耐碱真菌Myrothecium sp.IMER1对染料脱色的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染工业废水是当前水体主要污染源之一。由于传统理化处理技术成本高、二次污染大,亟待研制成本低、高效、环保的生物处理技术。某些真菌具有底物降解的广谱性、对高pH及底物毒性耐受能力高等特性,在印染工业废水处理中具有特殊的应用价值。探究这类真菌对染料脱色的机理及相关酶学研究,可为利用真菌处理染料废水尤其是碱性染料废水提供理论依据。
     以蒽醌染料RBBR为降解底物,在不同pH(5-10)下比较了实验室10株具有潜在降解特性的真菌对染料脱色的效果,结果发现菌株IMER1在碱性条件下对RBBR有很好的脱色属性。采用分子鉴定结合形态分类结果显示:其ITS序列与漆斑菌属(Myrothecium sp.)同源性达到90%以上;菌落形态、菌丝、分生孢子以及孢子梗的观察结果与漆斑菌属形态特征完全相似,因此确定此菌为Myrothecium sp,命名为Myrothecium sp.IMER1。
     比较了IMER1对5种不同染料的脱色结果,同时系统地研究了其对蒽醌染料RBBR的脱色机理。结果表明菌株IMER1对不同染料的脱色效果不同,依次为酸性靛蓝>RBBR>刚果红>孔雀绿>溴酚蓝,对酸性靛蓝和RBBR染料脱色效果较好。对RBBR的脱色过程研究表明,胞外胆红素氧化酶(bilirubin oxidase,BOX)活性与RBBR脱色率有良好的相关性。脱色过程的前期,以菌体的生物吸附为主,吸附率约占脱色率的71.3%,而降解率只占29%左右;中后期,以BOX降解作用为主,最终的降解率约占脱色率的90%。对菌株IMER1降解RBBR动力学研究表明,降解过程符合一级动力学方程,其反应动力学常数随染料浓度的增加而减小。
     将菌株IMER1发酵后的滤液经五步分离纯化,SDS和活性电泳检测纯化的蛋白为BOX酶蛋白,分子量约为64kD,纯化倍数为152.54。BOX酶学性质研究结果表明:氧化ABTS的最适温度为55°C左右,pH值在4左右;氧化胆红素的最适pH值约为7.5;Km和Vmax值表明其最适底物为胆红素。不同金属离子和有机小分子的存在影响BOX活性,Fe2+能完全抑制BOX酶活;而EDTA、乙醇、冰乙酸和甘氨酸对BOX酶活抑制作用较小。纯化的BOX酶能使5种染料发生不同程度的脱色。
     研究了BOX及其介体系统对RBBR的作用机理及降解途径。与对照BOX酶相比,BOX-ABTS介体体系对RBBR的脱色速率可提高11倍,最适脱色pH从5上升到8。紫外-可见光全波长扫描RBBR降解液的图谱分析结果表明,RBBR的发色基团(蒽醌环上的羰基)和助色基团(-NH3)被改变;进一步采用GC-MS和LC-MS分析结果表明RBBR降解的主要产物为邻苯二甲酸及其衍生物。BOX-ABTS介体系统对RBBR的降解动力学研究表明,其反应动力学符合假一级反应动力学。
     对菌株IMER1在液体和固体培养体系分泌BOX酶进行了研究。液体培养体系条件优化结果表明:当pH、温度和葡萄糖分别为5.7、28°C、8g/L时,BOX酶产量在PDB中可达到最优值0.643U/mL。且在PDB中BOX酶的生物合成模式为中期合成型。固体培养体系条件优化结果表明:当含水量、pH和温度分别为83.5%,4.6,23°C时,BOX酶产量可达到优化值13.45U/g。
     研究了菌株IMER1及BOX对工业碱性染料废水脱色以及工艺。结果显示菌株IMER1及BOX在中性到碱性范围内对不同浓度碱性染料废水均有较好的脱色作用。菌株的脱色机理主要是吸附和降解,高浓度的废水对菌体生长有强烈的抑制作用。ABTS介体能够缩短BOX处理染料废液的时间并提高脱色效果。在鼓泡式反应器中,菌株IMER1的麸皮固体发酵菌剂对染料酸性靛蓝、RBBR脱色效果明显,但对工业碱染料废水的脱色效果一般,有待进一步研究。
Dye wastewaters have been one of the main sources of severe pollution problems worldwide. Conventional chemical and physical techniques possess inherent limitations such as high cost, formation of hazardous by-products, and intensive energy requirements. As a feasible alternative, dye decolorization using microorganisms, has recently received much attention owing to its ease of application, low cost, and environmental benignity. Some fungi have been applied to the treatment of dye effluent, owing their characterizations of broad substrates and tolerance to high concentration of toxic xenobiotics and alkali. To understand the decolorization mechanism of these fungi will provide the theoretical foundation to expand their application to decolorize dye waste, especially basic dye waste.
