典型染料的Shewanella oneidensis MR-1的降解特征及真菌吸附机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国染料业、纺织印染业发达,染料废水对环境的污染更为严重。80%以上的染料为含偶氮键、多聚芳香环的复杂有机化合物,为有毒难降解有机物,化学稳定强,具有致癌、致畸、致突变的“三致”作用。因此寻找降解和吸附染料的微生物并研究其机理,成为当今环境微生物领域的热点。本文详细的研究了Shewanella oneidensis MR-1菌株降解偶氮染料的性质并克隆表达了偶氮还原酶,筛选并研究了真菌吸附剂对染料的吸附行为。论文的主要研究结果如下:
     (1) Shewanella oneidensis MR-1菌株降解特征及偶氮还原酶性质
     Shewanella oneidensis MR-1在静止的条件下对甲基橙和酸性黄199染料的脱色率可达99.36%和78.25%。该菌对甲基橙和酸性黄199最适的pH范围分别为4.0-7.0和6.0-8.0。外源添加Mg2+能够轻微的促进偶氮染料的降解,而Pb2+,Cd2+,Cu2+,Fe3+和Fe2+则显著抑制染料的脱色降解过程。酶学分析发现NADH-DCIP和偶氮还原酶活性在降解过程中显著升高。经过PCR获得偶氮还原酶序列,克隆表达之后具有偶氮还原酶活性,最大酶催化速率可达220.59 U/mg,在pH6.5的时候,达到最大比活为153.16 U/mg,对NADH具有偏好性。25 mM Mg2+能够增强偶氮还原酶的活性。生物信息学分析发现该偶氮还原酶属于FMN依赖型的NADH偶氮还原酶家族。
     (2)真菌吸附染料的机理研究
     青霉YW01吸附剂对酸性黑172和刚果红在pH 3.0、40℃和初始染料浓度为800 mg L-1的条件下的最大吸附量分别为225.38和411.53 mg g-1。吸附过程能够被Langmuir等温吸附方程拟合,说明单层吸附现象发生。动力学方程的分析发现,内部扩散为吸附限制因素。经遗传算法改进的人工神经网络分析得知,最适染料浓度和温度分别为吸附酸性黑172和刚果红的最大影响因素。CPC改性的青霉YW01吸附剂能够提高吸附量。磷酸盐缓冲液体系虽能够提高吸附速率,但产生更大的边界层效应。
     在单一吸附体系中,CDAB改性的米曲霉吸附剂对酸性蓝25和酸性红337的吸附量分别为160.36和280.39 mg g-1,是未改性吸附剂的1.52和1.66倍。在双相吸附体系中,未改性的和CDAB改性的吸附剂与单一吸附体系相比对两种染料的吸附能力显著降低,说明存在竞争吸附现象。相对竞争性分析发现,存在浓度关键节点决定吸附剂对两类染料的选择性。[AB 25]/[AR 337]浓度之比大于0.63时,酸性蓝25的生物吸附占优势地位。通过神经网络研究9种真菌吸附剂表征和操作条件对吸附活性黑5染料的过程影响时发现,pH为影响吸附过程最重要的因素,其次依次为氮元素含量,初始染料浓度、碳元素含量。而且真菌对染料的吸附能力并不与比表面积成正比。
The dye and textile industries are booming and important for economic growth in China, but the pollutants cased by these industries are crucial problems we should not ignore for sustainable development. More than 80% dyes having azo bond and aromatic structure are of chemical stability, carcinogenicity, teratogenicity and mutagenesis. Therefore, to find effective microorganisms having biosorption and/or biodegradation capabilities for dyes are received more and more attention from environmental scientists. In this study, the decolorization characteristics of Shewanella oneidensis MR-1 and adsorption behavior of fungal biosorbents for dyes were investigated. The main results are as follows:
     (1) Decolorization and azoreductase characteristics of Shewanella oneidensis MR-1
     Shewanella oneidensis MR-1 was found to reach 99.36% and 78.25% decolorization for Methyl Orange and Acid Yellow 199 in solutions, respectively. The suitable pH range for decolorization of Methyl Orange and Acid Yellow 199 by S. oneidensis MR-1 was 4.0-7.0 and 6.0-8.0, respectively The azo dyes removal by S. oneidensis MR-1 was slightly enhanced by addition of Mg2+, but inhibited by Pb2+, Cd2+, Cu2+, Fe3+and Fe2+. The enzyme activities of NADH-DCIP reductase and azoreductase were 2.67 and 3.0 times higher, and 1.92 and 2.48 times higher, respectively in the Methyl Orange treatment and in the Acid Yellow 199 treatment as compared to the control treatment. These findings indicated that the azo dyes decolorization by S. oneidensis MR-1 was via reduction mechanism. The azoreductase was found to reach maximum enzyme velocity 220.59 U/mg, while no enzyme activities were found for the putative azoreductase toward Methyl Red. Azoreductase had highest specific activity (153.16 U/mg) at pH 6.5, which also showed a preference for NADH compared to NADPH as electron donor.
     (2) Biosorption mechanism of fungi for dyes
     Maximum biosorption capacities of 225.38 and 411.53 mg g"1 under initial dye concentration of 800 mg L-1, pH 3.0 and 40℃conditions were observed for Acid Black 5 (AB) and Congo Red (CR) for Penicillium YW 01, respectively. The Weber-Morris model analysis indicated that intraparticle diffusion was the limiting step for biosorption of AB and CR onto biosorbent. Analysis based on the artificial neural network and genetic algorithms hybrid model indicated that initial dye concentration and temperature appeared to be the most influential parameters for biosorption process of AB and CR onto biosorbent, respectively. The values of initial biosorption rate of biosorbent in phosphoric-phosphate buffer were found to be higher than that of corresponding values in aqueous solution, indicating phosphoric-phosphate buffer enhanced the initial biosorption rate of biosorption process. Weber-Morris model analysis indicated that the boundary layer effect had more influence on the biosorption process in phosphoric-phosphate buffer.
     In single system, the biosorption capacities of CDAB-modified biosorbent reached 160.36 and 280.39 mg g-1 for Acid Blue 25 (AB 25) and Acid Red 337 (AR) 337, respectively, which were 1.52 and 1.66 times higher than that of unmodified biosorbent. In binary system, the biosorption capacities of unmodified and CDAB-modified biosorbents for both dyes decreased significantly compared to that in single system. Relative competitiveness analysis demonstrated that there existed critical initial concentration ratio which determined the predominance of dyes during biosorption process. The biosorption of AB 25 was found to be in dominant position at initial concentration ratio of [AB 25]/[AR 337] above 0.63. Sensitivity analysis of the factors affecting biosorption examined by an artificial neural network model showed that pH was the most important parameter, explaining 22%, followed by nitrogen content (16%), initial dye concentration (15%) and carbon content (10%). The biosorption capacities were not proportional to surface areas of the sorbents, but were instead influenced by their surface chemical characteristics. The data further suggest that differences in carbon and nitrogen contents may be used as a selection index for identifying effective biosorbents.
引文
[1]S.J. Allen, G. McKay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280(2004)322-333.
