微波诱导催化工艺处理难降解废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用微波诱导催化工艺对两种典型的难降解废水进行了处理,这两种废水分别是印染废水中的酸性靛蓝废水和制药废水中的抗生素类废水。论文介绍了靛类染料废水和抗生素尾水的特点及危害,对两种废水的国内外研究进展进行了综述。
     本文首先用微波诱导活性炭催化工艺对酸性靛蓝废水进行处理,采用单因素试验和正交试验进行研究,得出如下优化工艺参数:对100mL浓度为100mg/L酸性靛蓝溶液,当活性炭质量为1.5g,微波辐射时间为7分钟,功率为100%档时,可以达到98.79%的去除效率,而且各影响因素主次关系是:微波辐射时间>微波功率>活性炭质量。
     对作为催化剂的活性炭进行了重复试验和再生研究,再生结果表明,再生后的活性炭重新作为微波催化剂使用,可以使酸性靛蓝出水提高10%以上的去除率。
     然后对比了载FeSO4活性炭、载CuSO4活性炭和一般活性炭作微波催化剂时对抗生素尾水COD去除的差别,结果表明,负载FeSO4的活性炭作为催化剂的微波处理系统中对COD的去除率最高。接着采用微波诱导载FeSO4活性炭催化技术对抗生素尾水进行了处理,结果表明,增大载FeSO4活性炭质量,微波辐射时间和微波功率,均有利于抗生素尾水中COD的去除,但各影响因素的取值也不是越大越好。
     对微波诱导载FeSO4活性炭催化工艺处理抗生素尾水进行反应动力学分析,结果显示,此过程近似一级反应,其动力学方程为:lnC=-0.1413t+5.4121,r=0.9876。反应动力学常数为:0.1413min-1。微波诱导载FeSO4活性炭催化工艺对污染物去除的机理在于活性炭的高温加速吸附和“微波热点”二者的共同作用。
     论文的开展为难降解废水处理的新方法进行了有益的探索,同时拓宽了微波技术的应用范围。这些研究对难降解废水的处理具有重要的现实指导意义。
This article had treated two typical refractory wastewater using microwave induced catalytic process. The two types of wastewater were indigo carmine in dyeing wastewater and antibiotics in pharmaceutical wastewater. In this article, the characteristics and harm of indigo carmine and antibiotics wastewater were introduced, and this article also reviewed the development of the two types of wastewater research.
     First, this article treated the wastewater of indigo carmine using microwave induced catalytic process. From ingle factor and orthogonal test adopting, this experiment attained the optimization process parameters as follows. To the 100mg/L indigo carmine 100ml, when the activated carbon quality was 5g, the microwave radiation seven minutes, and radiation power was 100%, the discoloration rate reached 98.79%. And all the factors influencing, microwave radiation time> microwave power> the activated carbon quality.
     This article did repeated experimentation and regeneration research on the activated carbon as a catalyst. And the results indicated that, when activated carbon after regeneration as catalyst retreat indigo carmine, indigo carmine discoloration rate could increase 10%.
     And then comparing activated carbon carried FeSO4 activated carbon carried CuSO4 and normal activated carbon as catalyst in microwave systems on tail water of the antibiotics. And the results indicated:activated carbon carried FeSO4 as microwave catalyst reached the highest COD discoloration rate. Then adopting activated carbon carried FeSO4 as catalyst in microwave induced catalytic process treated the tail water of the antibiotics. The results indicated:Increasing the quality of activated carbon carried FeSO4, microwave radiation time and power, the COD discoloration rate in tail water of the antibiotics increased also, but the value of influence factors was not the bigger the better.
     This article did kinetic analysis in microwave induced activated carbon carried FeSO4 catalytic process on tail water of the antibiotics, the results indicated:this reaction process approximate the first order kinetics, and the kinetics equation is lnC=-0.1413t+5.4121, in this equation, r=0.9876, velocity constant is 0.1413min-1. The mechanism of microwave induced activated carbon carried FeSO4 catalytic process removing contaminants are accelerated absorption of activated carbon and "microwave hot".