     A comparative study on decolorization of RBBR dye by 10 strains in pH5-10 was performed and the results showed that IMER1 has high-efficient decolorization of RBBR, especially including basic pHs. To identify the species of this strain, its ITS sequence is cloned and its colony, spore, conidiophores, and mycelium morphologies are observed under microscope. These results showed that this strain is Myrothecium sp, and named as Myrothecium sp.IMER1..
     The mechanism of decolorization of RBBR by strain IMER1 was investigated comprehensively. Decolorizing efficiency is indigo carmine>RBBR>congo red>malachite green> bromophenol blue, and the ability of triphenylmethane dyes decolorized by strain IMER1 is poor. It was proved that in the course of decolorization of RBBR the extracellular enzyme, bilirubin oxidase (BOX), has a good correlation with decolorization and playes a key role. The adsorption of the dye by cells is observed at the beginning of the decolorization, then the color becomes faint and finally disappeares when BOX is released by the strain. Additionally, the visual observation and UV spectral analysis demonstrated that decolorization involved biosorption and biodegradation. The kinetics of RBBR decolorization can be described by first-order reaction rate equation, and the K value decreases with the RBBR concentration.
     Bilirubin oxidase is purified by the five steps, which is demonstrated to be bilirubin oxidase by SDS and native PAGE, and its molecular weight is estimated to be about 64kD.The optimum temperature for enzyme activity is 55°C and the optimum pH for bilirubin and ABTS are 7.5 and 4, respectively. Fe2+ has completely inhibition action, while EDTA、ethanol、acetic acid、glycine have little. The purified BOX can decolorize the 5 dyes.
     The mechanisms of decolorization of RBBR by BOX and BOX-ABTS were investigated comprehensively. The results of the visual observation and UV spectral analysis of RBBR show that the chromophores of RBBR are decomposed resulting in degradation of RBBR at last. The analysis results of GC-MS and LC-MS indicate that the main intermediate products are phthalic acid and derivatives. The kinetics of RBBR degradation could be described by first-order reaction rate equation.
     The optimum conditions for the production of BOX show that pH, temperature, glucose are 5.7, 28°C, 8g/L, respectively, the largest production of BOX is 0.643U/mL. The biosynthesis of BOX in PDB is middle phase model. On the other hand, the optimized water content, pH, temperature in solid culture are 83.5%,4.6,23°C, respectively, the largest production of BOX is13.45U/g .
     Decolorization of basic dye effluent by strain IMER1 and BOX were investigated, including the feasibility of technology in reactor. Both IMER1 and BOX are able to decolorize basic dye effluent, while high concentration dye effluent will inhibit the growth of IMER1. Decolorization rate by ABTS is improved. The mixture of IMER1 and wheat bran is better for decolorization of single dye such as indigo carmine and RBBR than basic-dye-effluent in air lift bioreactor, so it is necessary to redesign the structure of reactor and optimize the program and conditions in order to improve the treatment effect for dye effluent.