    [2]王慧,周月霞,柏士杰,郑天凌,染料废水生物法处理技术的研究进展,厦门大学学报(自然科学版)47(2008)286-290.
    [3]V. Vimonses, B. Jin, C.W.K. Chow, Insight into removal kinetic and mechanisms of anionic dye by calcined clay materials and lime, J. Hazard. Mater.177 (2010) 420-427.
    [4]D.Y. Deng, J. Guo, G.Q. Zeng, G.P. Sun, Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11, Int. Biodeterior. Biodegrad.62 (2008) 263-269.
    [5]王作敏,印染废水污染对劳动河水生生态系统的影响,中国环境监测21(2005)71-74.
    [6]C.J. Cha, D.R. Doerge, C.E. Cerniglia, Biotransformation of malachite green by the fungus Cunninghamella elegans, Appl. Environ. Microbiol.67 (2001) 4358-4360.
    [7]S. Srivastava, R. Sinha, D. Roy, Toxicological effects of malachite green, Aquat. Toxicol.66 (2004) 319-329.
    [8]S.J. Srivastava, N.D. Singh, A.K. Srivastava, R. Sinha, Acute toxicity of malachite green and its effects on certain blood parameters of a catfish, Heteropneustes fossilis, Aquat. Toxicol.31 (1995) 241-247.
    [9]Y. Verma, Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay, Toxicol. Ind. Health 24 (2008) 491-500.
    [10]M. Ozyurt, H. Atacag, Biodegradation of azo dyes:A review, Fresen Environ Bull 12(2003) 1294-1302.
    [11]H. Ali, Biodegradation of Synthetic Dyes—A Review, Water, Air, Soil Pollut. (2010) 1-23.
    [12]P. Kaushik, A. Malik, Fungal dye decolourization:Recent advances and future potential, Environ. Int.35 (2009) 127-141.
    [13]R.G.S.R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Bacterial decolorization and degradation of azo dyes:A review, J. Taiwan Inst. Chem. Eng.42 (2011)138-157.
    [14]I.M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile-dye-containing effluents:A review, Bioresour. Technol.58 (1996) 217-227.
    [15]H.S. Rai, M.S. Bhattacharyya, J. Singh, T.K. Bansal, P. Vats, U.C. Banerjee, Removal of dyes from the effluent of textile and dyestuff manufacturing industry:A review of emerging techniques with reference to biological treatment, Crit. Rev. Environ. Sci. Technol.35 (2005) 219-238.
    [16]E. Idaka, T. Ogawa, H. Horitsu, M. Tomoyeda, Degradation of Azo Compounds by Aeromonas hydrophila var.24B, Journal of the Society of Dyers and Colourists 94 (1978)91-94.
    [17]K. Wuhrmann, K. Mechsner, T. Kappeler, Investigation on rate—Determining factors in the microbial reduction of azo dyes, Appl. Microbiol. Biotechnol.9 (1980) 325-338.
    [18]K. Singh, S. Arora, Removal of Synthetic Textile Dyes From Wastewaters:A Critical Review on Present Treatment Technologies, Crit. Rev. Environ. Sci. Technol. 41 (2011)807-878.
    [19]A. Paszczynski, M.B. Pasti-Grigsby, S. Goszczynski, R.L. Crawford, D.L. Crawford, Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus, Appl. Environ. Microbiol.58 (1992) 3598-3604.
    [20]J.T. Spadaro, M.H. Gold, V. Renganathan, Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol.58 (1992)2397-2401.
    [21]L. Ayed, A. Mandhi, A. Cheref, A. Bakhrouf, Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis; Biotoxicity and metabolites characterization, Desalination 274 (2011) 272-277.
    [22]O. Anjaneya, S.Y. Souche, M. Santoshkumar, T.B. Karegoudar, Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains:Bacillus sp strain AK1 and Lysinibacillus sp strain AK2, J. Hazard. Mater.190 (2011) 351-358.
    [23]O. Rajee, J. Patterson, Decolorization of Azo Dye (Orange MR) by an Autochthonous Bacterium, Micrococcus sp DBS 2, Indian Journal of Microbiology 51 (2011)159-163.
    [24]C.C. Oturkara, H.N. Nemade, P.M. Mulik, M.S. Patole, R.R. Hawaldar, K.R. Gawai, Mechanistic investigation of decolorization and degradation of Reactive Red 120 by Bacillus lentus BI377, Bioresour. Technol.102 (2011) 758-764.
    [25]Y. Chen, G. Chen, L. Chen, M. Huang,陈刚,陈亮,黄满红,Decolorization of azo dyes with different molecular structure by Enterobactor sp. S8, Environmental Chemistry 30 (2011) 838-842.
    [26]F.J. Deive, A. Dominguez, T. Barrio, F. Moscoso, P. Moran, M.A. Longo, M.A. Sanroman, Decolorization of dye Reactive Black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain), J. Hazard. Mater.182 (2010) 735-742.
    [27]L.J. Zhao, J.T. Zhou, Y.H. Jia, J.F. Chen, Biodecolorization of Acid Red GR by a newly isolated Dyella ginsengisoli LA-4 using response surface methodology, J. Hazard. Mater.181 (2010) 602-608.
    [28]J.P. Jadhav, S.S. Phugare, R.S. Dhanve, S.B. Jadhav, Rapid biodegradation and decolorization of Direct Orange 39 (Orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH, Biodegradation 21 (2010) 453-463.
    [29]G.K. Parshetti, A.A. Telke, D.C. Kalyani, S.P. Govindwar, Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532, J. Hazard. Mater.176 (2010) 503-509.
    [30]M.Y. Xu, J. Guo, G.P. Sun, Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions, Appl. Microbiol. Biotechnol.76 (2007) 719-726.
    [31]R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Ecofriendly degradation of sulfonated diazo dye CI Reactive Green 19A using Micrococcus glutamicus NCIM-2168, Bioresour. Technol.100 (2009) 3897-3905.
    [32]D.C. Kalyani, A.A. Telke, S.P. Govindwar, J.P. Jadhav, Biodegradation and Detoxification of Reactive Textile Dye by Isolated Pseudomonas sp SUK1, Water Environ. Res.81 (2009) 298-307.
    [33]S.-Y. An, S.-K. Min, I.-H. Cha, Y.-L. Choi, Y.-S. Cho, C.-H. Kim, Y.-C. Lee, Decolorization of triphenylmethane and azo dyes by Citrobacter sp, Biotechnol. Lett. 24(2002) 1037-1040.
    [34]H. Mei, L.T. Li, C.F. Yan, J.J. Sun, G. Yuan, H. Qing, S.P. Li, Biodegradation of malachite green by strain Pseudomonas sp. K9 and cloning of the tmr2 gene associated with an ISPpu12, World J. Microbiol. Biotechnol.27 (2011) 1323-1329.
    [35]L. Ayed, K. Chaieb, A. Cheref, A. Bakhrouf, Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis, Desalination 260 (2010) 137-146.
