Mater. Chem.,2009,19,159.
    [81]C.Lee, H. Chiou, methanol-tolerant Pd nanocubes for catalyzing oxygen reduction reaction in H2SO4 electrolyte, Applied Catalysis B:Environmental,2012,204-211.
    [82]P.Atkins, J.D.Paula, physical chemistry (7th edition), Oxford university press.2001.
    [83]R.G.Compton, G.E. Banks,understanding voltammetry (2nd edition), Imperial college Press. 2011.
    [84]T. Zawodzinski, S. Minteer, G. Brisard, physical and analytical electrochemistry:the fundamental core of electrochemistry,2006,62-65.
    [85]J. E. B. Randles, kinetics of rapid electrode reactions kinetics of rapid electrode reactions, Discuss. Faraday Soc.,1947,1,11-19.
    [86]A.D.Fisher. electrode dynamics, Oxford science publications.2009.
    [87]A.J.Bard, L.R.Faulkner, electrochemical methods:fundamental and applications (2nd edition), John Wiley& Sons. Inc.2001
    [88]J.Wang, Analytical electrochemistry (3rd edition). John Wiley & Sons.Inc.,2006.
    [89]A.J. Bard, G.Inzelt, F.Scholz. Electrochemical dictionary (3rd edition). Springer Publishing.2006
    [90]F.Scholz(editor), electroanalytical methods, Springerlink,2001.
    [91]The CRC Handbook of Solid State Electrochemistry, ed. P. J.Gellings and H. J. M. Bouwmeester, CRC Press, London,1997,195.
    [92]C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry (second edition), Wiley-VCH, 2007,381
    [93]S.E.C. Dale, C.Y. Cummings, F. Marken, Salt matrix voltammetry:microphase redox processes at ammonium chloride |gold| gas triple phase boundaries. Electrochem.Commun. 13(2011)154-157.
    [94]M.Perdicakis and M. Beretta, performance improvement and new applications of "salt matrix voltammetry", Electrochem.Commun.,2012,19,115
    [95]S. Shark, S.E.C. Dale, F. Marken, electroanalysis at salt-cotton-electrode interfaces:preconcentration effects lead to nano-molar Hg2+ sensitivity, Electroanalysis, 2011,23,2149-2155.
    [96]J. E. Halls, S. E.C. Dale, F. Marken, nano-TiO2-flavin adenine dinucleotide film redox processes in contact to humidified, gas |salt electrolyte, Bioelectrochemistry,2012,86, 54-59.
    [97]J.D. Watkins, C. E. Hotchen, J.M. Mitchels, and F. Marken, decamethylferrocene redox chemistry and gold nanowire electrodeposition at salt crystal |electrode| nonpolar organic solvent contacts, Organometallics,2012,31 (7),2616-2620.
    [1]A. Rani, K.A. Oh, H. Koo, H.J. Lee, M. Park, multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly, Appl. Surf. Sci.,2011,257,4982.
    [2]J.D. Watkins, R. Lawrence, J.E. Taylor, S.D. Bull, G.W. Nelson, J.S. Foord, D. Wolverson, L. Rassaei, N.D.M. Evans, S.A. Gascon, F. Marken, carbon nanoparticle surface functionalisation:converting negatively chargedsulfonate to positively charged sulfonamide, Phys. Chem. Chem. Phys.,2010,12,4872.
    [3]K. Szot, J.D. Watkins, S.D. Bull, F. Marken, M. Opallo, three dimensional film electrode prepared from oppositely charged carbon nanoparticles as efficient enzyme host., Electrochem. Commun.,2010,12,131.
    [4]M.M Titirici, M. Antonietti, chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization, Chem. Soc. Rev.,2010,39,103.
    [5]T.N. Hoheisel, S. Schrettl, R. Szilluweit, H. Frauenrath, nanostructured Carbonaceous Materials from Molecular precursors, Angew. Chem.-Inter. Ed.,2010,49,6496.
