钒酸银负载稀土元素薄膜的制备及其光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,随着水环境中的有机物污染日益加剧,半导体光催化技术作为最有前景的方法之一,受到越来越多的科研工作者的青睐。目前,TiO2是最为常见的半导体光催化剂,但其相对较大的禁带宽度(3.2eV),使得它不能利用太阳光中占很大比例的可见光。因此,开发新型的可见光型催化剂就成为当今光催化领域的热点。
     本文采用水热法制备钒酸银(Ag_3VO_4)颗粒,在此基础上,采用浸渍法合成了负载稀土金属(Nd,Ce)的Ag_3VO_4光催化粉体材料。利用手术刀刮涂法在FTO基底上得到Ag_3VO_4负载稀土金属(Nd,Ce)薄膜,以解决Ag_3VO_4粉体在水体系中难分离、回收的问题。同时,为了增加薄膜的粘附性,本文研究了PEG的添加问题。通过SEM,EDS,XRD,XPS及UV-vis吸收光谱等分析方法对Ag_3VO_4薄膜负载Nd、Ce前后进行表征。光催化降解实验以罗丹明B(RhB)作降解底物,并在可见光照射下,分别研究了Nd和Ce负载质量比对光催化降解活性的影响,而且研究了煅烧温度对Ag_3VO_4负载Ce薄膜的影响。结果表明:
     水热制备Ag_3VO_4的过程中,水热时间的增加有利于单一的单斜晶Ag_3VO_4相的生成,且水热时间为6h,出现单一的单斜晶Ag_3VO_4相。通过实验证实了PEG虽然增加薄膜的粘性,但会影响Ag_3VO_4薄膜光催化性能,制膜过程不适合添加PEG。Nd的负载量对Ag_3VO_4负载Nd薄膜的光催化性能影响很大,其最佳负载量为2wt%。
     Ag_3VO_4负载Ce薄膜中Ce以Ce~(3+)和Ce~(4+)两种氧化物形式存在。Ag_3VO_4负载Ce薄膜对可见光吸收增强, Ce负载量为4wt%的Ag_3VO_4薄膜禁带宽度为2.15eV。Ag_3VO_4负载Ce薄膜的光催化性能都优于纯Ag_3VO_4和P25薄膜,当Ce掺杂量为4wt%时,Ag_3VO_4负载Ce薄膜活性最好。可见光照5h,被降解的RhB达到95%。薄膜最佳煅烧温度为300℃。
In recent years, with the increasing organic pollution of thewater-environment, semiconductor photocatalytic technology as one ofthe most promising methods gets more and more favour of scientificresearchers. Among the various semiconductors, titanium dioxide (TiO2)is most widely used in the research and application for its numerousadvantages. Thanks to the large bandgap (3.2eV) of TiO2, however, thevisible region of the sunlight cannot be completely utilized. Therefore,new type of photocatalysts active under visible light remains hotspot inthe field of photocatalysis.
     In this study, Ag_3VO_4was synthesized via a hydrothermal route. Andrare earth (Nd, Ce) loaded Ag_3VO_4was prepared by impregnation method.Considering of the difficulty in separating and recycling Ag_3VO_4powderfrom the water suspension, rare earth (Nd, Ce) loaded Ag_3VO_4thin filmswere fabricated by doctor-blading. The impact of PEG on the quality ofthe thin films was also discussed. The Ag_3VO_4thin films with andwithout rare earth-loaded were characterized by SEM, EDS, XPS andUV-vis absorption spectra. By using rhodanmine B (RhB) as a model pollutant, the photocatalytic activity of Ag_3VO_4thin films with differentloading ratios of Nd and Ce was studied under visible light irradiation. Inaddition, the annealing temperature was optimized for Ce-loaded Ag_3VO_4thin film. The results indicated that long hydrothermal time facilitated theformation of the monoclinic crystal of the Ag_3VO_4, and the single crystalform of monoclinic Ag_3VO_4was obtained with6h for the preparationprocess. Besides, the addition of PEG could reinforce the film, however,with the cost of the photocatalytic ability. The loading amount of Ndgreatly influenced the photocatalytic performance of the Nd-loadedAg_3VO_4film, and the best loading ratio was determined to be2wt%.