    [36]G. Fang, L. Li, R. Li, J. Zhu, Q. Hong, S. Li, Isolation and Characterization of a Malachite Green-degrader Arthrobacter sp. M6, Chinese Journal of Applied and Environmental Biology 16 (2010) 581-584.
    [37]H. Mei, Q. Hong, S. Li,, Isolation, Identification and Characterization of a Malachite Green-degrading Bacterium, Chinese Journal of Applied and Environmental Biology 16 (2010) 390-393.
    [38]S.S. Gomare, G.K. Parshetti, S.P. Govindwar, Biodegradation of Malachite Green by Brevibacillus laterosporus MTCC 2298, Water Environ. Res.81 (2009) 2329-2336.
    [39]L.T. Li, Q. Hong, X. Yan, G.H. Fang, S.W. Ali, S.P. Li, Isolation of a malachite green-degrading Pseudomonas sp MDB-1 strain and cloning of the tmr2 gene, Biodegradation 20 (2009) 769-776.
    [40]G. Parshetti, G. Saratale, A. Telke, S. Govindwar, Biodegradation of hazardous triphenylmethane dye methyl violet by Rhizobium radiobacter (MTCC 8161), J. Basic Microbiol.49 (2009) S36-S42.
    [41]L. Ayed, K. Chaieb, A. Cheref, A. Bakhrouf, Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis, World J. Microbiol. Biotechnol.25 (2009) 705-711.
    [42]L. Ayed, J. Cheriaa, N. Laadhari, A. Cheref, A. Bakhrouf, Biodegradation of crystal violet by an isolated Bacillus sp, Ann. Microbiol.59 (2009) 267-272.
    [43]J. Wu, B.G. Jung, K.S. Kim, Y.C. Lee, N.C. Sung, Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes, J Environ Sci-China 21 (2009) 960-964.
    [44]M.S. Jang, N.Y. Kang, K.S. Kim, C.H. Kim, J.H. Lee, Y.C. Lee, Mutational analysis of NADH-binding residues in triphenylmethane reductase from Citrobacter sp strain KCTC 18061P, FEMS Microbiol. Lett.271 (2007) 78-82.
    [45]M.H. Kim, Y. Kim, H.J. Park, J.S. Lee, S.N. Kwak, W.H. Jung, S.G. Lee, D. Kim, Y.C. Lee, T.K. Oh, Structural Insight into Bioremediation of Triphenylmethane Dyes by Citrobacter sp Triphenylmethane Reductase, J. Biol. Chem.283 (2008) 31981-31990.
    [46]A. Keck, J. Klein, M. Kudlich, A. Stolz, H.J. Knackmuss, R. Mattes, Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6, Appl. Environ. Microbiol.63 (1997) 3684-3690.
    [47]A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegrad.59 (2007) 73-84.
    [48]G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I.M. Banat, R. Marchant, W.E. Smyth, Microbial decolourisation and degradation of textile dyes, Appl. Microbiol. Biotechnol.56 (2001) 81-87.
    [49]C.I. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of colour from textile wastewater using whole bacterial cells:a review, Dyes and Pigments 58 (2003) 179-196.
    [50]K. Sarayu, S. Sandhya, Aerobic Biodegradation Pathway for Remazol Orange by Pseudomonas aeruginosa, Appl. Biochem. Biotechnol.160 (2010) 1241-1253.
    [51]J. Lin, X. Zhang, Z. Li, L. Lei, Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate, Bioresour. Technol.101 (2010)34-40.
    [52]R. Russ, J. Rau, A. Stolz, The Function of Cytoplasmic Flavin Reductases in the Reduction of Azo Dyes by Bacteria, Appl. Environ. Microbiol.66 (2000) 1429-1434.
    [53]S.S. Phugare, D.C. Kalyani, S.N. Surwase, J.P. Jadhav, Ecofriendly degradation, decolorization and detoxification of textile effluent by a developed bacterial consortium, Ecotoxicol. Environ. Saf.74 (2011) 1288-1296.
    [54]S.S. Phugare, D.C. Kalyani, A.V. Patil, J.P. Jadhav, Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies, J. Hazard. Mater.186 (2011)713-723.
    [55]L. Ayed, E. Khelifi, H. Ben Jannet, H. Miladi, A. Cheref, S. Achour, A. Bakhrouf, Response surface methodology for decolorization of azo dye Methyl Orange by bacterial consortium Produced enzymes and metabolites characterization, Chem. Eng. J.165 (2010) 200-208.
    [56]S.M. Joshi, S.A. Inamdar, A.A. Telke, D.P. Tamboli, S.P. Govindwar, Exploring the potential of natural bacterial consortium to degrade mixture of dyes and textile effluent, Int. Biodeterior. Biodegrad.64 (2010) 622-628.
    [57]L. Ayed, S. Achour, E. Khelifi, A. Cheref, A. Bakhrouf, Use of active consortia of constructed ternary bacterial cultures via mixture design for Congo Red decolorization enhancement, Chem. Eng. J.162 (2010) 495-502.
    [58]J.P. Jadhav, D.C. Kallyani, A.A. Telke, S.S. Phugare, S.P. Govindwar, Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent, Bioresour. Technol. 101 (2010) 165-173.
    [59]R. Watanapokasin, A. Boonyakamol, S. Sukseree, A. Krajarng, T. Sophonnithiprasert, S. Kanso, T. Imai, Hydrogen production and anaerobic decolorization of wastewater containing Reactive Blue 4 by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa, Biodegradation 20 (2009) 411-418.
    [60]S.U. Jadhav, M.U. Jadhav, A.N. Kagalkar, S.P. Govindwar, Decolorization of Brilliant Blue G dye mediated by degradation of the microbial consortium of Galactomyces geotrichum and Bacillus sp, J. Chin. Inst. Chem. Eng,39 (2008) 563-570.
    [61]S. Mohana, S. Shrivastava, J. Divecha, D. Madamwar, Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium, Bioresour. Technol.99 (2008) 562-569.
    [62]N.K. Kilic, J.L. Nielsen, M. Yuce, G. Donmez, Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI), Chemosphere 67 (2007) 826-831.
    [63]王慧,郑小伟,王宾香,熊小京,郑天凌,真菌对染料的脱色研究进展,应用与环境生物学报15(2009)147-151.
    [64]李华钟,章燕芳,白腐菌与染料废水的处理,工业水处理5(2001)1-5.
    [65]Y. Ge, L. Yan, K. Qinge, Effect of environment factors on dye decolorization by P. sordida ATCC90872 in a aerated reactor, Process Biochem.39 (2004) 1401-1405.
    [66]6. YESILADA, B. OZCAN, Decolorization of Orange Ⅱ Dye With the Crude Culture Filtrate of White rot Fungus, Coriolus versicolor, Tr. J. of Biology 22 (1998) 463-476.
    [67]N.K. Pazarlioglu, A. Akkaya, H.A. Akdogan, B. Gungor, Biodegradation of Direct Blue 15 by Free and Immobilized Trametes versicolor, Water Environ. Res.82 (2010)579-585.