     This article is an exploring of new method in refractory wastewater, and widens the scope of microwave application. These studies possess important actual significance in refractory wastewater treatment.
引文
[1]马承愚,彭英利.高浓度难降解有机废水的治理与控制[M].北京:化学工业出版社,2007
    [2]冯晓西,乌锡康.精细化工废水处理[M].北京:化学工业出版社,1997
    [3]Huang H, Shih Y, Chen Y. Determining eight colorants in milk beverages by capillary electrophoresis[J]. Journal of Chromatography A,2002,959:317-325
    [4]Hayt R. Highlight on the studies of anticancer drugs derived from plants in China[J]. Stem Cells,1994,12(1):53-63
    [5]安家驹.实用精细化工辞典(第2版)[M].北京:中国轻工业出版社,2000
    [6]李明威.漫话靛蓝今昔-纪念合成靛蓝一百周年[J].染料工业,1995,32(1):20~26
    [7]任吉元,王文涛,李红.近期靛蓝生产工艺研究进展[J].染料工业,1997,34(4):22~24
    [8]毛文永.环境污染与致癌[M].北京:科学出版社,1981
    [9]张自杰.排水工程下册(第四版)[M].北京:中国建筑工业出版社,2000
    [10]耿锋,戴海平.PAC对靛蓝染色废水处理的研究[J].染料与染色,2007,44(3):35~37
    [11]张文涛,林波,张志强.聚硅铝硼絮凝剂处理靛蓝废水的试验[J].贵州环保科技,2004,10(2):22~26
    [12]张志强,林波,夏四清等.高活性微生物絮凝剂处理靛蓝印染废水的动力学研究[J].工业水处理,2007,27(4):44~47
    [13]张慧.微生物絮凝剂产生菌培养条件优化及替代培养基研究[D].[硕士学位论文].重庆:重庆工商大学,2008
    [14]蒋月秀,张雪,徐慧娟等.改性膨润土对酸性靛蓝的吸附性能研究[J].非金属矿,2007,30(5):63~65
    [15]曾林泉.活性炭纤维对水中靛蓝的吸附性研究[J].山东纺织科技,2002,(6):7-9
    [16]郭长虹,肖红.靛蓝染色废水的电解处理工艺及设备[J].江苏环境科技,1997,(2):27~29
    [17]吕锡武,王九芹,宋海亮等.石墨极化电氧化法处理靛蓝染料废水初步研究[J].江苏环境科技,2004,17(3):1-2
    [18]李笑岚.酸性靛蓝在ACF电极上的电化学脱色[D].[硕士学位论文].大连:大连理工大学,2006
    [19]Ali H. Gemeay, Ikhlas A. Mansour, Rehab G. El-Sharkawy. Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine[J]. Molecular Catalysis A: Chemical 193(2003):109-120
    [20]Manon Vautier, Chnaatl Guillard, Jean-Marie Herrmann. Photocatalytic Degradation of Dyes in Water:Case Study of Indigo and of Indigo Carmine[J]. Journal of Catalysis 2001,201: 46-59
    [21]黄彩添,陈叶荣,温伟坚.靛蓝印染废水的处理[J].广东化工,1989,(3):64~66
    [22]李月中,曹曦,古国冠.靛蓝染色废水的处理[J].污染防治技术,1997,(4):215~217
    [23]孟建平,徐宏凯,周建勋.靛蓝和硫化黑染色废水处理[J].机电设备,2004,(2):45~48
    [242]胡晓东.制药废水处理技术及工程实例[M].北京:化学工业出版社,2008
    [25]刘明华,杨林,詹怀宇.复合型改性木质素絮凝剂处理抗生素类化学制药废水的研究[J].中国造纸学报,2006,21(2):47~50
    [26]王雅琼,许文林,赵丽君.絮凝电解法处理麻黄素废水研究[J].水处理技术,1996,22(3): 168~172
    [27]张满生,张劲松.物理吸附法处理制药废水[J].青海环境,1999,9(3):106~107