     Ce was existed in the Ce-loaded Ag_3VO_4with the formats of Ce~(3+)andCe~(4+), leading to better absorption of the visible light. With a bandgap of2.15eV, the4wt%Ce-loaded Ag_3VO_4thin film exhibited the highestefficiency, giving a degradation extent of95%under visible lightirradiation for5hours, which was notably superior to pure Ag_3VO_4andP25. The best calcined temperature was300℃.
引文
[1]邹家庆.工业废水处理技术[M].北京:化学工业出版社,2003
    [2]贾金平,王文华.含染料废水处理方法的现状与进展[J].上海环境科学,2000,19:26-29
    [3] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal ofPhotochemistry and Photobiology C: Photochemistry review,2000,1(1):1-21
    [4] Frank S N, Bard A J. Semiconductor electrodes.12. Photoassisted oxidations andphotoelectrosynthesis at polycrystalline titanium dioxide electrodes[J]. J. Am. Chem. Soc.,1977,99:4667-4675
    [5]郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展[J].环境科学进展,1996,4(3):1-18
    [6] Irie H, Maruyama Y, Hashimoto K. Ag+and Pb2+-doped SrTiO3photocatalysts. Acorrelation between band structure and photocatalytic activity[J]. J. Phys. Chem. C,2007,111:1847-1852
    [7] Hosogi Y, Shimodaira Y, Kato H, et al. Role of Sn2+in the band structure of SnM2O6andSn2MO7(M=Nb and Ta) and their photocatalytic properties[J]. Chem. Mater.,2008,20:1299-1307
    [8] Tsuji I, Kato H, Kobayashi H, et al.Photocatalytic H2evolution under visible-lightirradiation over band-structure-controlled(CuIn)xZn2(1-x)S2solid solutions[J]. J. Phys.Chem. B.,2005,109:7323-7329
    [9]陈俊水.纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究[D].华东师范人学,2004
    [10] Uchihara T, Matsumura M, Tsubomura H.Effect of ethylenediaminetetraacetic acid on thephotocatalytic activities and flat-band potentials of cadmium sulfide and cadmiumselenide[J]. J. Phys. Chem.,1990,94:415-418
    [11] Fischer C H, Henglein A. Photochemistry of colloidal semiconductor.31. Preparation andphotolysis of cadmium sulfide sols in organic solvents[J]. J. Phys. Chem., l989,93:5578-5581
    [12] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. J.Photochem.Photobio C: Photochem. Rev.,2004,1:1-21
    [13] Hoffmann M R Martin S T, Choi W Y. Environmental application of semiconductorphotocatalyst[J]. Chem. Rev.,2005,95(1):69-96
    [14] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2Surfaces: Principles,Mechanisms, and Selected Results[J]. Chem. Rev,1995,95(3):735-758
    [15] Swarnalatha B, Anjaneyulu Y. Photocatalytic O xidation of2,4-D initrophenol in a queousTitanium Dioxide Slurries[J]. J Sci Ind Res,2003,62(9):909-915
    [16]徐顺,杨鹏飞,杜宝石等.掺杂TiO2的光催化性能研究进展[J].化学研究与应用,2003,15(2):146-150
    [17] Choi W, Termin A, Hoffmann M R. The role of metal-ion dopants in quantumsized TiO2:correlation between photoreactivity and charge-carder recombination dynamics[J]. J. Phys.Chem.,2004,98(51):13669-13679.
    [18] Wetchakun N, Phanichphant S. Effect of temperature on the degree of anatase-rutiletransformation in46itanium dioxide nanoparticles synthesized by the modified sol-gelmethod[J]. Curr. Appl. Phys.,2008,8:343-346
    [19]韩世同,习海玲,史瑞雪,付贤智,王绪绪.半导体光催化研究进展与展望[J].化学物理学报.2003.5:339-349
    [20]张立德.纳米材料学[M].沈阳:辽宁科技出版社,1994.9
    [21]孙奉玉,吴鸣,李文钊等.二氧化钛的尺寸与光催化活性的关系[J].催化学报,1998,19(3):229-233.