    [68]U. Moilanen, J.F. Osma, E. Winquist, M. Leisola, S.R. Couto, Decolorization of simulated textile dye baths by crude laccases from Trametes hirsuta and Cerrena unicolor, Eng. Life Sci.10 (2010) 242-247.
    [69]T.R. Waghmode, M.B. Kurade, S.P. Govindwar, Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360, Int. Biodeterior. Biodegrad.65 (2011) 479-486.
    [70]Z.S. Yu, X.H. Wen, Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater, Int. Biodeterior. Biodegrad.56 (2005) 109-114.
    [71]J.P. Jadhav, G.K. Parshetti, S.D. Kalme, S.P. Govindwar, Decolourization of azo dye methyl MTCC red by Saccharomyces cerevisiae MTCC-463, Chemosphere 68 (2007) 394-400.
    [72]P.A. Ramalho, M.H. Cardoso, A. Cavaco-Paulo, M.T. Ramalho, Characterization of Azo Reduction Activity in a Novel Ascomycete Yeast Strain, Appl. Environ. Microbiol.70 (2004) 2279-2288.
    [73]P. Kaushik, A. Malik, Effect of nutritional conditions on dye removal from textile effluent by Aspergillus lentulus, World J. Microbiol. Biotechnol.26 (2010) 1957-1964.
    [74]U. Shedbalkar, R. Dhanve, J. Jadhav, Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517, J. Hazard. Mater.157 (2008) 472-479.
    [75]H. Ali, S.K. Muhammad, Biodecolorization of acid violet 19 by Alternaria solani, Afr. J. Biotechnol.7 (2008) 831-833.
    [76]H. Ali, W. Ahmad, T. Haq, Decolorization and degradation of malachite green by Aspergillus flavus and Alternaria solani, Afr. J. Biotechnol.8 (2009) 1574-1576.
    [77]P. Lalitha, N.N.R. Reddy, K. Arunalakshmi, Decolorization of Synthetic Dyes by Aspergillus flavus, Bioremediat. J.15 (2011) 121-132.
    [78]U. Shedbalkar, J.P. Jadhav, Detoxification of Malachite Green and Textile Industrial Effluent by Penicillium ochrochloron, Biotechnol. Bioprocess Eng.16 (2011)196-204.
    [79]M. Taskin, S. Erdal, Isolation of a Reactive Black-5-decolourizing Fungus, Absidia californica MT-1, from cement-Contained Soil and the Optimization of Culture Conditions for Dye Removal, Asian J. Chem.22 (2010) 7123-7134.
    [80]M. Annuar, S. Adnan, S. Vikineswary, Y. Chisti, Kinetics and Energetics of Azo Dye Decolorization by Pycnoporus sanguineus, Water, Air, Soil Pollut.202 (2009) 179-188.
    [81]J.M. Modak, K.A. Natarajan, Biosorption of metals using nonliving biomass-A review, Miner. Metall. Process 12 (1995) 189-196.
    [82]乔澍,谢昆,付川,林俊杰,持久性有机污染物的吸附研究进展,重庆三峡学院学报27(2011)81-84.
    [83]A. Srinivasan, T. Viraraghavan, Decolorization of dye wastewaters by biosorbents:A review, J. Environ. Manag.91 (2010) 1915-1929.
    [84]U. Farooq, J.A. Kozinski, M.A. Khan, M. Athar, Biosorption of heavy metal ions using wheat based biosorbents-A review of the recent literature, Bioresour. Technol. 101 (2010)5043-5053.
    [85]D. Park, Y.S. Yun, J.M. Park, The Past, Present, and Future Trends of Biosorption, Biotechnol. Bioprocess Eng.15 (2010) 86-102.
    [86]K. Chojnacka, Biosorption and bioaccumulation-the prospects for practical applications, Environ. Int.36 (2010) 299-307.
    [87]K. Vijayaraghavan, Y.S. Yun, Bacterial biosorbents and biosorption, Biotechnol. Adv.26(2008)266-291.
    [88]R.J. Doyle, T.H. Matthews, U.N. Streips, Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall, The Journal of Bacteriology 143 (1980) 471-480.
    [89]A. van der Wal, W. Norde, A.J.B. Zehnder, J. Lyklema, Determination of the total charge in the cell walls of Gram-positive bacteria, Colloids and Surfaces B: Biointerfaces 9 (1997) 81-100.
    [90]Z. Aksu, Application of biosorption for the removal of organic pollutants:a review, Process Biochem.40 (2005) 997-1026.
    [91]T.-L. Hu, Removal of reactive dyes from aqueous solution by different bacterial genera, Water Sci. Technol.34 (1996) 89-95.
    [92]K. Vijayaraghavan, Y.-S. Yun, Chemical Modification and Immobilization of Corynebacterium glutamicum for Biosorption of Reactive Black 5 from Aqueous Solution, Industrial & Engineering Chemistry Research 46 (2006) 608-617.
    [93]D.M. Borrok, J.B. Fein, The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria:testing non-electrostatic, diffuse, and triple-layer models, J. Colloid Interface Sci.286 (2005) 110-126.
    [94]Y. Sahin, A. Ozturk, Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis, Process Biochem.40 (2005) 1895-1901.
    [95]杨清香,贾振杰,杨敏,微生物染料脱色研究进展,微生物学通报33(2006)144-148.
    [96]Z. Aksu, S. Tezer, Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system:effect of temperature, Process Biochem.36 (2000) 431-439.
    [97]Y. Fu, T. Viraraghavan, Removal of a Dye from an Aqueous Solution by the Fungus Aspergillus niger Water Qual. Res. J. Can.35 (2000) 95-111.
    [98]Y. Fu, T. Viraraghavan, Fungal decolorization of dye waste waters:a review, Bioresour. Technol.79 (2001) 251-262.
    [99]Y. Fu, T. Viraraghavan, Dye biosorption sites in Aspergillus niger, Bioresour. Technol.82(2002)139-145.
    [100]Y.Z. Fu, T. Viraraghavan, Removal of Congo Red from an aqueous solution by fungus Aspergillus niger, Adv. Environ. Res.7 (2002) 239-247.
    [101]Z. Aksu, G. Karabaylr, Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye, Bioresour. Technol.99 (2008) 7730-7741.
    [102]S.T. Akar, A. Gorgulu, Z. Kaynak, B. Anilan, T. Akar, Biosorption of Reactive Blue 49 dye under batch and continuous mode using a mixed biosorbent of macro-fungus Agaricus bisporus and Thuja orientalis cones, Chem. Eng. J.148 (2009) 26-34.
    [103]H.C. Chu, K.M. Chen, Reuse of activated sludge biomass:II. The rate processes for the adsorption of basic dyes on biomass, Process Biochem.37 (2002) 1129-1134.
    [104]T. O'Mahony, E. Guibal, J.M. Tobin, Reactive dye biosorption by Rhizopus arrhizus biomass, Enzyme. Microb. Technol.31 (2002) 456-463.
    [105]X.-J. Xiong, X.-J. Meng, T.-L. Zheng, Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger, J. Hazard. Mater.175 (2010) 241-246.