    [6]N. Baccile, M. Antonietti, M.M. Titirici, one-step hydrothermal synthesis of nitrogen-doped nanocarbons:albumine directing the carbonization of glucose, ChemSusChem,2010,3, 246.
    [7]C. Glasner, G. Deerberg, H. Lyko, hydrothermale carbonisierung:ein iiberblick, Chemie Ingenieur Technik,2011,83,1932.
    [8]B. Hu, K. Wang, L.H. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, engineering carbon materials from the hydrothermal carbonization process of biomass, Adv. Mater.,2010,22, 813.
    [9]L. Zhao, Z. Bacsik, N. Hedin, W. Wei, Y.H. Sun, M. Antonietti, M.M. Titirici, carbon dioxide capture on amine-rich carbonaceous materials derived from glucose, ChemSusChem,2010,3,840.
    [10]R.J. White, N. Yoshizawa, M. Antonietti, M.M. Titirici, a sustainable synthesis of nitrogen-doped carbon aerogels, Green Chem.,2011,13,2428.
    [11]R.J. White, M. Antonietti, M.M. Titirici, naturally inspired nitrogen doped porous carbon, J. Mater. Chem.,2009,19,8645.
    [12]L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S. Qiao, M. Antonietti, M.M. Titirici, nitrogen-containing hydrothermal carbons with superior performance in supercapacitors, Adv. Mater.,2010,22,5202.
    [13]Y.H. Yang, J.H. Cui, M.T. Zheng, C.F. Hu, S.Z. Tan, Y. Xiao, Q. Yang, Y.L. Liu, one-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan, Chem. Commun.,2012,48,380.
    [14]H.N. Lim, A. Kassim, S.P. Lim, N.S.R. Nizar, N.M. Huang, microstructural changes of carbonaceous monoliths synthesized via hydrothermal method, J. Chilean Chem. Soc.,2011, 56,584.
    [15]A. Vuorema, M. Sillanpaa, L. Rassaei, M.J. Wasbrough, K.J. Edler, W.Thielemans, S.E.C. Dale, S. Bending, D. Wolverson, F. Marken, ultrathin carbon film electrodes from vacuum-carbonised cellulose nanofibril composite, Electroanal,2010,22,619.
    [16]M. Sevilla, A.B. Fuertes,the production of carbon materials by hydrothermal carbonization of cellulose, Carbon,2009,47,2281.
    [17]A.C. Ferrari, J. Robertson, interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B.,2000,61,14095.
    [18]L. Vidal, A. Chisvert, A. Canals, E. Psillakis, A. Lapkin, F. Acosta, K.J. Edler, J.A. Holdaway, F. Marken, chemically surface-modified carbon nanoparticle carrier for phenolic pollutants:Extraction and electrochemical determination of benzophenone-3 and triclosan, Anal. Chim. Acta,2008,616,28.
    [19]M. Amiri, S. Shahrokhian, F. Marken, ultrathin carbon nanoparticle composite film electrodes:distinguishing dopamine and ascorbate, Electroanal.,2007,19,1032.
    [20]L. Rassaei, M.J. Bonne, M. Sillanpaa, F. Marken, binding site control in a layer-by-layer deposited chitosan-carbonnanoparticle film electrode, New J. Chem.,2008,32,1253.
    [21]X. Wang, C. Hu, Y. Xiong, H. Liu, G. Du, X. He, carbon-nanosphere-supported Pt nanoparticles for methanol and ethanol electro-oxidation in alkaline media,J. Power Sources,2011,196,1904.
    [1]M.Addington, D.I Schodek, Smart Materials and Technologies in Architecture. Architectural Press, (2004),100
    [2]P.M. Mendes, Stimuli-responsive surfaces for bio-applications, Chem. Soc. Rev.,2008, 37,2512.
    [3]C. Sanchez, C. Boissiere, D. Grosso, C. Laberty, L. Nicole, design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity.Chem. Mater.,2008,20,682.