引文
[1]章同.我国印染废水污染治理形势严峻.中国纺织报,2005,42~47
    [2]赵宜江,张艳.印染废水吸附脱色技术的研究进展.水处理技术,2000,26(6):315~320
    [3]姜方新,兰尧中.印染废水处理技术研究进展.云南师范大学学报:自然科学版,2002,22(2):24~27
    [4]何瑾馨,染料化学.中国纺织工业出版社.2004,30~100
    [5]洪颖,陈国松,张红漫等.蒽醌类染料废水处理的研究进展.工业水处理,2004,(10):5~8
    [6]戴日成,张统.印染废水水质特征及处理技术综述.给水排水,2000,26(10):33~37
    [7]汤心虎,黄秀微.无机/有机复合絮凝剂对印染废水脱色的研究.水处理技术,2001,27(5):267~270
    [8]仵博万.印染废水脱色研究进展.甘肃环境研究与监测,2002,15(4):318~319
    [9]张艳,赵宜江,嵇鸣等.印染废水物理化学脱色方法的研究进展.水处理技术,2001,27(6):311~313,321
    [10] Mckay G. Absorbing dye wastewater with activated carbon. Colorage, 1988, 73(10):35~36.
    [11] Banat IM, Nigam P, Singh D. Microbial decolorization of textile-dye-containing effluents: A Review. Bioresource Technology, 1996, (58) :217~227
    [12] Wouter D. Anaerobic Treatment of textile efluents: A review, J.Chem. Technol .Biotechnol, 1998, (73):323~335
    [13]李燕,胡亮,曹恩伟.生物法在印染废水处理中的应用.江苏环境科技,2003,16(3):18~19
    [14] Robinson T, McMullan G, Marchant R, et al. Remediation of dyes in textile effluent, a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 2001, (77):247~255
    [15]徐文东,文湘华.微生物在含染料废水处理中的应用.环境污染治理技术与设备,2000,1(2):9~16
    [16] Haug W,Schmidt A,Nortemann B, et al. Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortrium. Applied and Environmental Microbiology, 1991, 57(11) :3144~3149
    [17]柳广飞,周集体,王竞等.细菌对偶氮染料的降解及偶氮还原酶的研究进展.环境科学与技术,2006,29(4):112~114
    [18]贾省芬,刘志培.厌氧—好氧投菌法处理印染废水.环境科学,1992,13(5):20~24
    [19] Wong PK, Yuen PY. Decolorizatin and biodegradation of methyl red by Klebsiella pneumonia RS-13. Wat.Res, 1996, 30(7) :1736~1744
    [20] Adedayo q, Javadpour S, Taylor C, et al. Decolorization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J. Microbiol. Biotechnol, 2004, 20:545~550
    [21] An S,Min S,Cha I, et al. Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol. Lett, 2002, 24:1037~1040
    [22] Bhatt N, Patel KC, Keharia H, et al. Decolorization of diazo dye Reactive Blue 172 by Pseudomonas aeruginosa. J. Basic Microbiol, 2005, 45:407~418
    [23] Cao W, Mahadevan D, Crawford L, et al. Characterization of an extracellular azo dye oxidizing peroxidase from Flavobacterium sp. ATCC 39723. Enzyme Microb. Tech, 1993,15: 810~817
    [24]许玫英,郭俊,钟小燕等.一个降解染料的希瓦氏菌新种--中国希瓦氏菌.微生物学报,2004,44(5):561~566
    [25] Hu TL. Decolorization of reactive azo dyes by transformation with Pseudomonas luteola. Bioresour. Technol, 1994, 49: 47~51
    [26] Kalme SD, Parshetti GK, Jadhav SU, et al. Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour. Technol, 2006, 98: 1405~1410
    [27] Kodam KM, Soojhawon I, Lokhande PD, et al. Microbial decolorization of reactiveazo dyes under aerobic conditions. World J. Microbiol. Biotechnol, 2005, 21: 367~370