    [106]J.L. Zhou, C.J. Banks, Removal of humic acid fractions by Rhizopus arrhizus: Uptake and kinetic studies, Environ. Technol.12 (1991) 859-869.
    [107]J.L. Zhou, C.J. Banks, Mechanism of humic acid colour removal from natural waters by fungal biomass biosorption, Chemosphere 27 (1993) 607-620.
    [108]K.A. Gallagher, M.G. Healy, S.J. Allen, Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass, in:D.L. Wise (Ed.) Stud. Environ. Sci., Elsevier,1997, pp.27-50.
    [109]T. Akar, M. Divriklioglu, Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions:Batch and dynamic flow mode studies, Bioresour. Technol.101 (2010) 7271-7277.
    [110]S. Aber, A.R. Amani-Ghadim, V. Mirzajani, Removal of Cr(Ⅵ) from polluted solutions by electrocoagulation:Modeling of experimental results using artificial neural network, J. Hazard. Mater.171 (2009) 484-490.
    [111]A. Aleboyeh, M.B. Kasiri, M.E. Olya, H. Aleboyeh, Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks, Dyes Pigments 77 (2008) 288-294.
    [112]A.R. Khataee, G. Dehghan, A. Ebadi, M. Zarei, M. Pourhassan, Biological treatment of a dye solution by Macroalgae Char a sp.:Effect of operational parameters, intermediates identification and artificial neural network modeling, Bioresour. Technol.101 (2010)2252-2258.
    [113]B. Volesky, Biosorption process simulation tools, Hydrometallurgy 71 (2003) 179-190.
    [114]I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc.40 (1918) 1361-1403.
    [115]H.M.F. Freundlich, Uber die adsorption in losungen, Z. Phys. Chem.57 (1906) 385-470.
    [116]R. Sips, On the structure of a catalyst surface, J. Chem. Phys.16 (1948) 490-495.
    [117]M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface., Chem. Rev.60 (1960) 235-266.
    [118]D. TemKin, Die gas adsorption under nernstsche warmesatz, Acta. Physicochima URSS 1 (1934) 36-52.
    [119]O. Redlich, D.L. Peterson, A Useful Adsorption Isotherm, The Journal of Physical Chemistry 63 (1959) 1024-1024.
    [120]C.J. Radke, J.M. Prausnitz, Adsorption of organic solutions from dilute aqueous solution on activated carbon, Ind. Eng. Chem. Fund.11 (1972) 445-451.
    [121]A.R. Khan, R. Ataullah, A. Al-Haddad, Equilibrium Adsorption Studies of Some Aromatic Pollutants from Dilute Aqueous Solutions on Activated Carbon at Different Temperatures, J. Colloid Interface Sci.194 (1997) 154-165.
    [122]S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc 60 (1938) 309-319.
    [123]Y.S. Ho, Isotherms for the sorption of lead onto peat:Comparison of linear and non-linear methods, Pol. J. Environ. Stud.15 (2006) 81-86.
    [124]K.-H. Houng, D.-Y. Lee, Comparisions of linear and nonlinear Langmuir and Freundlich curve-fit in the studuy of Cu, Cd ans Pb adsorption on Taiwan soils, Soil Sci.163(1998)115-121.
    [125]G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Prog. Polym. Sci.33 (2008) 399-447.
    [126]Y.-S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater.136(2006)681-689.
    [127]W.J. Weber, J.C. Morris, Equilibrium and capacities for adsorption on carbon, J. Sanit. Eng. Div. ASCE 89 (1963) 31.
    [128]朱凯,王正林,精通MATLAB神经网络,电子工业出版社,北京,2010.
    [129]A. Khataee, A. Khani, Modeling of Nitrate Adsorption on Granular Activated Carbon (GAC) using Artificial Neural Network (ANN), International Journal of Chemical Reactor Engineering 7 (2009).
    [130]A.R. Khataee, Photocatalytic removal of CI Basic Red 46 on immobilized TiO2 nanoparticles:Artificial neural network modelling, Environ. Technol.30 (2009) 1155-1168.
    [131]A.R. Khataee, O. Mirzajani, UV/peroxydisulfate oxidation of C. I. Basic Blue 3: Modeling of key factors by artificial neural network, Desalination 251 (2010) 64-69.
    [132]A.R. Khataee, M. Zarei, M. Pourhassan, Application of microalga Chlamydomonas sp for biosorptive removal of a textile dye from contaminated water: Modelling by a neural network, Environ. Technol.30 (2009) 1615-1623.
    [133]A.R. Khataee, M. Zarei, M. Pourhassan, Bioremediation of Malachite Green from Contaminated Water by Three Microalgae:Neural Network Modeling, Clean-Soil Air Water 38 (2010) 96-103.
    [134]A. Celekli, F. Geyik, Artificial neural networks (ANN) approach for modeling of removal of Lanaset Red G on Chara contraria, Bioresour. Technol.102 (2011) 5634-5638.
    [135]M.中文论坛,MATLAB神经网络30个案例分析,in,北京航空航天大学出版社,北京,2010.
    [136]S. Burger, A. Stolz, Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases, Appl. Microbiol. Biotechnol.87 (2010) 2067-2076.
    [137]A. Ryan, C.-J. Wang, N. Laurieri, I. Westwood, E. Sim, Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases, Protein Cell 1(2010)780-790.
    [138]H.Z. Chen, Recent advances in azo dye degrading enzyme research, Curr. Protein Pept. Sci.7 (2006) 101-111.
    [139]A. Bafana, T. Chakrabarti, Lateral gene transfer in phylogeny of azoreductase enzyme, Comput. Biol. Chem.32 (2008) 191-197.
    [140]M. Nakanishi, C. Yatome, N. Ishida, Y. Kitade, Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase, J. Biol. Chem.276 (2001) 46394-46399.
    [141]V. Arantes, A.M.F. Milagres, The synergistic action of ligninolytic enzymes (MnP and Laccase) and Fe3+-reducing activity from white-rot fongi for degradation of Azure B, Enzyme. Microb. Technol.42 (2007) 17-22.
    [142]A.A. Dias, R.M. Bezerra, P.M. Lemos, A.N. Pereira, In vivo and laccase-catalysed decolourization of xenobiotic azo dyes by a basidiomycetous fungus: characterization of its ligninolytic system, World J. Microbiol. Biotechnol.19 (2003) 969-975.
    [143]K. Enayatzamir, F. Tabandeh, B. Yakhchali, H.A. Alikhani, S. Rodriguez Couto, Assessment of the joint effect of laccase and cellobiose dehydrogenase on the decolouration of different synthetic dyes, J. Hazard. Mater.169 (2009) 176-181.
    [144]A. Kandelbauer, A. Erlacher, A. Cavaco-Paulo, G.M. Guebitz, Laccase-catalyzed decolorization of the synthetic azo-dye Diamond Black PV 200 and of some structurally related derivatives, Biocatal. Biotransform.22 (2004) 331-339.
    [145]V. Madhavi, S.S. Lele, Laccase:Properties and Applications, Bioresources 4 (2009) 1694-1717.
