四轴重载平板车侧倾特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平板车是现代钢铁和船舶企业的一种专用重型运输车辆,本文的四轴重载平板车主要用于运输液态高温铁水。其尺寸特殊、惯性积大、且装载的是液态铁水,在转向行驶时会出现车身侧倾运动,容易发生倾翻事故,造成人员伤亡和财产损失。因此,研究车辆侧倾振动,增强其运输安全性和高效性具有重大意义。本文从实际工程出发,以230T四轴重载平板车为研究对象,根据其特有的车身转动惯量矩阵建立了非线性动力学转向模型,并结合多轴转向技术对车身侧倾振动性能进行分析,得出了合理的转向模式。重点研究内容如下:
     1)以传统的车辆转向模型对230T四轴重载平板车进行横向稳定性分析,结果表明传统模型不适合本文车辆满载后的横向稳定性分析,模型需要进一步完善。
     2)针对本文车辆车身惯性积大的特点,考虑纵向、横向、横摆、侧倾四个自由度,分别采用牛顿-欧拉力学和拉格朗日方程建立其连续转向的非线性动力学模型。通过计算和分析,揭示了四轴重载平板车特有的侧倾振动性能,即车身惯性积增大了侧倾振动振幅,车辆更容易发生倾翻安全事故。
     3)以车身侧倾角响应为评价指标,对四轴重载平板车的多轴转向模式进行研究,发现全轮转向为最佳转向模式,此时车身侧倾振动最平缓,安全性高。
     4)以230T四轴重载平板车为实验研究对象,测量车辆在连续转向模式下不同车速、不同转向半径时的车身侧倾角响应,实验数据验证了理论模型的有效性。
     研究结果表明:转向时车身转动惯量矩阵中特有的惯性积降低了车辆转向稳定性和平衡性;采用全轮转向模式(AWS)能提高四轴重载平板车转向安全性。
Platform truck is a kind of special heavy transporting vehicle used in iron and steel mills. The four-axle heavy load platform truck (FHLPT) in this article is used to transport high-temperature liquid iron.The essential difference between FHLPT and common heavy vehicle is the former has huge products of inertia because of its special shape. The serious roll motin of the vehicle's body when turning is easy to result in FHLPT' rollover,then the disaster would kill many people and make property loss.Therefore, how to improve the FHLPT's safety and efficiency plays an important role.In view of a FHLPT weighting 230 tons,the multi-axle steering dynamic model is built while the body's products of inertia are taken into accounted, then the roll vibration performance and the best steering method are got.The main contents of the thesis are as follows:
     1) The lateral balance of FHLPT is analysed using traditional model. The results show that the existing turning model of conventional vehicle can not be used directly.
     2) Based on the Newton-Euler's method and Lagrange equation, the nonlinear dynamic turning model of a FHLPT which contains four freedoms is built while the body's products of inertia are concerned. Then the special roll vibration performance of the vehicle's body is obtained by model calculation and numeric simulation. The amplitude of roll angle is increased because of the product of inertia, which makes the FHLPT easier to roll over while turning.
     3) Combined with the tire's dynamic of multi-axle steering, the roll vibration character of a four-axle FHLPT is analysed. The The result shows that the all-wheel steering(AWS) is the optimal mode of turning.
     4) Taking a kind of FHLPT weighting 230 tons for the experimental study, the responses of roll angle are measured when the vehicle turning in all kinds of velocity and steering radius.the The results were consistent with the actual value.
     Research results show that The typical inertia matrix reduces the stability of the nonlinear dynamics turning model, so the maximal velocity is limited when turning. And the all-wheel steering method will raise the safety of the vehicle when turning.
引文
[1]鲁力群,石博强,郭朋彦.自行式重型平板车多转向模式的控制研究[J].煤矿机械,2008,29(8):164-165.
    [2]慈龙尚,张代胜,黄世晔,吴来发.平板车设计要点及技术发展趋势[J].设施与设备,2008,27(12):131-145.
    [3]罗斌,刘少军,崔静,周科.重载平板车转向系统建模及仿真[J].机械工程与自动化,2008,3:19-21.
    [4]张磊,仲梁维,陈秋顺.平板车的动载荷分析[J].起重运输机械,2008,2:120-123.
    [5]王欣,张明辉,高顺德.大型动力平板车技术的发展[J].工程机械与修,2006,12:81-83.