    [28] Kumar K, Devi SS, Krishnamurthi K, et al. Decolorization and detoxification of Direct Blue-15 by a bacterial consortium. Bioresour. Technol, 2007, 98: 3168~3171
    [29] Rajaguru P, Kalaiselvi K, Palanivel M, et al. Biodegradation of azo dyes in a sequential anaerobic–aerobic system. Appl. Microbiol. Biotechnol, 2000, 54:268~273
    [30]鲜海军,杨惠芳.用高效染料脱色菌和PVA降解菌混合培养液处理印染废水.环境科学学报,1993,13(4):420~426
    [31]闵一珏.ZE-1号印染废水脱色菌群的选育及适用条件的研究.环境污染与防治,1992,14 (6):14~16
    [32]罗国维,曾丽漩.优势菌处理印染废水中水解池的脱色机理.中国环境科学,1998,18(5):423~426
    [33] Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol, 2001, 56: 69~80
    [34]任随周,郭俊,王亚丽等.细菌脱色酶TpmD对三苯基甲烷类染料脱色的酶学特性研究.微生物学报,2006,46(3):385~389
    [35] Craliel CM, Barclay SJ, Naidoo N, et al. Microbial decolorization of a reactive azo dye under anaerobic conditions. Water SA, 1995, 21: 61~69
    [36] Fang H, Wen RH, Yue ZL. Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere, 2004, 57:293~301
    [37] Khehra MS, Saini, HS, Sharma DK, et al. Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Res, 2005,39:5135~5141
    [38] Zimmermann T, Kulla HG, Leisinger T. Properties of purified orange II azo reductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. J. Biochem, 1982, 129:197~203
    [39] Neill CO, Lopez A, Esteves S, et al. Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Appl. Microbiol. Biotechnol, 2000, 29:249~254
    [40] VanderZee FP, Lettinga G, Field JA. The role of catalysis in the mechanism of anaerobic azo reduction. Water.Sci.Technol, 2000, 42(5):301~308
    [41] VanderZee FP, Bouwman RH, Strik DP. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotech.Bioeng, 2001, 75(6):691~701
    [42] Supaka N, Juntongjin K, Damronglerd S, et al. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chem. Eng. J, 2004, 99:169~176
    [43] Chang JS, Kuo TS. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour. Technol, 2000, 75:107~111
    [44] Oswald FB. Phosphorus removal from wastew ater using an algal turf scrubber. Water Sci. Technol, 1996, 33:191~198
    [45]刘金齐.藻对偶氮染料降解作用的研究.水生生物学报,1992,16(2):133~143
    [46]刘厚田,杜晓明,刘金齐等.藻菌系统降解偶氮染料的机理研究.环境科学学报,1993,13(3):332~338
    [47]孙红文,黄国兰,丛丽莉等.藻类对偶氮染料的降解及定量结构—生物降解性研究.中国环境科学,1999,19(4):289~292
    [48]黄国兰,孙红文.固定化藻类的生理特征和对染料的脱色能力研究.环境科学学报,2000,20(4):445~449
    [49] Mohan V,Roa CN, Prasad KK, et al. Treatment of simulated reactive yellow 22 (Azo) dye effluents using Spirogyra species. Waste Manage, 2002, 22:575~582
    [50]宋志慧,王爱丽,王秀娟等,盐泽螺旋藻培养用于染料脱色.高校化学工程学报,2006,20(1),134~137