    [21] Takashi K, Masato L. Ahernaria Kikuchiana Control on pear by low-molecular-weightChitosans[J]. JP,1987,62(12):198-604
    [22] Brus L E. Electron-electron and electron-hole interactions in small semiconductorcrystallites: The size dependence of the lowest excited electronic state[J]. J Phy Chem,1984,80(9):4403-4409
    [23] Hoffmann A J, Yee H, Mil1s G, et al. Photoinitiated polymerization of methylmethacrylate using Q-sized zinc oxide colloids[J]. J Phys Chem,1992,96(13):5540-554624Richard C, Bengana S. PH effect in the photocatalytic transformation of a phenyl-ureaherbicide[J]. Chemosphere,1996,33(4):635-641
    [24] Zieli′nska B, Grzechulska J, Ryszard J, et al. The pH influence on photocatalyticdecomposition of organic dyes over A11and P25titanium dioxide[J]. Applied CatalysisB: Environmental,2003,45(4):293-300
    [25] Guillard C, Lachheba H, Houasb A, et al. Influence of chemical structure of dyes, of pHand of inorganic salts on their photocatalytic degradation by TiO2comparison of theefficiency of powder and supported TiO2[J]. Journal of Photochemistry and PhotobiologyA: Chemistry,2003,158(1):27-36
    [26] Richard C, Bengana S. PH effect in the photocatalytic transformation of a phenyl-ureaherbicide[J]. Chemosphere,1996,33(4):635-641
    [27] Yin M C, Li Z S, Kou J H, et al. Mechanism Investigation of Visible Light-InducedDegradation in a Heterogeneous TiO2/Eosin Y/Rhodamine B System[J]. Environ. Sci.Technol.,2009,43(21),8361-8366
    [28] Chakrabarti S, Dutta B K. Photocatalytic degradation of model textile dyes in wastewaterusing ZnO as semiconductor catalyst[J]. Journal of Hazardous Materials B,2004,112(3):269-278
    [29] Xu J L. Proceedings of ISES solar world congress[J].1997,4:226-235
    [30]邓玲娟,黄方千,高丰琴,等. ZnS光催化剂对不同偶氮类染料光降解的光催化性能的比较[J].应用化学,2010,27(6):705-708
    [31] Matthews R W. Photooxidation of organic impurities in water using thin films of titaniumdioxide[J]. J Phys Chem,1987,91(12):3328-3333
    [32]李晓斌,蒋毅,王贝贝等.光催化降解模拟污染气体甲醛的动力学研究[C].第四届全国环境化学学术大会.2007
    [33] Goswami D Y. A Review of Engineering Developments of Aqueous Phase SolarPhotocatalytic Detoxification and Disinfection Processes[J]. J. of Solar EnergyEngineering,1997,119:101-107
    [34]李田.同济大学环境工程学院博士论文[B].1990
    [35]马荣骏.TiO2的光催化作用及其研究进展(1)[J].稀有金属与硬质合金,2006,34:40-43
    [36] Bickley R I, Gonzalez-Carreno T, Lees J S, Paimisano L, Tilley R J D. A structuralinvestigation of titanium dioxide photocatalysts[J]. J. Solid State Chem.,1991,92: l78-l90
    [37] Jing L Q, Li S D, Song S, Xue L R Fu H G. Investigation on the electron transfer betweenanatase and rutile in nano-sized TiO2by means of surface photovoltage technique and itseffects on the photocatalytic activity[J]. Sol. Energy Mater. Sol. Cells,2008,92:1030-1036
    [38]丁秉钧,王亚平,宋小龙,等.纳米材料[M].北京:机械工业出版社,2004,195-196
    [39] Choi W K, Terrain A, Hofmann M R. The role of metalion dopants in quantum-sizedTiO2: correlation between photo reactivity charge carner recombination dynamics[J]. JPhys Chem,1994,98(51):13669-l3679
