重型数控铣车床C轴精密定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型数控铣车床是实现大型精密零部件加工的必需设备。在数控铣车床中,C轴即为绕主轴轴线(Z轴)的回转轴,在数控加工中心中,主要利用C轴的功能来实现主轴的插补运动,加工复杂的曲线、曲面。C轴的定位精度是判断高精度重型数控机床精度的一项重要指标,其精度直接决定了加工复杂零部件的精度。影响重型数控机床C轴定位精度的因素很多,而齿隙的大小对C轴定位精度的影响是最突出的,所以,为了提高重型数控铣车床的定位精度必须设法减小齿隙的大小;另外对于C轴传动部分,处于工作状态时的受力变形对定位精度的影响也是不能忽略的。
     为了消除C轴传动时传动链末端的齿隙,本文提出了一种采用双伺服电机传动,通过双电机的相互配合来消除传动链末端齿隙的方法。基于理论数学模型,建立了双伺服电机驱动的动力学模型,并且进行了动态仿真。仿真结果表明采用主从式运动的双电机能够很好的实现跟随运动;在分析双电机在运动过程中消除齿隙的原理的基础上,通过引入齿隙模型构建了双电机消隙的动力学模型,并行进行了仿真,仿真结果表明齿隙的存在导致系统的上升时间、调整时间变长,系统响应变慢。
     针对C轴传动部分工作时的受力状况,采用ANSYS-workbench软件对C轴部件进行了模态分析和静力学分析,为C轴零部件的设计改进提供了参考依据。
     最后,设计了双伺服电机消隙验证实验装置,通过PMAC多轴运动控制器控制双伺服电机联合运动,很好的实现了双电机的驱动消隙功能。实验结果表明,双电机驱动消隙方法可以很好的消除传动齿隙,提高C轴的定位精度。
The heavy and high-precision CNC milling lathe is one of the most necessary equipment in machining large precision parts. In CNC milling lathe, C-axis, that is the gyro shaft around the main axis (Z axis), and in CNC Machining Center, we always using C-axis function to achieve Interpolation movement, maching complex curves and surfaces. C-axis positioning accuracy is an important indicator to determine high-precision heavy-duty CNC machine tools, and its directly determines the accuracy of the precision machining complex parts.
     There are many factors affect heavy-duty CNC machine’s positioning accuracy, but the size of backlash is the most important. So, in order to improve heavy-duty CNC machine’s positioning accuracy, we must try to reduce the size of backlash. For anther part of the C-axis drive, when they are working, the deformation under the force can not be ignored.
     In order to remove the backlash of the C-axis in the end of transmission chain, in this paper, we propose a method that using two-motor transmission, with two-motor’s complement each other removing the backlash of the C-axis in the end of transmission chain. From a theoretical point of view, we established dynamic model of two-motor drive, and established dynamic simulation. The simulation results show that Using master-slave dual motor sports can follow the movement very well. In the analysis of two motors in the movement to eliminate backlash on the basis of the principle of, we introduce backlash and construction of the double-gap dynamic model of electrical consumption, and conduct dynamic Simulation. Simulation results show that the presence of backlash led to the system rise time, adjustment time becomes longer, slower system response.
     Against the state of the force when C-axis is working, use the software of ANSYS-Workbench, analyze C-axis parts’model and static. It is very useful for the design of the components of C-axis.
     In the end, we design an experimental device that can remove backlash. With the PMAC’s help, we can control two motors’movement. This experimental device can remove backlash. The results show that two-motor drive gap method can eliminate transmission backlash elimination, and can improve the C-axis positioning accuracy.
引文
1丁雪生.积极发展高中档数控机床-大型、高速、精密、多轴、复合和高效专用数控机床.专访论坛. 2007, (2): 72~74
    2王丽洁,王栋.数控车床C轴功能编程分析与应用.机械工程师. 2007, (4): 141~142
    3王晶伟.数控机床的定位精度.装备. 2007, (1): 40
    4雒合群.影响闭环系统定位精度的因素.中国设备工程. 2005, 4: 37~38
    5伍利群.齿轮传动间隙的消除方法.机床与液压. 2005, (5)187~188
    6贲薇婷,马励,张志诚,杨国涛,姚树建.双齿轮消隙减速传动的结构.知识产权出版. 2004, 11
    7唐林.数控机床齿轮传动消除齿侧间隙的方法.现代机械. 2002, 2: 69
    8焦卫兵,董学哲,曹英志.双电机消隙技术在高精度重型机床C轴进给系统中的选型计算.第三届十省区市机械工程学会科技论坛暨黑龙江省机械工程学会2007年年会论文(摘要)集. 2007, 12: 109-110
    9翁秀华.双直线电机同步控制的研究.沈阳工业大学硕士学位论文. 2005, 23~27
    10卢金铎,刘锦波.双电机传动机械系统的同步控制.控制工程. 2005, 7(12): 398~400
    11 Ghanem R. Stochastic Finite Elements with Multiple Random Non Gaussian properties [J].Journal of Engineering Mechanical, 2001, 125(1): 26~40
    12 Tomizuka M, Hu J. Chiu T, etal. Synchronization of Two Motion Control Axes Under Adaptive Feed Forward Control [J]. ASME Journal of Dynamic Systems, Measurement and Control, 1992, 114(6): 196~203.