    [28]朱安娜,吴卓,荆一凤.纳滤膜分离洁霉素生产废水的试验研究[J].膜科学与技术,2000,20(4):47~51
    [29]刘国信,叶康钰,夏恒霞.从制药废水中回收金霉素的研究[J].水处理技术,1995,21(2):85~88
    [30]马文鑫,陈卫中,任建军等.制药废水预处理技术探索[J].环境污染与防治,2001,23(2):87~89
    [31]王春平,马子川.Fenton试剂处理青霉素废水实验研究[J].重庆环境科学,2003,25(12):25~27
    [32]秦向春,陈繁忠,叶恒朋等.超高浓度抗生素废水预处理试验[J].环境工程,2006,24(2):20~22
    [33]廖禹东,张宁.Ti02光催化剂降解含阿奇霉素废水的研究[J].环境科学与技术,2006,29(12): 77~79
    [34]王春平,刘清福,马子川.催化臭氧氧化法降解土霉素废水[J].工业水处理,2005,25(4):56~58
    [35]邹振扬,邓颖,甄庆等.Fe-C层加催化剂治理制药废水中有机污染物新方法研究[J].化学研究与应用,1999,11(1):91~95
    [36]刘红丽,邹联沛,谢文军.微电解-UASB-MBR法联用处理抗生素废水的试验研究[J].化学工程师,2005,116(5):1-3
    [37]杜大恒,陈胜,孙德智等.好氧生物流化床处理抗生素废水的试验研究[J].工业水处理,2005,25(12):29~33
    [38]胡晓东,张刚,石云峰等.好氧法处理抗生素废水对比试验研究[J].广州大学学报(自然科学版),2010,9(1):33~36
    [39]毛卫兵,陆少鸣,朱争亮.厌氧折流板反应器在制药废水处理中的研究[J].工业安全与环保,2004,30(10):3-5
    [40]祁佩时,陈业刚,李欣等.一体化两相厌氧反应器处理抗生素废水研究[J].给水排水,2001,27(7):49~51
    [41]周平,钱易,李炳伟等.厌氧-好氧混凝工艺处理抗生素废水[J].中国给水排水,1996,12(2): 4-8
    [42]王国平,邹联沛.UASB-好氧膜生物反应器组合工艺处理抗生素废水[J].上海大学学报(自然科学版),2006,12(3):316~319
    [43]李向军.“厌氧+好氧”工艺在抗生素污水处理工程中的应用[J].节能环保技术,2008, (7):34~36
    [44]张瑜,郝文辉,高金辉.微波技术及应用[M].西安:西安电子科技大学出版社,2006
    [45]王鹏.环境微波化学技术[M].北京:化学工业出版社,2003
    [46]Di P K, Chang D P Y. Investigation of polychlorinated biphenyl removal from contaminated soil using microwave-generated steam[J]. J Air Waste Manage Assoc,2001,51:482-488
    [47]Windgasse G, Darerman L. Microwave treatment of hazardous wastes:removal of volatile and semi-volatile organic contaminants from soil[J]. J Microwave Power Electromag Energy,1992,27:23-32
    [48]Kawala Z, Atamanczuk T. Microwave-enhanced thermal decontamination of soil[J]. Environ Sci Technol,1998,32:2602-2607
    [49]Rudolph A. Abramovitch, Huang Bang Zhou. Decomposition of 4-bromobiphenyl in soil remediated by microwave energy[J]. Chemosphere,1994,29:2517-2521
    [50]Rudolph A. Abramovitch, Huang Bang Zhou, Mark Davis et al. Decomposition of PCBs and other Polychlorinated aromatics in soil using microwave energy[J]. Chemosphere,1998, 37:1427-1436
    [51]张达欣,于爱民,金钦汉.微波-炭还原法处理二氧化硫(SO2)的研究[J].微波学报,1998,14(4):341~346
    [52]张达欣,于爱民,金钦汉.微波-炭还原法处理一氧化氮的研究[J].高等学校化学学报,1997,18(8):1271~1274