    [4]P. Kim, L.D. Zarzar, X.M. He, A. Grinthal, J. Aizenberg, Hydrogel-actuated integrated responsive systems (HAIRS):Moving towards adaptive materials, Curr. Opinion Solid State Mater.Sci.,2011,15,236.
    [5]P. Lavalle, J.C. Voegel, D. Vautier, B. Senger, P. Schaaf, V. Ball, Dynamic Aspects of Films Prepared by a Sequential Deposition of Species:Perspectives for Smart and Responsive Materials, Adv. Mater.,2011,23,1191.
    [6]C. Brosseau, emerging technologies of plastic carbon nanoelectronics:A review, Surf. Coat. Technol.,2011,206,753.
    [7]G.R. Whittell, M.D. Hager, U.S. Schubert, I. Manners, functional soft materials from metallopolymers and metallosupramolecular polymers, Nature Mater.,2011,10,176.
    [8]N. Srinivasan, S. Kumar, Wiley Interdisciplinary Rev.-Nanomed. Nanobiotechnol.,2012,4,
    [9]T.L. Sun, G.Y. Qing, B.L. Su, L. Jiang, Functional biointerface materials inspired from nature, Chem. Soc. Rev.,2011,40,2909.
    [10]N. Sinha, J.Z. Ma, J.T.W. Yeow, Carbon nanotube-based sensors, J. Nanosci. Nanotechnol., 2006,6,573.
    [11]L. Rassaei, M.J. Bonne, M. Sillanpaa, F. Marken, binding site control in a layer-by-layer deposited chitosan-carbonnanoparticle film electrode, New J. Chem.,2008,32,1253.
    [12]J.D. Watkins, R. Lawrence, J.E. Taylor, S.D. Bull, G.W. Nelson, J.S. Foord, D. Wolverson, L. Rassaei, N.D.M. Evans, S.A. Gascon, F. Marken, carbon nanoparticle surface functionalisation:converting negatively chargedsulfonate to positively charged sulfonamide, Phys. Chem.Chem. Phys.2010,12,4872.
    [13]K. Szot, J.D. Watkins, S.D. Bull, F. Marken, M. Opallo, Three dimensional film electrode prepared from oppositely charged carbon nanoparticles as efficient enzyme host, Electrochem. Commun.2010,12,737.
    [14]K. Lawrence, J.D. Watkins, T.D. James, J.E. Taylor, S.D. Bull, G.W. Nelson, J.S. Foord, Y.T. Long, F. Marken, dioctylamine-sulfonamide-modified carbon nanoparticles as high surface area substrates for coenzyme q10-lipid electrochemistry, Electroanalysis 2012,24, 1003.
    [15]J.D. Watkins, K. Lawrence, J.E. Taylor, T.D. James, S.D. Bull, F. Marken, carbon nanoparticle surface electrochemistry:high-density covalent immobilisation and pore-reactivity of 9,10-anthraquinone, Electroanalysis 2011,23,1320.
    [16]N. Bin Ibrahim, K. Lawrence, T.D. James, F.J. Xia, M. Pan, S.C. Mu, J.M. Mitchels, F. Marken, Surface-dopylated carbon nanoparticles sense gas-induced pH changes,Sens. Actuators B-Chem.,2012,161,184.
    [17]Y.H. Yang, J.H. Cui, M.T. Zheng, C.F. Hu, S.Z. Tan, Y. Xiao, Q. Yang, Y.L. Liu, one-step synthesis of amino-functionalized fluorescent carbonnanoparticles by hydrothermal carbonization of chitosan,Chem. Commun.2012,48,380.
    [18]F.J. Xia, M. Pan, S.C. Mu, M.D. Jones, D. Wolverson, F. Marken, chitosan-based hydrothermal nanocarbon:core-shell characteristics and composite electrodes, Electroanalysis,2012,24,1703
    [19]M. Amiri, S. Shahrokhian, F. Marken, ultrathin carbon nanoparticle composite film electrodes:distinguishing dopamine and ascorbate, Electroanalysis,2007,19,1032.