    13康国政,张娟.大型有限元程序的原理、结构与使用.西南交通大学出版社. 2008, 3: 1~4
    14陈庆堂,汤文成.基于ANSYS的XK713数控铣床的有限元分析及优化设计.东南大学博士学位论文. 2005, 7: 1~2
    15叶志明.国外几种大型微机有限元分析系统简介,计算力学学报. 1997, 10: 105~107
    16 Stefan Reh, Jean-Daniel Beley, Siddhartha Mukherjee, Eng Hui Khor. Probabilistic Finite Element Analysis Using ANSYS. University of Applied Sciences. 2005, 17~18
    17 M. Rifat Kahyaoglu, G han Imancli, A. Ugur Ozturk , Arif S. Kayalar. Computa -tional 3D Finite Element Analyses of Model Passive Piles. Computational Materials Science.2009, (46): 193~195
    18 D. J. Ewins Model testing: Theory and Practice.RSP.LTD,1984
    19尚小江,苏建宇,王化锋. Ansys动力分析方法与工程实例.中国水利水电出版社. 2008, 6
    20瞿亮.基于MATLAB的控制系统计算机仿真.清华大学出版社. 2006, 1: 190~191
    21薛定宇.反馈控制系统设计与分析.清华大学出版社. 2004, 6
    22黄开枝. MATLAB7基础教程.清华大学出版社. 2007, 1
    23陈杰. MATLAB宝典.电子工业出版社. 2006, 5
    24 Cheng Y P. Lim T C. Dynamics of Hypoid Gear Transmission with Nonlinear Time Varying Mesh Vharacteristics[J]. Journal of Mechanical Design. Transactions of the ASME, 2003, 125(2)
    25 Lenhard, W. Control of Electrical Drives 3rd Spring-Verlag, 2001
    26 Jukic T, Peric N. Model Based Backlash Compensation[C]//In: Proc of 2001 American Control Conf. Arlington, VA. USA, 2001
    27 Gang Tao, Kokotovic P V. Adaptive Control of System with Backlash [J]. Auto -matics, 1993, 29 (2): 232~245
    28胡寿松.自动控制原理.科学出版社. 2007, 6
    29陈庆伟,郭毓,杨静忠.提高齿隙非线性系统精度的应用研究.南京理工大学学报. 2000, 24(6): 486~489
    30赵海波.双电机同步联动伺服系统的设计与分析.南京理工大学硕士论文. 2006, 7
    31 Xue Hanjie. Double-Motor Anti-Backlash Driving Technology and Its Applic -ation In NC Machine Tool. China Academic Journal Electronic Publishing House. 2009
    32 Koren Y. Cross-coupled Biaxial Computer Control for Manufacturing System. ASME Journal of Dynamic Systems Measurement and Control 1980 102(12): 256~272
    33 Butler J, Tomizuka M. Trajectory Planning for High Speed Multiple Axis Contour -ing Systems. Proceeding of the 1989 American Control Conference, Pittsburgh, PA1989: 87~97
    34刘洪江,龙泉江.通过按钮实现主轴/C轴转换功能.制造技术. 2005, (3): 118~119
    35 SIEMENS. SINUMERIK 840D/840Di SINUMERIK 810D Special Function 2008
    36 Cheng Dengyuan. A Kind of Double Motor Anti-Backlash Mechanism Servo System. Radar Science and Technology. October 2009, (5): 394~395
    37 APEX Microtechnology.. Power Integrated Circuit’s Data Book [M] .APEX Micro technology, 2001: 81~85.
    38康国政,张娟.大型有限元程序的原理、结构与使用.西南交通大学出版社. 2008, 3: 1~4
    39段进,倪栋,王国业. ANSYS 10.0结构分析从入门到精通.兵器工业出版社. 2006. 10: 5~8
    40李兵,何正嘉,陈雪峰. ANSYS Workbench设计、仿真与优化.清华大学出版社. 2008, 8: 1~3
    41 Z, Q, Hou, Y. D. Cheng. Modal Parameter Identification from Multipoint Measured Data. Proceeding of the 2ndIMAC,Orlando,Florida.1984,(2): 6~9
    42王华侨.结构有限元分析中的网格划分技术及其应用实例. CAD与CAM制造信息化. 2006(12): 50~60
    43杜平安.有限元网格划分的基本原则.机械设计与制造. 2005: 25~35
    44 Xie Haidong, Zhou Zhaoyao, Xia Wei. The Precise Modeling And Finite Element Mode Analysis of Helieal Gear. CAD/CAPP/CAM/CAE.2004: 55~57
    45 H. Vinayak, R. Singh. Mufti Body Dynamics and Modal Analysis of Compliant gear Bodies. Journal of Sound and Vibration , 1998, 210(2)
    46 Requicha A, Rep Resentations for Assemblies[M], USA University of South Cali -fornia, 1991, 25~58
    47 Lee Jaehyung, Thompson DJ, Yoo HongHee, Lee JangMoo. Vibration Analysis of Avehicle Body and Suspension System Using as ub structure Synthesis Method [J].Int. Vehicle Design, 2000, 24(4): 360-371
    48田相克. PMAC多轴运动控制器研究.兰州理工大学硕士学位论文. 2005: 3~5
    49 Song Tao, Zhang Qingquan, Zhang Yong, et al. Research of Feed Control System for Linear Motor Based on PMAC. Aviation Precision Manufacturing Technology. Oct. 2009, Vol.45, No5