    [51] Liu JQ, Liu HT. Degradation of azo dyes by algae. Environmental Pollution, 1992, (75): 273~278
    [52]李慧蓉.白腐真菌的研究进展.环境科学进展,1996,4(6):69~77
    [53] Kirk TK, Shimada M. Lignin biodegradation:the microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. Biosynthesis and biodegradation of wood components (edited by Takayoshi Higuchi). Orlando Fla: Academic Press, 1985, 579~605
    [54] Tunde M, Ming T. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. International Biodeterioration & Biodegradation, 2000, 46: 51~59
    [55] Swamy J, Ramsay JA. The evolution of white rot fungi in the decoloration of textile dyes. Enzyme and Microbial Technology, 1999, 24: 130~137
    [56] Tekere M. Growth dye degradation and ligninolytic activity studies Zimbabwean white rot fungi. Enzyme and Microbial Technology, 2001, 28: 130~137
    [57] Chung N, Aust SD. Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase. Arch. Biochem. Biophys, 1995, 316: 733~737
    [58]喻国策,文湘华,钱易等.黄孢原毛平革菌在多种氨氮浓度下木质素降解酶的产生.环境科学学报,2003,23(6): 802~806
    [59] Glenn JK, Gold MH. Effect of various media and supplements on production by some white rot fungi. Bioresour Technol, 2001, 77(1): 89~91
    [60] Leatham GF. Extracellular enzymes produced by the cultivated mushroom Lentinus edodes during degradation of a lignocellulosic medium. Applied & Environmental Microb, 1985, 50: 859~867
    [61]丁少军,王传槐, Buswell JA.不同培养条件对云芝(Coriolus versicolor)木质素降解酶产酶影响的研究.纤维素科学与技术, 1994,2(2):36~46
    [62]王佳玲,余惠生,黄秀瑜等.碳源和Mn(Ⅱ)对白腐菌Panus conchatus产木素降解酶的影响.纤维素科学与技术, 1998, 6(3): 27~31
    [63]高大文,文湘华,周晓燕等.微量元素对白腐真菌的生长影响和抑制酵母菌效果的研究.环境科学,2006,27(8):1623~1626
    [64]高大文,文湘华,周晓燕等. pH值对白腐真菌液体培养基抑制杂菌效果的影响研究.环境科学,2005,26(6):173~179
    [65] Wong Y, Yu J. Laccase-catalyzed decolorization of synthetic dyes.Water Res,1999,33(16):3512~3520
    [66] Spadaro JT, Gold MH, Renganathan V. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 1992, 58: 2397~2401
    [67] Knapp JS, Newby PS. Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme Microb.Techol,1995 ,17 (7):664~668
    [68] Eaton D. Fungal decolorization of kraft bleach plant effluent. Tappi. 1980, (63):103~109
    [69] Barr DP, Aust SD. Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol, 1994, 28(2) :78~87
    [70] Cameron MD, Timofeevski S, Aust SD. Mini-review: enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol, 2000, 54:751~758
    [71] Fu Y, Viraraghavan T. Removal of a dye from an aqueous solution by the fungus Aspergillus niger. Water Qual. Res. J. Can, 2000, 35:95~111
    [72]蔡伟建,李峰,李济吾.HJ01对中性艳蓝GL的脱色降解特性研究.环境科学,2007,2:213~219
    [73]李蒙英,孟祥勋,王雪峰等.青霉菌对三种活性染料的吸附和降解.中国环境科学,2001,21(5):449~452.