    [20]R.K. Heenan, J. Penfold, S.M. King, SANS at pulsed neutron sources:present and future prospects, J. Appl. Cryst.,1997,30,1140.
    [21]G.D. Wignall, F.S. Bates, Absolute calibration of small-angle neutron scattering data, J. Appl. Cryst.1987,20,28.
    [22]O. Glatter, O. Kratky, Small Angle X-ray Scattering. Academic Press, London,1982.
    [23]J.M. Seinberg, M. Kullapere, U. Maeorg, F.C. Maschion, G. Maia, D.J. Schiffrin, K. Tammeveski, spontaneous modification of glassy carbon surface with anthraquinone from the solutions of its diazonium derivative:An oxygen reduction study, J. Electroanal. Chem.,2008,624,151.
    [24]F. Barriere A.J. Downard, covalent modification of graphitic carbon substrates by non-electrochemical methods, J. Solid State Electrochem.,2008,12,1231.
    [25]W.J. Kang, H.B. Li, Y. Yan, P.P. Xiao, L.L. Zhu, K.B. Tang, Y.C. Zhu, Y.T. Qian, worm-like palladium/carbon core-shell nanocomposites:one-step hydrothermal reduction-carbonization synthesis and electrocatalytic activity, J. Phys. Chem. C,2011, 115,6250.
    [1]Gregor Hoogers(editor),Fuel cell technology handbook, CRC Press,London 2002.
    [2]J. Tsuji, palladium in organic synthesis, Springer-Verlag, Berlin 2005.
    [3]O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya, and K.-I. Ota, New palladium alloys catalyst for the oxygen reduction reaction in an acid medium, Electrochem.Commun., 6,1052004.
    [4]K. Lee, O. Savadogo, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, oxygen reduction electrocatalysts based on Pd-3d transition metal alloys for direct methanol fuel cells, J. Electrochem. Soc.,2006,153,A20.
    [5]P.Scherrer, P. Nachr. Ges. Wiss. Gottingen 1918,2,98.
    [6]Klug, H. P.; Alexander, L. E. x-ray diffraction procedures for polycrystalline and amorphous materials (2nd ed.), John Wiley & Sons:New York,1974.
    [7]J.O. Bockris, Z. Minevski, the mechanism of the evolution of hydrogen on palladium and associated internal damage phenomena, International Journal of Hydrogen Energy,2000,25, 747.
    [8]T. Green, D. Britz, Kinetics of the deuterium and hydrogen evolution reactions at palladium in alkaline solution, Journal of Electroanalytical Chemistry 412 (1996) 59.
    [9]S.N. Pronkin, A. Bonnefont, P.S. Ruvinskiy, E.R. Savinova, hydrogen oxidation kinetics on model Pd/C electrodes:Electrochemical impedance spectroscopy and rotating disk electrode study, Electrochimica Acta,55 (2010) 3312.
    [10]F.J. Xia, S.E.C. Dale, R.A. Webster, M. Pan, S.C. Mu, S.C. Tsang, J.M. Mitchels, F.Marken,electrode processes at gas |salt| pd nanoparticle |glassy carbon electrode contacts :salt effects on the oxidation of formic acid vaporand the oxidation of hydrogen,New Journal of Chemistry,2011,35,1855.
    [11]G. Kaltenpoth, P. Schnabel, E. Menke, E.C. Walter, M. Grunze, R.M. Penner, multimode detection of hydrogen gas using palladium-covered silicon μ-channels, Analytical Chemistry 75 (2003) 4756.
    [12]R.G. Compton, C.E. Banks, Understanding Voltammetry, World Scientific, London,2007, p. 95.
    [13]K. Aoki, H. Toda, J. Yamamoto, J.Y. Chen, T. Nishiumi, Is hydrogen gas in water present as bubbles or hydrated form, Journal of Electroanalytical Chemistry,2012,668,83.