    [6]刘伟.四轴重载平板车多电机驱动神经元自适应PID矢量控制研究[D],长沙:中南大学,2006.
    [7]Olley M.Independent wheel suspension-its whys and wherefores[J]. SAE Engineers, 1934,34(3):73-81.
    [8]Lanchester F W. Motor car suspension and independent springing[J]. Automobile Engineers,1936,XXX:668-762.
    [9]Olley M. Road manners of the modern car[J].Automobile Engineers,1946-47,51: 147-182.
    [10]Miliken W F, Milliken D L. Race car vehicle dynamics[M].SAE Press, Warrendale, 1995.
    [11]Furukawa Y, Abe M. Advanced chassis control systems for vehicle handling and active safety[J]. Vehicle System Dynamics,1997,28(213):59-86.
    [12]Dave Crolla,喻凡.车辆动力学及其控制[M],北京:人民交通出版社,2004.
    [13]郭孔辉.汽车操纵动力学[M],长春:吉林科学技术出版社,1991.
    [14]喻凡,林逸.汽车系统动力学[M],北京:机械工业出版社,2005.
    [15]Bernard J. et al, Vehicle Rollover on Smooth surfaces [C], Warrendale PA:SAE paper 891991.
    [16]Das N S, et al. Estimation of Dynamic Rollover Threshold of Commercial Vehicles Using Low Speed Experimented Data[C], Warrendale PA:SAE paper 932949.
    [17]Trom J, Vanderplong M, Bernard J. Application of inverse models to vehicle optimization problems[J]. Vehicle System Dynamics,1990,19(2):97-110.
    [18]J. YOON, D. KIM, K. YI. Design of a rollover index-based vehicle stability control scheme [J], Vehicle System Dynamics,2007,45(5):459-475.
    [19]T. Shim and C. Ghike. Understanding the limitations of different vehicle models for roll dynamics studies [J]. Vehicle System Dynamics,2007,45(3):191-216.
    [20]D. Malcher, A. Eskandarian and P.Delaigue. Dynamics models for vehicle roll motion in prerollover manoeuvres [J]. Proceeding of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2007,221:291-301.
    [21]Bernard J, Pickelmann M. An inverse linear model of a vehicle [J]. Vehicle System Dynamics,1986,15(4):179-186.
    [22]B. Badjia, E. Fenauxa, M. El Bagdourib and A. Miraouib. Nonlinear single track model analysis using Volterra series approach [J], Vehicle System Dynamics,2009, 47(1):81-98.
    [23]陈耀明,汽车静态稳定角的计算方法[J],汽车技术,1994,4:9-11.
    [24]肖杰,汽车静态最大侧倾稳定角及其影响因素敏感度分析[J],中国制造业信息化,2006,35(11):64-680.
    [25]Hyun, Dongyoon. Predictive modeling and active control of rollover in heavy vehicles[J],Control Engineering Practice,2001(3):126-143.
    [26]Ralf Eger, Uwe Kiencke. Modeling of rollover sequences[J],Control Engineering Practice,2003,11:167-183.
    [27]崔胜民,肖利寿,宋宝玉,任秉银.汽车操纵动力学十八自由度模型仿真研究[J],汽车工程学报,1998,20(4):212-219.
    [28]郑安文,宋健,吴凯辉,吴大文.汽车的力学参数与稳态转向特性,1999,21(5):269-274.
    [29]魏郎,陈涛,余强,道路交通事故模拟再现的车辆动力学三维模型[J],交通运输工程学报,2003,3(3):88-920.
    [30]金智林,翁建生,胡海岩.汽车侧翻及稳定性分析[J].机械科学与技术,2007,26(3):355-358.
    [31]何宏宇,汽车行驶安全性判定及仿真研究[D].吉林:吉林大学,2006.
    [32]祝军,李一兵.汽车侧翻和滚翻事故建模研究[J].汽车工程,2006,28(3)254-258.
    [33]于国飞,艾维全,王承,吴光强.车辆稳态转向特性中车身侧倾角的影响因素[J].同济大学学报(自然科学版),2006,34(9):1237-1241.
    [34]施树明,毛振勇,向辉,王宪彬.车辆转向的稳定性非线性分析方法[J].汽车工程,2006,28(3):254-258.
    [35]Bjom Johansson. Reconfigurable control structure to prevent the rollover of heavy vehicles[J], Control Engineering Practice,2005,13:78-96.