    [146]J.A. Majeau, S.K. Brar, R.D. Tyagi, Laccases for removal of recalcitrant and emerging pollutants, Bioresour. Technol.101 (2010) 2331-2350.
    [147]V. Faraco, C. Pezzella, A. Miele, P. Giardina, G. Sannia, Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes, Biodegradation 20 (2009) 209-220.
    [148]I. Gitsov, J. Hamzik, J. Ryan, A. Simonyan, J.P. Nakas, S. Omori, A. Krastanov, T. Cohen, S.W. Tanenbaum, Enzymatic nanoreactors for environmentally benign biotransformations.1. Formation and catalytic activity of supramolecular complexes of laccase and linear-dendritic block copolymers, Biomacromolecules 9 (2008) 804-811.
    [149]N. Duran, E. Esposito, Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment:a review, Applied Catalysis B:Environmental 28 (2000) 83-99.
    [150]M. Tien, T.K. Kirk, Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds, Science 221 (1983) 661-663.
    [151]J.K. Glenn, M.A. Morgan, M.B. Mayfield, M. Kuwahara, M.H. Gold, An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium, Biochem. Biophys. Res. Commun.114 (1983) 1077-1083.
    [152]M. Kuwahara, J.K. Glenn, M.A. Morgan, M.H. Gold, Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium, FEBS Lett.169 (1984) 247-250.
    [153]H. Wariishi, L. Akileswaran, M.H. Gold, Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium:spectral characterization of the oxidized states and the catalytic cycle, Biochemistry 27 (1988) 5365-5370.
    [154]J.K. Glenn, L. Akileswaran, M.H. Gold, Mn(Ⅱ) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium, Arch. Biochem. Biophys.251 (1986) 688-696.
    [155]A. Paszczynski, M.B. Pasti, S. Goszczynski, D.L. Crawford, R.L. Crawford, New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium, Enzyme. Microb. Technol.13 (1991) 378-384.
    [156]D.H. Pieper, W. Reineke, Engineering bacteria for bioremediation, Curr. Opin. Biotechnol.11 (2000)262-270.
    [157]J.S. Singh, P.C. Abhilash, H.B. Singh, R.P. Singh, D.P. Singh, Genetically engineered bacteria:An emerging tool for environmental remediation and future research perspectives, Gene 480 (2011) 1-9.
    [158]R.F. Jin, J.T. Zhou, A.I. Zhang, J. Wang, Bioaugmentation of the decolorization rate of acid red GR by genetically engineered microorganism Escherichia coli JM109 (pGEX-AZR), World J. Microbiol. Biotechnol.24 (2008) 23-29.
    [159]S. Sandhya, K. Sarayu, B. Uma, K. Swaminathan, Decolorizing kinetics of a recombinant Escherichia coli SS125 strain harboring azoreductase gene from Bacillus latrosporus RRK1, Bioresour. Technol.99 (2008) 2187-2191.
    [160]J. Feng, T.M. Heinze, H. Xu, C.E. Cerniglia, H. Chen, Evidence for significantly enhancing reduction of Azo dyes in Escherichia coli by expressed cytoplasmic azoreductase (AzoA) of Enterococcus faecalis, Protein Pept. Lett.17 (2010) 578-584.
    [161]K.P. Gopinath, S. Murugesan, J. Abraham, K. Muthukumar, Bacillus sp. mutant for improved biodegradation of Congo red:Random mutagenesis approach, Bioresour. Technol.100 (2009) 6295-6300.
    [162]A. Piscitelli, C. Pezzella, P. Giardina, V. Faraco, S. Giovanni, Heterologous laccase production and its role in industrial applications, Bioengineered Bugs 1 (2010) 254-264.
    [163]M.C. Colao, S. Lupino, A.M. Garzillo, V. Buonocore, M. Ruzzi, Heterologous expression of Iccl gene from Trametes trogii in Pichia pastoris and characterization of the recombinant enzyme, Microb. Cell Fact.5 (2006).
    [164]M. Guo, F. Lu, M. Liu, T. Li, J. Pu, N. Wang, P. Liang, C. Zhang, Purification of recombinant laccase from Trametes versicolor in Pichia methanolica and its use for the decolorization of anthraquinone dye, Biotechnol. Lett.30 (2008) 2091-2096.
    [165]L. Lu, M. Zhao, S.C. Liang, L.Y. Zhao, D.B. Li, B.B. Zhang, Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris, J. Appl. Microbiol.107 (2009) 1149-1156.
    [166]M.Y. Xu, J. Guo, G.Q. Zeng, X.Y. Zhong, G.P. Sun, Decolorization of anthraquinone dye by Shewanella decolor-ationis S12, Applied Microbiology and Biotechnology 71 (2006) 246-251.
    [167]J. Wu, K.S. Kim, N.C. Sung, C.H. Kim, Y.C. Lee, Isolation and characterization of Shewanella oneidensis WL-7 capable of decolorizing azo dye Reactive Black 5, J. Gen. Appl. Microbiol.55 (2009) 51-55.
    [168]M.Y. Xu, J. Guo, X.Y. Kong, X.J. Chen, G.P. Sun, Fe(Ⅲ)-enhanced azo reduction by Shewanella decolorationis S12, Applied Microbiology and Biotechnology 74 (2007) 1342-1349.
    [169]A. Khalid, M. Arshad, D.E. Crowley, Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains, Applied Microbiology and Biotechnology 78 (2008) 361-369.
    [170]C.-H. Chen, C.-F. Chang, C.-H. Ho, T.-L. Tsai, S.-M. Liu, Biodegradation of crystal violet by a Shewanella sp. NTOU1, Chemosphere 72 (2008) 1712-1720.
    [171]I. Mugerfeld, B.A. Law, G.S. Wickham, D.K. Thompson, A putative azoreductase gene is involved in the Shewanella oneidensis response to heavy metal stress, Applied Microbiology and Biotechnology 82 (2009) 1131-1141.
    [172]R.K. Sani, B.M. Peyton, A. Dohnalkova, Comparison of uranium(VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors, Water Research 42 (2008) 2993-3002.
    [173]R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326, J. Hazard. Mater.166 (2009) 1421-1428.
    [174]S. Bhosale, G. Saratale, S. Govindwar, Biotransformation enzymes in Cunninghamella blakesleeana (NCIM-687), J. Basic Microbiol.46 (2006) 444-448.
    [175]S.U. Jadhav, S.D. Kalme, S.P. Govindwar, Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360, Int. Biodeterior. Biodegrad.62 (2008) 135-142.
    [176]A. Roy, A. Kucukural, Y. Zhang, I-TASSER:a unified platform for automated protein structure and function prediction, Nature Protocols 5 (2010) 725-738.
    [177]C.I. Pearce, R. Christie, C. Boothman, H.v. Canstein, J.T. Guthrie, J.R. Lloyd, Reactive azo dye reduction by Shewanella strain J18 143, Biotechnology and Bioengineering 95 (2006) 692-703.
    [178]C.V. Nachiyar, G.S. Rajakumar, Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa, Enzyme and Microbial Technology 36 (2005) 503-509.