    [14]A.V. Martinez, M.T. Rodriguez, M.G. Arzaluz, P.D.A. Vicente, O. Feria, Pd and Pd-Co oxygen reduction nanocatalysts in acidic media, International Journal of Electrochemical Science,2012,7,7140.
    [15]L. Nei, F. Marken, Q. Hong, R.G. Compton, sonovoltammetry of oxygen at cu-ni alloy electrodes:activation of alloy electrodes and sono-ring-disk voltammetry, Journal of the Electrochemical Society,1997,144,3019.
    [16]N.C. Cheng, R.A. Webster, M. Pan, S.C. Mu, L. Rassaei, S.C. Tsang, F. Marken, one-step growth of 3-5 nm diameter palladium electrocatalyst in a carbon nanoparticle-chitosan host and characterization for formic acid oxidation, Electrochimica Acta,2010,55,6601.
    [17]see for example A.S. Gago, Y. Gochi-Ponce, Y.J. Feng, J.P. Esquivel, N. Sabate, J. Santander, N. Alonso-Vante, tolerant chalcogenide cathodes of membraneless micro fuel cells, ChemSusChem,2012,5,1488.
    [1]The CRC Handbook of solid state electrochemistry ed. P.J. Gellings and H.J.M.Bouwmeester, CRC Press London,1995,195.
    [2]F. Marken, A.M. Collins, J.D. Watkins, Ion-transfer-and photo-electrochemistry at liquid liquid |solid electrode triple phase boundary junctions:perspectives, Phys.Chem.Chem.Phys.,2011,13,10036.
    [3]N.C. Cheng, R.A. Webster, M. Pan, S.C. Mu, L. Rassaei, S.C. Tsang, F. Marken, One-step growth of 3-5 nm diameter palladium electrocatalyst in a carbon nanoparticle-chitosan host and characterization for formic acid oxidation, Electrochim. Acta,2010,55,6601.
    [4]X.W. Yu, P.G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC),J. Power Sources,2008,182,124.
    [5]J.D. Morse, Micro-fuel cell power sources, Inter. J. Energy Res.,2007,31,576.
    [6]S. Uhm, J.K. Lee, S.T. Chung, J. Lee, Effect of anode diffusion media on direct formic acid fuel cells, J. Ind. Engineer. Chem.,2008,14,493.
    [7]D.T. Whipple, E.C. Finke, P.J.A. Kenis, Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide:The Effect of pH Fuel Cells and Energy Conversion, Electrochem. Solid State Lett.,2010,13, D109
    [8]S.E.C. Dale, C.Y. Cummings, F. Marken, salt matrix voltammetry:microphase redox processes at ammonium chloride |gold| gas triple phase boundaries, Electrochem. Commun.,2011,13,154.
    [9]R. Parsons, T. VanderNoot, the oxidation of small organic molecules:A survey of recent fuel cell related research, J. Electroanal. Chem.,1988,257,9.
    [10]P. Waszczuk, T.M. Barnard, C. Rice, R.I. Masel, A. Wieckowski, A nanoparticle catalyst with superior activity for electrooxidation of formic acid.Electrochem, Commun.,2002,4, 599.
    [11]T.C. Johnson, D.J. Morris, M. Wills, hydrogen generation from formic acid and alcohols using homogeneous catalysts, Chem. Soc. Rev.,2010,39,81.
    [12]F. Solymosi, A. Koos, N. Liliom, I. Ugrai, production of CO-free H2 from formic acid, J. Catal,2011,279,213.
    [13]W.W.Cai, L.Yan, C.Y.Li, L.Liang,W.Xing, C.P.Liu, development of a 30W class direct formic acid fuel cell stack with high stability and durability, Int. J. Hydrogen Energy,2012,37(4),3425.