    [36]Requers. An advanced methodology for estimating vehicle rollover propensity[J], International journal of crash worthiness,2003,7:102-116.
    [37]殷国栋,陈南.4WS车辆u综合鲁棒主动侧倾操纵性能控制[J].东南大学学报(自然科学版),2006,36(3):384-388.
    [38]Sharp R S, Pan D. On the design of an active roll control system for a luxury car[J]. Proceedings of Institute of Mechanical Engineers,Part D,Journal of Automobile Engineering.1993,207(4):275-284.
    [39]余强,马建,主动悬架系统对汽车侧翻稳定性改善分析[J],中国公路学报,2005,18(3):114-117.
    [40]J. Darling and T. J. Ross-Martin. A theoretical investigation of a prototype active roll control system [J]. Proceeding of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,1997,211:3-12.
    [41]J.Darling and L.R. Hickson. An Experimental Study of a Prototype Active Anti-Roll Suspension System [J]. Vehicle System Dynamics,1998,29:309-329.
    [42]I. Cech. Anti-Roll and Active Roll Suspensions [J], Vehicle System Dynamics,2001, 33:91-106.
    [43]D.J. Cole. Fundamental Issues in Suspension Design for Heavy Road Vehicles [J]. Vehicle System Dynamics,2001,35(4-5):319-360.
    [44]A. J. P. Miege and D. Cebon. Optimal roll control of an articulated vehicle:theory and model validation [J]. Vehicle System Dynamics,2005,43(12):867-893.
    [45]宗长富,郭孔辉,李铂.汽车操纵稳定性的理论预测与综合评价[J].汽车工程,2001,23(1):5-12.
    [46]赵又群,郭孔辉.汽车操纵性评价指标的研究[J].汽车工程,2001,23(1):1-4.
    [47]Shufeng Wang, Junyou Zhang, Huashi Li. Steering Performance Simulation of Three-axle Vehicle with Multi-axle Dynamic Steering [C]. In:IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5,2008, Harbin, China.
    [48]M.Yang, X.H.Gao, H.Wang, C.Wang. Simulation analysis of multi-axle vehicle braking stability based on all-wheel active steering technology [C]. In:2010 2nd Intenational Conference on Industrial Mechatronics and Automation, May 30-31, 2010, Wuhan, China.
    [49]王树风,张俊友,李华师,柴山.不同转向模式的多轴转向车辆性能分析[J].公路交通科技,2008,25(12):184-187.
    [50]陈思忠,孟祥,杨林,舒进.三轴汽车多轮转向技术研究[J].北京理工大学 学报,2005,25(8):679-683.
    [51]主永强,高利,张平霞,王树凤,柴山.多轴汽车双相位转向性能分析[J].系统仿真学报,2008,22(20):6193-6196.
    [52]主永强,高利,张平霞,王树凤,柴山.多轴汽车同相位全轮转向性能分析[J].系统仿真学报,2009,21(6):1505-1507.
    [53]高峰,周志清,徐国艳,丁靖.多轴转向汽车角阶跃输入的稳态响应特性[J].江苏大学学报(自然科学版),2008,29(1):17-20.
    [54]冷韶华,高利,王树凤,朱永强.五轴全轮转向汽车动力学模型分析[J].农业机械学报,2008,39(12):39-44.
    [55]Dai L, Han Q. Stability and hopf bifurcation of a nonlinear model for a four-wheel steering vehicle system [J]. Communications in Nonlinear Science and Numerical Simulation,2004,9(3):331-341.
    [56]Watanabe K, Yamakawa J, Tanaka M, etal. Turning characteristics of multi-axle vehicle[J]. Journal of Terramechanics,2007,44(1):81-87.
    [57]王萍,李成刚,胡于进,刘爱华.重型特种车辆多轴转向技术的优化设计[J].专用汽车,2002,19(2):19-20.
    [58]刘志强,林可龙.多轴工程车辆制动性能试验研究[J].江苏大学学报(自然科学版),2000,21(4):20-23.
    [59]秦强.矿用重型平板车的结构设计[J].煤矿机电,1999,5:18-20.
    [60]李运华,杨丽曼,张志华.船舶制造大型构件动力平板运输车的开发研制[J].船舶工程,2005,27(1):67-72.