    [74]董新姣,周国玲.固定化青霉菌吸附活性艳蓝KN-R的脱色研究.中国环境科学,25,(4):494~498
    [75] Kakuta T, Tateno Y, T Koizumi. Azo dye wastewater treatment with immobilised yeast. Hakkokagaku Kaishi, 1992, 70:387~393
    [76] Yu Z, Wen X. Screening and identification of yeasts for decolorizing synthetic dyes in industrial waste water. Int Biodet Biodeg, 2005, 56:109~114
    [77] Donmez G. Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium. Enzyme M icrob Technol, 2002, 30:363~366
    [78] Angelis D, Rodrigues GS. Azo dyes removal from industrial effluents using yeast biomass. Arquivos De Biologia E. Technologia, 1987, 30: 301~309
    [79] Polman JK. Biomass-mediated binding and recovery of textile dyes from waste effluents.Textile Chemist and Colorist, 1996, 28:31~35
    [80] Kakuta T, AOKI F, Okada T, et al. Purification and properties of two different azoreductases from a yeast Candida curvata AN723. Seni Gakkaishi,1998,54(1):18~25
    [81] Paszczynski A., Crawford RL. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol. Prog, 1995, 11:368~379
    [82] Mileski GJ, Bumpns JA, Jurek, MA, et al. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol, 1988, 54:2885~2889
    [83] Fu YZ, Viravaghavan T. Removal of congo red from an aqueous solution by fungus Aspergillus niger. Advances in Environmental Research, 2002, 7(1):239~247
    [84] Banks CJ, Parinson ME. The mechanism and application of fungal biosorption to colour removal from raw water. J Chem Techno Biotechno, 1992, 54(1):192~196
    [85] Ozfer Y, Dilek A, Seval C. Decolorization of textile dyes by fungal pellets. Process Biochemistry, 2003, 38: 933~938
    [86] Novotny C, Rawal B, Bhatt M, et al. Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes. Journal of Biotechnology, 2001, 89:113~122
    [87] Pointing SB. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol, 2001, 57:20~33
    [88] Aggelis G, Ehaliotis C, Nerud E, et al. Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Appl Microbiol Biotechnol, 2002, 59:353~360.
    [89]谭国民,柳芽展,李群等.白腐菌对染料脱色及降解的影响因素.中国造纸学报, 2003,18(1):131~134
    [90] Paszczynski A, Pasti MB, Goszczynski S, ,et al. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptmyces chromfuscus. Appl Environ Microbiol, 1992,58:3598~3604
    [91] Heinfling A, Martinez MJ, Martinez AT, et al. Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol, 1998, 64(8): 2788~2793
    [92] Tuour U, Winerhalter K, Fiechter A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. Journal of biotechnology, 1995, 41(1): 1~17
    [93] Youn HD, Hah YC, Yang SO. Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiology Letters, 1995, 132 (3): 183~188
    [94] Mayer AM. Polyphenol oxidases in plants-recent progress. Phytochemistry, 1987, 26(1): 11~20
    [95]张敏,肖亚中,龚为民.真菌漆酶的结构和功能.生物学杂志,2003,20(5):6~8
    [96]季立才,胡培植.漆酶的结构、功能及其应用.氨基酸和生物资源,1996,18(1):25~29
    [97]钞亚鹏,钱世钧.真菌漆酶及其应用.生物工程进展, 2001, 21(5): 23~28
    [98] Karhunen E, Niku-paavola ML, Viikari L, et al. A novel combination of prosthetic groups in a fungal laccase: PQQ and two copper atoms. FEBS Lett, 1990, 267(1): 6~8
    [99] Reinhammar B. in“Coper Proteins and Copper Enzymes”(Lontie R Ed) VolⅢ, CRC Press, Boca Raton, 1984, 1
    [100]缪静,姜竹茂.漆酶的最新研究进展.烟台师范学院学报(自科版),2001,17(2): 146~150
    [101]王佳玲,余惠生.白腐菌漆酶的研究进展.微生物学通报,1998,25(4):233~236.
    [102]刘淑珍,钱世钧.担子菌漆酶的分离纯化及其性质研究.微生物学报,2003,43(1):73~78.