    [179]A. Stolz, Basic and applied aspects in the microbial degradation of azo dyes, Appl. Microbiol. Biotechnol.56 (2001) 69-80.
    [180]M. Hrmova, P. Biely, M. Vrsanska, E. Petrakova, Induction of Cellulose-Degrading and Xylan-Degrading Enzyme Complex in the Yeast Trichosporon-Cutaneum, Arch. Microbiol.138 (1984) 371-376.
    [181]J.S. Knapp, P.S. Newby, The microbiological decolorization of an industrial effluent containing a diazo-linked chromophore, Water Res.29 (1995) 1807-1809.
    [182]A. Moutaouakkil, Y. Zeroual, F. Zohra Dzayri, M. Talbi, K. Lee, M. Blaghen, Purification and partial characterization of azoreductase from Enterobacter agglomerans, Arch. Biochem. Biophys.413 (2003) 139-146.
    [183]S. Punj, G.H. John, Purification and identification of an FMN-dependent NAD(P)H azoreductase from Enterococcus faecalis, Curr. Issues Mol. Biol.11 (2009) 59-65.
    [184]Y.Y. Yang, L.N. Du, G. Wang, X.M. Jia, Y.H. Zhao, The decolorisation capacity and mechanism of Shewanella oneidensis MR-1 for Methyl Orange and Acid Yellow 199 under microaerophilic conditions, Water Sci. Technol.63 (2011) 956-963.
    [185]Y. Bin, Z. Jiti, W. Jing, D. Cuihong, H. Hongman, S. Zhiyong, B. Yongming, Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737, FEMS Microbiol. Lett.236 (2004) 129-136.
    [186]C. Milstein, Mechanism of activation of phosphoglucomutase by chelating agents, Biochem. J.79 (1961) 584-587.
    [187]J. Cheng, A.Z. Randall, M.J. Sweredoski, P. Baldi, SCRATCH:a protein structure and structural feature prediction server, Nucleic Acids Res.33 W72-W76.
    [188]L. Holm, J. Park, DaliLite workbench for protein structure comparison, Bioinformatics 16 (2000) 566-567.
    [189]R. Maiti, G.H. Van Domselaar, H. Zhang, D.S. Wishart, SuperPose:a simple server for sophisticated structural superposition, Nucleic Acids Res.32 (2004) W590-W594.
    [190]D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks, M. Stark, J. Muller, P. Bork, L.J. Jensen, C.v. Mering, The STRING database in 2011:functional interaction networks of proteins, globally integrated and scored, Nucleic Acids Res.39 (2011) D561-D568.
    [191]R. Dolphen, N. Sakkayawong, P. Thiravetyan, W. Nakbanpote, Adsorption of Reactive Red 141 from wastewater onto modified chitin, J. Hazard. Mater.145 (2007) 250-255.
    [192]G.C. Panda, S.K. Das, A.K. Guha, Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution, J. Hazard. Mater.164 (2009) 374-379.
    [193]Z.H. Hu, H. Chen, F. Ji, S.J. Yuan, Removal of Congo Red from aqueous solution by cattail root, J. Hazard. Mater.173 (2010) 292-297.
    [194]T. Akar, I. Tosun, Z. Kaynak, E. Kavas, G. Incirkus, S.T. Akar, Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye, J. Hazard. Mater.171 (2009) 865-871.
    [195]M.Y. Arica, G. Bayramoglu, Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju, J. Hazard. Mater.149 (2007) 499-507.
    [196]A.R. Binupriya, M. Sathishkumar, K. Swaminathan, C.S. Ku, S.E. Yun, Comparative studies on removal of Congo red by native and modified mycelial pellets of Trametes versicolor in various reactor modes, Bioresour. Technol.99 (2008) 1080-1088.
    [197]K.K.H. Choy, J.F. Porter, G. McKay, Langmuir Isotherm Models Applied to the Multicomponent Sorption of Acid Dyes from Effluent onto Activated Carbon, J. Chem. Eng. Data 45 (2000) 575-584.
    [198]J.F. Gao, Q. Zhang, K. Su, J.H. Wang, Competitive biosorption of Yellow 2G and Reactive Brilliant Red K-2G onto inactive aerobic granules:Simultaneous determination of two dyes by first-order derivative spectrophotometry and isotherm studies, Bioresour. Technol.101 (2010) 5793-5801.
    [199]Z. Aksu, G. Donmez, A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye, Chemosphere 50 (2003) 1075-1083.
    [200]C.Namasivayam, D.Kavitha, Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, and agricultural solid waste, Dyes Pigments 54 (2002) 47-48.
    [201]S. Chatterjee, T. Chatterjee, S.H. Woo, A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation, Bioresour. Technol.101 (2010) 3853-3858.
    [202]M. Arslan, Use of 1,6-Diaminohexane-Functionalized Glycidyl Methacrylate-g-Poly(ethylene terephthalate) Fiber for Removal of Acidic Dye from Aqueous Solution, Fiber. Polym.11 (2010) 177-184.
    [203]M. Safarikova, L. Ptackova, I. Kibrikova, I. Safarik, Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells, Chemosphere 59 (2005) 831-835.
    [204]C.F. Iscen, I. Kiran, S. Ilhan, Biosorption of Reactive Black 5 dye by Penicillium restrictum:The kinetic study, J. Hazard. Mater.143 (2007) 335-340.
    [205]S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Handlingar 24(1898) 1-39.
    [206]Y.S. Ho, G. McKay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf Environ 76 (1998) 183-191.
    [207]A. Ozer, G. Akkaya, M. Turabik, Biosorption of Acid Blue 290 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra rhizopus, J. Hazard. Mater.135 (2006) 355-364.
    [208]K.R. Hall, L.C. Eagleton, A. Acrivos, Vermeule.T, Pore-and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions, Ind Eng Chem Fund 5 (1966) 212-223.
    [209]Y. Zeroual, B.S. Kim, C.S. Kim, M. Blaghen, K.M. Lee, Biosorption of bromophenol blue from aqueous solutions by Rhizopus stolonifer biomass, Water Air Soil Pollut.177 (2006) 135-146.
    [210]M.M. Dubinin, L.V. Radushkevich, Proc. Acad. Sci. U.S.S.R, Phys. Chem. Sect. 55 (1947).
    [211]M.A. Wahab, S. Jellali, N. Jedidi, Ammonium biosorption onto sawdust:FTIR analysis, kinetics and adsorption isotherms modeling, Bioresour. Technol.101 (2010) 5070-5075.
    [212]N.V. Farinella, G.D. Matos, M.A.Z. Arruda, Grape bagasse as a potential biosorbent of metals in effluent treatments, Bioresour. Technol.98 (2007) 1940-1946.
    [213]L. Wang, A. Wang, Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite, J. Hazard. Mater.160 (2008) 173-180.
    [214]M. Ooba, T. Hirano, J.-I. Mogami, R. Hirata, Y. Fujinuma, Comparisons of gap-filling methods for carbon flux dataset:A combination of a genetic algorithm and an artificial neural network, Ecol. Model.198 (2006) 473-486.