    [53]Xunli Zhang, David O. Hayward, Colleen Lee et al. Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts[J]. Applied Catalysis B:Environmental, 2001,33(2):137-148
    [54]马文,王新强,倪炳华.微波催化法分解硫化氢的研究[J].石油与天然气化工,1997,26(1):7-38
    [55]卜龙利.高浓度有毒有机废水微波辅助常压连续催化湿氏氧化工艺研究[D].[博士学位论文].大连:大连理工大学,2005
    [56]Rudolph A. Abramovitch, Michael Capracotta. Remediation of waters contaminated with pentachlorophenol[J]. Chemosphere,2003,50:955-957
    [57]Xitao Liu, Xie Quan, Longli Bo et al. Temperature measurement of GAC and decomposition of PCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation[J]. Applied Catalysis A:General,2004,264:53-58
    [58]王金成,薛大明,全燮等.微波辐射处理活性艳蓝KN-R染料溶液的研究[J].环境科学学报,2001,21(5):628~630
    [59]张耀斌,全燮,薛大明等.流动态微波催化反应器处理染料废水的工艺稳定性[J].中国环境科学,2002,22(3):235~238
    [60]洪光,王鹏,张国宇等.改性氧化铝微波诱导氧化处理雅格素蓝BF-BR染料废水的研究[J].环境科学学报,2001,21(5):254~258
    [61]姜思朋,王鹏,张国宇等.微波诱导氧化法处理BF-BR染料废水[J].环境科学学报,2005,25(2):13~15
    [62]张国宇,王鹏,姜思朋等.微波诱导氧化处理雅格素红BF-3B 150%染料废水的研究[J].环境科学,2004,25(Sup):52~55
    [63]张国宇,王鹏,姜思朋等.微波辐射处理酯化废水的工艺技术研究[J].给水排水,2004,30(8): 61~64
    [64]卜龙利,全燮,陈硕等.微波场中两种吸波材料氧化处理p-硝基酚溶液[J].化工学报,2006,57(3):663~669
    [65]卜龙利,全燮,陈硕等.微波辅助催化氧化高浓度含醛废水应用研究[J].大连理工大学学报,2003,25(3):25~29
    [66]Jia Guo, Aik Chong Lua. Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation[J]. Carbon,2000,38:1985-1993
    [67]J.A.Menendez, E.M. Menendez, M.J. Iglesias et al. Modification of the surface chemistry of active carbons by means of microwave-induced treatments[J]. Carbon,1999,37:1115-1121
    [68]江霞,蒋文举,朱晓帆等.微波改性活性炭的吸附性能[J].环境污染治理技术与设备,2004,5(1).43~46
    [69]蒋文举,江霞,朱晓帆等.微波加热对活性炭表面基团及吸附性能的影响[J].林产化学与工业,2003,23(1):39~42
    [70]蒋文举,江霞,朱晓帆等.微波处理对活性炭孔隙结构的影响[J].林产化学与工业,2004,21(4):21~24
    [71]北川睦夫.活性炭处理水的技术和管理[M].丁瑞芝等译.北京:新时代出版社,1987
    [72]Hua-Shan Tai, Chih-Ju G. Jou. Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol[J]. Chemospher,1999,38(11):2667-2680
    [73]宁平,田森林,王学谦等.微波辐照再生载甲苯活性炭[J].化学工业与工程,2001,18(2):109~114
    [74]王学谦,宁平.活性炭吸附硫化氢及微波辐照解吸研究[J].环境污染与防治,2001,23(6): 274~279
    [75]吴新华.活性炭生产工艺原理与设计[M].北京:中国林业出版社,1994
    [76]李雨.微波-活性炭协同处理焦化废水的工艺研究[D].[硕士学位论文].昆明:昆明理工大学,2008
    [77](日)炭素材料学会编.活性炭基础与应用[M].高尚愚,陈维译.北京:中国林业出版社,1984