    [40]樊君,刘恩周,曾波,等. Fe3+掺杂纳米TiO2催化剂光催化还原CO2的性能[J].石油化工,2009,38(7):789-794
    [41]余锡宾,王棹华,罗衍庆,陈秀红,朱建.TiO2微粒的掺杂改性与催化活性[J].上海师范大学学报(自然科学版),2000,29:75-82
    [42] Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2anatase:relationships between surface morphology and chemical behaviour[J]. Appl. Catal. A.,2000,200:275-285
    [43] Serpone N, Texier I, Emeline A V, et a1. Post-Irradiation Effect and ReductiveDechlorination of Chlorophenols at Oxygen-Free TiO2/Water Intefaces in the Presence ofProminent Hole Scavengers[J]. J Photochem Photobiol A,2000,136(3):145-152
    [44] Klare, M. M glichkeiten des photokatalytischen Abbaus umweltrelevanterStickstoffverbindungen unter Einsatz von TiO2[J].2001
    [45] Sonawane R S, Dongare M K. Sol-Gel synthesis of Au/TiO2thin films for photocatalyticdegradation of phenol in sunlight[J]. Journd of Molecular CatalysisA: Chemical,2006,243(1):68-76
    [46] Li F B, Li X Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide forwaste water treatment[J]. Applied CatalysisA: General,2002,228(1):15-27
    [47] Zhang C B, He H, Tanaka K. Catalytic performance an d mechanism of a Pt/TiO2catalystfor the oxidation of formaldehyde at loom temperature[J]. Applied Catalysis B:Environmental,2006,65(1):3743
    [48] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J]. Science,2001,293:269-271
    [49] Ho W K, Yu J C, Lee S C. Synthesis of hierarchical nanoporous F-doped TiO2sphereswith visible light photocatalytic activity[J]. Chem. Commun.,2006,6(10):1115-1117
    [50] Hong X T, Wang Z P, Cai W M, et al. Visible-Light-Activated Nanoparticle Photocatalystof Iodine-Doped Titanium Dioxide[J]. Chem. Mater.,2005,17(6):1548-1552
    [51] Pilkenton S. Ra Rery D. Solid-state NMR studies of the adsorption and photooxidation ofethanol on mixed TiO2/SnO2photocatalysts[J]. Solid State Nucl. Magn. Reson.,2003,24:236-253
    [52]岳林海,徐铸德.半导体的表面修饰与其光电化学作用[J].化学通报,1998,64(9):28
    [53]岳林海,水森,郑遗凡.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版),2000,27:69-74
    [54] Ranjit K T, Willner L, Bossmann S H, Braun A M. Lanthanide oxide-doped titaniumdioxide photocatalysts: novel photocatalysts for the enhanced degradation ofp-chlorophenoxyacetic acid[J]. Environ. Sci. Technol.,2001,35:1544-1549
    [55]高远,徐安武,祝静艳,刘汉钛. RE/TiO2于NO2-光催化氧化的研究[J].催化学报,2001,22:53-56
    [56] Xu A W, Gao Y Liu H Q. The preparation,characterization,and their photocatalyticactivities Ofrare-earth-doped TiO2nanoparticles[J]. J. Catal.,2002,207:151-157
    [57]桑丽霞,傅希贤,白树林,杨秋华,王俊珍,孙艺环.制备方法对LaFe03及掺杂LaFeO3光催化活性的影响[J].化学工业与工程,2000,17:336.340
    [58] Fu X X, Yang Q H, Wang J Z,Bai S L,Sang LX.Photocatalytic degradation ofwater-soluble Dyes by LaCoO3[J]. J. Rare Earth,2003,21:424-426
    [59]杨秋华,傅希贤,桑丽霞,孙艺环,王俊珍.钙钛矿型LaFe03和SrFe03的光催化性能[J].硅酸盐通报,2003,3:15.18
    [60]姚子华,翟永清,谷菲菲等.络合溶胶凝胶法制备LaCo1-xCuxO3纳米晶及其对酸性黑10B的光催化降解[J].稀有金属,2004,28(4):674-677