    [14]V. Mazumder, Y. Lee, S.H. Sun, recent development of active nanoparticle catalysts for fuel cell reactions.Func. Mater.,2010,20,1224.
    [15]E. Antolini, Palladium in fuel cell catalysis, Energy Environ. Sci.,2009,2,915.
    [16]X.W. Yu, P.G Pickup, Screening of PdM and PtM catalysts in a multi-anode direct formic acid fuel cell, J. Appl. Electrochem.,2011,41,589.
    [17]In:D.R. Lide, Editor, Handbook of Chemistry and Physics (74th ed.), CRC Press, London 1993, pp.15-25.
    [18]M.A. Ghanem, H. Hanson, R.G Compton, B.A. Coles, F. Marken, microwave-enhanced electro-deposition and stripping of palladium at boron-doped diamond electrodes, Talanta, 2007,72,66.
    [19]V. Breger, E. Gileadi, adsorption and absorption of hydrogen in palladium, Electrochim. Acta,1971,16,177.
    [20]X.G Zhang, T. Arikawa, Y. Murakami, K. Yahikozawa, Y. Takasu, e lectrocatalytic oxidation of formic acid on ultrafine palladium particles supported on a glassy carbon, Electrochim. Acta,1995,40,1889.
    [21]L.D. Burke, J.K. Casey, an examination of the electrochemical behavior of palladium electrodes in acid, J. Electrochem. Soc.,1993,140,1284.
    [22]Electrocatalysis (Eds.:J. Lipkowski, P.N. Ross), Wiley-VCH, New York,1998,65.
    [23]S.D. Han, J.H. Choi, S.Y. Noh, K. Park, S.K. Yoon, Y.W. Rhee, Performance characterization of direct formic acid fuel cell using porous carbon-supported palladium anode catalysts.Korean, J. Chem. Engineer,2009,26,1040.
    [24]L. Meng, J. Jin, GX. Yang, T.H. Lu, H. Zhang, C.X. Cai, nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures, Anal. Chem.,2009,81,7271.
    [25]M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism andsite requirements for the electrocatalytic oxidation of methanol and formic acid over Pt Faraday Disc,2008,140,363.
    [26]Y.X. Chen, M. Heinen, Z. Jusys, R.J. Behm, kinetics and mechanism of formic acid electrooxidation-spectro-electrochemicalstudies in a novel flow cell configuration, Angew. Chem. Int. Ed.,45 (2006) 981.
    [27]G. Samjeske, A. Miki, M. Osawa, electrocatalytic oxidation of formaldehyde on platinum under galvanostatic and potential sweep conditions studied by time-resolved surface-enhanced infrared spectroscopy, J. Phys. Chem. C,2007,111,15074.
    [28]H.Z. Li, Y.W. Tang, T.H. Lu, effect of NH4+ on the electrocatalytic performance of carbon supported Pd catalyst for formic acid oxidation,Acta Physico-Chim. Sinica,2010,26,3199.
    [29]A.K. Sum, S.I. Sandier, a novel approach to phase equilibria predictions using ab initio methods, Ind. Engineer. Chem. Res.,1999,38,2849.
    [30]F. Yang, S.C. Kung, D.K. Taggart, R.M. Penner, hydrogen sensing with a single palladium nanowire,Sens. Lett.,2010,3,534.
    [31]F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Pannier, hydrogen sensors and switches from electrodeposited palladium mesowire array,science,2001,293,2227.
    [32]R.W. French, S.N. Gordeev, P.R. Raithby, F. Marken, paired gold junction electrodes with submicrometer gap, J. Electroanal. Chem.,2009,632,206.
    [1]F.Schuth, K.S.W.Sing, J. Weikamp, Handbook Of Porous Solids, Wiley-VCH.2002
    [2]T. J. Barton, L. M. Bull, W. G. Klemperer, D. A. Loy, B. McEnaney, M. Misono, P. A. Manson, G. Pez, G. W. Scherer, J. C. Vartuli, O. M. Yaghi, Tailored porous materials, Chem. Mater.,1999,11,2633.