    [103] Messerschmidt A, Ladenstein R, Huber R, et al. Refined crystal structure of ascorbate oxidase at 1.9 A resolution. J. Mol. Biol, 1992, 224(1): 179~205
    [104] Sakurai T, Takahashi J. EPR spectra of type 3 copper in Rhus vernicifera laccase and Cucumis sativus ascorbate oxidase. Biochemica et Biophysica Acta (BBA), 1995, 1248(1): 143~148
    [105] Nina H, Laura-Leena K, Kristiina K, et al. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol, 2002,9(8): 601~605
    [106] Caters G. Engineering type-1 copper sites in proteins. FEBS Letters, 1993, 325:39~48
    [107] Messerchmidt A. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin, modeling and structural relationships. European Journal of Biochemistry,1990 ,187 :341~352
    [108] Leif J, Kjell. S, Ingrid. H, et al. Characterization of a laccase gene from the White-rot fungus Trametes versicolor and structure features of basidiomycete laccase. Biochemica et Biophysica Acta, 1995, 1251(2): 210~215
    [109] Chefdtz B, Benny, Yona C, et al. Purifiction and characterization of laccase chaetomium thermophiolium and its role in humification. Appl. Environ. Micro, 1998, 64(9): 3175~3179
    [110] Bajpai P. Application of enzymes in the pulp and paper industry. Biotechnology Progress,1999, 15(2): 147~157
    [111] Niku-Paavola ML, Raanua M, Sournakki A, et al. Effect of lignin-modifying enzymes of pulp. Bioresour Technol, 1994, 50(1): 73
    [112] Call HP, Mücke I. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym?-process). J Biotechnol, 1997, 53:163~202
    [113] Li K, Xu F, Eriksson KEL. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol, 1999, 65:2654~2660
    [114] Wesenberg D, Kyriakides I, Agathos SN. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv, 2003, 22(1-2): 161~187.
    [115] Tanaka N, Murao S. Reaction of bilirubin oxidase produced by Myrothecium verrucaria MT-1. Agr. Biol. Chem, 1985, 49:843~844
    [116] Amagata T, Rath C, Rigot JF, et al. Structures and cytotoxic properties of trichoverroids and their macrolide analogues produced by salt water culture of Myrothecium verrucaria. J. Med. Chem, 2003, 46:4342~4350
    [117] Rpsane MP. Production of hydrolytic enzymes by the plant pathogenic fungus Myrothecium verrucaria in submerged cultures. Brazilian Journal of Microbiology, 2005,36:7~11
    [118] SakuraiT, Tanaka K, Kitagawa R, et al. Construciton of a new expression system of bilirubin oxidase and its mutants to explore the dioxygen reducion mechanism. J. Inorganic Biochem, 2003, 96:223
    [119]赵晖,李国庆,郭坚等.雪腐核盘菌的ITS序列分析.化学与生物工程,2005,12:23~25
    [120]吴文平.河北省丝孢菌研究Ⅲ、漆斑菌属(Myrothecium Tode:Fr.)的四个种.河北省科学院学报,1991,1: 69~74
    [121] Kurosaka K, Senba S, Tsubota H, et al. A new enmzymatic assay for selectively measuring conjugated bilirubin concentration in serum with use of BOD. Clin. Chim. Acta, 1999, 269:125~136
    [122] Isaka M, Thebtaranonth Y. Antimalarial activity of macrocyclic trichothecences isolated from the fungus Myrothecium verrucaria. J.Nat.Prod, 1999, 62:329~331
    [123] Xu F, Shin W, Brown SH, et al. A study of a series of recombinant fungal laccases and BOX that exhibit significant differences in redox potential, substrate specificity and stability. Biochim. Biophys. Acta, 1996, 1292, 303~311.
    [124]汪家政.蛋白质技术手册.北京:科学出版社, 2000,123~230.