    [61]谭湘夫.DZ-60型电动平板车的设计[J].机械设计与制造,2001,2:11-13.
    [62]张志华.DCY100型动力平板车运输车[J].船舶工程,2002,3:61-63.
    [63]胡美红,宓德广,孙健霞,袁立军.液压支架重型平板车的设计计算[J].煤矿机械,2009,30(6):1-3.
    [64]董红波,液压平板车的参数设计与产品库开发[D].大连:大连理工大学,2002.
    [65]孙晓希,基于虚拟样机的平板车转向系统仿真研究[D].大连:大连理工大学,2008.
    [66]屈福政,平板车转向轮组液压系统参数优化与仿真[D].大连:大连理工大学,2005.
    [67]汪星刚,盛步云,郑绍春.重型平板运输车转向系统协同控制技术的研究[J].机床与液压,2006,1:120-123.
    [68]张高升.重型工程平板车监控系统的研制[D].武汉:武汉理工大学,2007.
    [69]罗斌.重载平板车转向系统模糊PID控制研究[D].长沙:中南大学,2007.
    [70]张磊,仲梁维,陈秋顺.平板车的动载荷分析[J].起重运输机械,2008,2:58-60.
    [71]Lu Sun, Xuejun Deng. Predicting vertical dynamic loads caused by vehicle-pav-ement interaction[J]. Journal of Transportation Engineering,1998,124 (5):470-478.
    [72]ZHANG Wei-dong, LI Xiang-hua, DENG Hua.Research on the Turning Safety of an High-temperature Ladle Carrier Vehicle[C]. In:2009 Second International Conference on Intelligent Computation Technology and Automation.2009, Chang sha:724-727.
    [73]张卫东,莫旭辉,彭劲松.铁水包车多轴转向机构运动学分析与优化[J].计算机仿真,2008,25(9):268-271.
    [74]张卫东,莫旭辉,彭劲松.基于ADAMS的液压平板铁水包车动力学仿真[J].专用汽车,2007,(10):35-38.
    [75]张卫东,莫旭辉,彭劲松.液压平板车悬架系统的有限元分析与结构优化[J].制造业信息化,2007,(10):34-36.
    [76]张卫东,莫旭辉,彭劲松.基于ANSYS的液压平板车车架结构和模态分析[J].汽车科技,2008,5:46-49.
    [77]张卫东,莫旭辉,彭劲松.基于MSC Easy5的180t平板车液压自动调平系统仿真[J].计算机辅助工程,2008,17(2):13-17.
    [78]Hans. B.Pacejka.Tire and Vehicle Dynamics [M], Society of Automotive Engineers, Inc,2002:212-217.
    [79]梅凤翔,刘端,罗勇.高等分析动力学[M],北京:北京理工大学出版社,1991.
    [80]沈惠川,李书民.经典力学[M].合肥:中国科学技术大学出版,2006.
    [81]D. J. M. Sampson and D Cebon. Achievable roll stability of heavy road vehicles [J]. Proceeding of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2003,217:269-287.
    [82]Bedner E J, Chen H H. A Supervisory Control to Manage Brakes and four-wheel-steer System [J]. SAE Paper,2004,3:8-11.
    [83]HUH K, KIM J, HONG J. Handling and Driving Characteristics for Six-Wheel Steering [J]. Journal of Automobile Engineering,2000,214(2):159-170.
    [84]余志生.汽车理论[M].北京:机械工业出版社,1991.
    [85]庄继德.汽车电子控制系统工程[M].北京:北京理工大学出版社,1998.
    [86]Hegazy S, Rahnejat H. Hultibody dynamics in full-vehicle handling analysis under transient manoeuver [J]. Vehicle System Dynamics,2000,34(1):1-24.
    [87]郭茂政.论惯性积的平移和旋转变换[J].大学物理,2004,23(6):23-25.
    [88]M.C.Levesley, R.Ramli,N.Stembridge and D.A.Crolla. Multi-body co-simulation of semi-active suspension systems[J].Proceeding of the Institution of Mechanical Engineers,Part D Journal of Automobile Engineering,2007,221 (Part K):99-115.
    [89]张德丰Matlab数值分析与应用[M].北京:国防工业出版社,2007.
    [90]孙维汉,孙宏侠,陈俊武.基于MATLAB汽车动力学仿真研究[J].公路交通科技,2007,24(3):136-144.