    [61] Wang D F, Zou Z G, Ye J H. A new spinel-type photocatalyst BaCr2O4for H2evolutionunder UV and visible light irradiation[J]. Chem. Phys. Lett.,2003,373:191-196
    [62] Saadi S, Bouguelia A, Trari A. Photoassisted hydrogen evolution over spinelCuM2O4(M=Al,Cr,Mn,Fe and Co)[J]. Renew. Energ.,2006,31:2245-2256
    [63] Bessekhouad Y, Trail M. Photocatalytic hydrogen production from suspension of spinelpowders AMn2O4(A=Cu and Zn)[J]. Int. J. Hydrogen Energy.,2002,27:357-362
    [64] Lv W Z, Liu B, Qiu Q, Wang F, Luo Z K, Zhang P X, Wei S H. Synthesis,characterization and photocatalytic properties of spinel CuAl2O4nanoparticles by asonochemical method[J]. J. Alloys Compd.,2009,479:480-483
    [65] Z O Zou, J Ye, H Arakawa. Surface characterization of nano-particles ofNiOx/In0.9Ni0.1TaO4: Effects on photocatalytic activity[J]. Phys. and Chem. B.2002,206:13098-13101
    [66] Luo H M,Alex H,Mueller T, et al. Structural and photoelectrochemical p roperties ofBiVO4thin films[J]. J. Phys. Chem. C,2008,112:6099-6102.
    [67] Ye J H, Zou Z G, OshikiriM, et al. A novel hydrogen2evolving photocatalyst InVO4activeunder visible light irradiation [J]. Chem ical PhysicsLetter: A,2002,356(324):221-226.
    [68] Ye J, Zou Z, Arakawa H, et al. Correlation of crystal and electronic structures withphotophysical p roperties of water sp litting photocatalysts InMO4[J]. J. PhotochemPhotobio A,2002,148:79-83.
    [69] Ge L. Novel visible-light-driven Pt/BiVO4photocatalyst for efficient degradation ofmethyl orange[J]. Journal of Molecular Catalysis A: Chemical,2008,282:62-66
    [70] Konta R, Kato H, Kobayoshi H, et al. Photophysicalproperties and photocatalytic activitiesunder visible light irradiation of silver vanadates[J]. Phys. Chem. Chem. Phys,2003,5:3061-3065.
    [71] Xuexiang Hu, Chun Hu. Preparation and visible-light photocatalytic activity of Ag3VO4powders[J]. Journal of Solid State Chemistry,2007,180:725-732.
    [72]张永来,丁红,刘福建,等.Ag3VO4纳米粒子的合成及其对可见光下降解罗丹明B的催化活性[J].催化学报,2008,29:783.787
    [73] Chao Ming Huang, Guan Ting Pan, Yu Chu M. Li,et al. Crystalline phases andphotocatalytic activities of hydrothermal synthesis Ag3VO4and Ag4V2O7under visiblelight irradiation[J]. Applied Catalysis A: General,2009,358:164-172
    [74] Hui Xu, Huaming Li, Li Xu, et al. Enhanced Photocatalytic Activity of Ag3VO4Loadedwith Rare-Earth Elements under Visible-Light Irradiation[J]. Ind. Eng. Chem. Res,2009,48,10771-10778.
    [75] Hui Xu, Huaming Li, Guangsong Sun, et al. Photocatalytic activity of La2O3-modifiedsilver vanadates catalyst for Rhodamine B dye degradation under visible lightirradiation[J]. Chemical Engineering Journal,2010,160:33-41.
    [76] Jimin Xie, Deli Jiang, Min Chen, et al. Preparation and characterization of monodisperseCe-doped TiO2microspheres with visible light photocatalytic activity[J]. Colloids andSurfaces A: Physicochem. Eng. Aspects,2010,372:107-114.