    [3]P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall and D. Wang, solution-processed organophilic membrane derived from a polymer of intrinsic microporosity, Adv. Mater.,2004,16,456-459.
    [4]Budd, P. M.; Ghanem, B.; Msayib, K.; McKeown, N. B. Tattershall, nanoporous network polymer derived from hexazatrinaphthylene with potential as an adsorbent and catalyst support, J. Mater. Chem.2003,13,2721.
    [5]Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.; McKeown, N. B.; Fritsch, D., gas separation membranes from polymers of intrinsic microporosity, J. Membr. Sci.2005,251,263.
    [6]P. M. Budd and Neil. McKeown, highly permeable polymers for gas separation membranes, Polymer Chemistry, (2010),1,63-68
    [7]Ghanem, B.; McKeown, N. B.; Harris, K. D. M.; Pan, Z.; Budd, P. M.; Butler, A.; Selbie, J.; Book, D.; Walton, a triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption, Chem. Commun.2007,67.
    [8]McKeown, N. B.; Gahnem, B.; Msayib, K. J.; Budd, P. M.; Tattershall, C. E.; Mahmood, K.; Tan, S.; Book, D.; Langmi, H. W.; Walton, towards polymer-based hydrogen storage materials:engineering ultramicroporous cavities within polymers of intrinsic microporosity, Angew. Chem. Int. Ed.2006,45,1804.
    [9]Du, NY Park, HB Robertson, GP;Dal-Cin, M.M. Scoles, L Guiver, MD, Polymer nanosieve membranes for CO2-capture applications, Nature Mater.2011,10,372-375.
    [10]M.D. Obradovic, A.V. Tripkovic, S.L. Gojkovic, the origin of high activity of Pt-Au surfaces in the formic acid oxidation, Electrochim. Acta,2009,55,204-209
    [11]L. Zhang, T. Lu, J. Bao, Y. Tang, C. Li, Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell, Electrochem. Comm., 2006,8,1625-1627
    [12]X. Wang, J.M. Hu, I.M. Hsing, Electrochemical investigation of formic acid-oxidation and its crossover through a Nafion(?) membrane,J. Electroanal. Chem.,2004,562,73-80
    [13]Haan, J. L., Stafford, K. M., Morgan, R. D., Masel, R. I. Performance of the direct formic acid fuel cell with electrochemically modified palladium-antimony anode catalyst, Electrochim. Acta,2010,55,2477
    [14]B.Shen, M.Olbrichstock, J.Posdorfer, R.N.Schindler. Zeitschrift Fur Physikalische Chemie-International Journal of Research In Physical Chemistry& Chemical Physics,1991,173,251-255
    [15]Y. S Shelar, H. R.Aber, S.R.Kuchekar S. H. Han, Bulgarian Chem.Commun.,2012, 1,172-179.
    [16]M.Lukaszewski, G.Jerkiewicz,,A.Czerwinski, electrochemical behaviour of palladium electrode:Oxidation, electrodissolution and ionic adsorption, Electrochim. Acta,2008, 53,7583-7598.
    [17]R.Parsons, T.Vandernoot,the oxidation of small organic molecules:a survey of recent fuel cell related research, J.Electroanal. Chem.,1988,257,9.
    [18]N.C. Cheng, R.A. Webster, M. Pan, S.C. Mu, L. Rassaei, S.C. Tsang, F. Marken, the growth and characterization of palladium electrocatalyst in a carbon nanoparticle-chitosan host for formic acid oxidation, Electrochim. Acta,2010,55,6601.
    [19]G.A.Fuentes, E.Salinas-Rodriguez, realistic particle size distributions during sintering by Ostwald ripening, In Studies Surface Science and Catalysts, Spivey, J. J., Roberts, G. W., Davis, B. H., Eds.; Elsevier Science B. V.:Amsterdam,2001,139,503-510.