    [125] Fu, Y, Viraraghavan T. Fungal decolorization of dye wastewaters: a review. Bioresour. Technol, 2001, 79, 251~262
    [126]肖继波,胡勇有,田静.活性艳蓝KN—R的生物吸附脱色研究.中国环境科学,2004,24(1):63~67
    [127]肖继波,胡勇有.烟曲霉生物吸附剂对活性艳红吸附性能的研究.工业用水与废水,2005,36(5):13~17
    [128] Akhtar S, AliKhan A, Husain, Q. Partially purified bitter gourd (Momordica charantia) peroxidase catalyzed decolorization of textile and other industrially important dyes. Bioresour. Technol, 2005,96:1804~1811
    [129]覃晶晶,江小林.污水处理中Monod方程的简化及其线性化方程.市政技术,2006,24(2):75~80
    [130] Kataoka K, Tanaka K, Sakai Y, et al. High-level expression of Myrothecium verrucaria BOD in Pichia pastoris, and its facile purification and characterization. Protein Expr. Purif, 2005, 44:77~83
    [131]黄茂福.染整用酶制剂的研究与开发现状.印染助剂,2004,4:1~4
    [132]王菊君,曹恩华,赵英霞.疣孢漆斑菌(Myrothecium Verrucaria)J-1胆红素氧化酶的纯化及性质初步研究.中国生物化学与分子生物学报,1991,6:662~665
    [133] Guo J, Liang XX, Mo PS, et al. Purification and properties of bilirubin oxidase from Myrothecium verrucaria. Appl Biochem Biotechnol, 1991, 31(2):135~83
    [134]赵晓瑜,刘彬彬,杨茂华等.终止剂法测定胆红素氧化酶活性.河北大学学报(自然科学版),2006,26(5):520~523
    [135]周红,林海,丁浩等.印染废水处理技术的研究现状与展望.中国非金属矿工业导刊, 2007,(01):60~62
    [136] Ilgi KK. Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotationg biological contactor. Enzyme and Microbial Technology, 2002, 30(2) :195~199
    [137]薛少华,成建.蒽醌染料生产废水处理工艺研究.化工环保,2002,22(4):199~203
    [138] Tatarko M, Bumpus JA. Biodegradation of congo red by phanerochaete chrysosporium. Wat. Res, 1998, 32(5) :1713~1717
    [139] Majcherczyk A, Johannes C, Huttermann A. Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by the 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) cation radical and dication. Appl Microbiol Biotechnol, 1999, 51 (2):267~276
    [140] Saquib M, Muneer M. Semiconductor mediated photocatalysed degradation of an anthraquinone dye, Remazol Brilliant Blue R under sunlight and artificial light source. Dyes and Pigments, 2002, 53(3): 237~249
    [141]戴乾圜.化学致癌剂及化学致癌机理的研究——多环芳烃致癌性能的定量分子轨道模型——“双区理论”.中国科学,1979,10:964~977
    [142] Dewar MJS.有机分子轨道理论.戴树珊,刘有德译.科学出版社,1977,1~200
    [143]黄丽萍.溴胺酸的生物降解及降解途径的研究[博士学位论文].大连理工大学:大连理工大学图书馆,2001.
    [144] Ashok P. New Developments in Solid State Fermentation: I-Bioprocesses and Products .Process Biochemistry, 2000, 35 :1153~1169
    [145]黄达明,吴其飞,陆建明等.固态发酵技术及其设备的研究进展.食品与发酵工业, 2003,(06):87~91
    [146] Shimizu A, Kwon JH, Sakurai T, et al. Myrothecium verrucaria bilirubin oxidase and its mutants for potential copper ligands. Biochemistry, 1999, 38: 3034~3042
    [147]郝学财,余晓斌,刘志钰等.响应面方法在优化微生物培养基中的应用.食品研究与开发,2006,27(1):38~41.
    [148]吴其飞,黄达明,陆建明等.固态发酵新技术与反应器的研究进展.饲料工业, 2003,(08):25~30
    [149] Dos Santos MM, daRosa AS, Dal'Boit S, et al.Thermal Denaturation: is Solid-state Fermentation Really a Good Technology for the Production of Enzymes? Bioresource Technology, 2004, 93 :261~268
    [150]郭勇.酶工程.第二版.北京:科学出版社,2004,60~70