    [215]J.S. Zogorski, S.D. Faust, The effect of phosphate buffer on the adsorption of 2,4-dichlorophenol and 2,4-dinitrophenol, Journal of Environmental Science and Health, Part A:Environmental Science and Engineering 11 (1976) 501-515.
    [216]Y. Fu, T. Viraraghavan, Removal of C.I. acid blue 29 from an aqueous solution by Aspergillus niger, AATCC Magazine 1 (2001) 36-40.
    [217]T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions, Chem. Eng. J.122 (2006) 55-63.
    [218]T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, Biosorption of Acid Blue 15 using fresh water macroalga Azolla filiculoides:Batch and column studies, Dyes Pigments 71 (2006) 77-82.
    [219]T. Akar, A.S. Ozcan, S. Tunali, A. Ozcan, Biosorption of a textile dye (Acid Blue 40) by cone biomass of Thuja orientalis:Estimation of equilibrium, thermodynamic and kinetic parameters, Bioresour. Technol.99 (2008) 3057-3065.
    [220]Z. Aksu, A.I. Tatll,O. Tunc, A comparative adsorption/biosorption study of Acid Blue 161:Effect of temperature on equilibrium and kinetic parameters, Chem. Eng. J.142(2008)23-39.
    [221]F. Colak, N. Atar, A. Olgun, Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans:Kinetic, thermodynamic and equilibrium studies, Chem. Eng. J.150(2009)122-130.
    [222]C. Yenikaya, E. Atar, A. Olgun, N. Atar, S. Ilhan, F. Colak, Biosorption study of anionic dyes from aqueous solutions using Bacillus amyloliquefaciens, Eng. Life Sci.10(2010)233-241.
    [223]H.B. Senturk, D. Ozdes, A. Gundogdu, C. Duran, M. Soylak, Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study, J. Hazard. Mater.172 (2009) 353-362.
    [224]Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigments 77 (2008) 16-23.
    [225]Y. Qiu, Z. Zheng, Z. Zhou, G.D. Sheng, Effectiveness and mechanisms of dye adsorption on a straw-based biochar, Bioresour. Technol.100 (2009) 5348-5351.
    [226]A. Yazdankhah, S.E. Moradi, S. Amirmahmoodi, M. Abbasian, S.E. Shoja, Enhanced sorption of cadmium ion on highly ordered nanoporous carbon by using different surfactant modification, Microporous Mesoporous Mater.133 (2010) 45-53.
    [227]S.-H. Lin, R.-S. Juang, Heavy metal removal from water by sorption using surfactant-modified montmorillonite, J. Hazard. Mater.92 (2002) 315-326.
    [228]Q. Kang, W. Zhou, Q. Li, B. Gao, J. Fan, D. Shen, Adsorption of anionic dyes on poly(epicholorohydrin dimethylamine) modified bentonite in single and mixed dye solutions, Applied Clay Science 45 (2009) 280-287.
    [229]M. Nadeem, A. Mahmood, S.A. Shahid, S.S. Shah, A.M. Khalid, G. McKay, Sorption of lead from aqueous solution by chemically modified carbon adsorbents, J. Hazard. Mater.138 (2006) 604-613.
    [230]V.C. Srivastava, I.D. Mall, I.M. Mishra, Competitive adsorption of cadmium(Ⅱ) and nickel(Ⅱ) metal ions from aqueous solution onto rice husk ash, Chemical Engineering and Processing:Process Intensification 48 (2009) 370-379.
    [231]S. Eftekhari, A. Habibi-Yangjeh, S. Sohrabnezhad, Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B:Thermodynamic and kinetic studies, J. Hazard. Mater.178 (2010) 349-355.
    [232]S. Kumar, M. Zafar, J.K. Prajapati, S. Kumar, S. Kannepalli, Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution, J. Hazard. Mater.185 (2011) 287-294.
    [233]C. Lao, Z. Zeledon, X. Gamisans, M. Sole, Sorption of Cd(II) and Pb(II) from aqueous solutions by a low-rank coal (leonardite), Sep. Purif. Technol.45 (2005) 79-85.
    [234]D.M. Ruthven, Principles of Adsorption and Adsorption Processes, in, Wiley, New York,1984.
    [235]S. Wang, E. Ariyanto, Competitive adsorption of malachite green and Pb ions on natural zeolite, J. Colloid Interface Sci.314 (2007) 25-31.
    [236]L. Lv, M.P. Hor, F.B. Su, X.S. Zhao, Competitive adsorption of Pb2+, CU2+, and Cd2+ions on microporous titanosilicate ETS-10, J. Colloid Interface Sci.287 (2005) 178-184.
    [237]T. Sismanoglu, Y. Kismir, S. Karakus, Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite, J. Hazard. Mater.184 (2010) 164-169.
    [238]Y. Yang, G. Wang, B. Wang, Z. Li, X. Jia, Q. Zhou, Y. Zhao, Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01:Kinetic study, equilibrium isotherm and artificial neural network modeling, Bioresour. Technol.102 (2011) 828-834.
    [239]Z. Eren, F.N. Acar, Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies, Desalination 194 (2006) 1-10.
    [240]D. Karadag, M. Turan, E. Akgul, S. Tok, A. Faki, Adsorption Equilibrium and Kinetics of Reactive Black 5 and Reactive Red 239 in Aqueous Solution onto Surfactant-Modified Zeolite, Journal of Chemical & Engineering Data 52 (2007) 1615-1620.
    [241]O. Ozdemir, B. Armagan, M. Turan, M.S. Celik, Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals, Dyes Pigments 62 (2004) 49-60.
    [242]J.F. Osma, V. Saravia, J.L. Toca-Herrera, S.R. Couto, Sunflower seed shells:A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions, J. Hazard. Mater.147 (2007) 900-905.
    [243]K. Vijayaraghavan, Y.-S. Yun, Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp, Dyes Pigments 76 (2008) 726-732.
    [244]B.C. Oei, S. Ibrahim, S.B. Wang, H.M. Ang, Surfactant modified barley straw for removal of acid and reactive dyes from aqueous solution, Bioresour. Technol.100 (2009) 4292-4295.
    [245]G.D. Garson, Interpreting neural-network connection weights, AI Expert 6 (1991)46-51.
    [246]N. Patdhanagul, T. Srithanratana, K. Rangsriwatananon, S. Hengrasmee, Ethylene adsorption on cationic surfactant modified zeolite NaY, Microporous Mesoporous Mater.131 (2010)97-102.
    [247]G.G. Stavropoulos, P. Samaras, G.P. Sakellaropoulos, Effect of activated carbons modification on porosity, surface structure and phenol adsorption, J. Hazard. Mater.151 (2008)414-421.
    [248]G.M. Walker, L.R. Weatherley, Adsorption of dyes from aqueous solution--the effect of adsorbent pore size distribution and dye aggregation, Chem. Eng. J.83 (2001) 201-206.
    [249]M. Valix, W.H. Cheung, G. McKay, Roles of the Textural and Surface Chemical Properties of Activated Carbon in the Adsorption of Acid Blue Dye, Langmuir 22 (2006) 4574-4582.