人为生产活动与农田土壤主要性质空间变异性关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田土壤性质空间变异性研究是当今土壤学科发展的前沿,它对于建立农田土壤质量数据库,实现数字土壤、推动精确农业发展具有极为重要的科学价值。尽管关于农田土壤质量空间变异性研究报道颇丰,但均集中在土壤性质空间变异性的相关理论等方面,而对长期人为影响下农田土壤性质空间变异性及揭示导致农田土壤空间变异机理的研究显得较为贫乏。本实验研究了现代经营与耕作模式条件下,土壤质量的演化趋势和存在的主要问题,揭示现代社会历史尺度下和人为对于土地利用与生产管理模式下,所导致的土壤演化作用方向和演化程度。查清楚制约现代农业可持续发展的障碍性因素,获得以下主要结论。
     1.在水平方向上,土壤有机质及其组分(活性有机质)和碳酸钙均表现为距离村庄越近含量越高,以村庄为圆心土壤有机质及其组分(活性有机质)和碳酸钙含量呈同心圆式的空间变异特征。两者具有相同的形成机理,就近施用农家有机肥和土粪在一定程度上导致了其独特的空间分布规律。表层和底层土壤有机质均属弱变异程度,10-20cm土壤有机质属于中等变异程度;碳酸钙在三个土层中均属弱变异程度。
     2.土壤紧实度和容重都属于中等变异强度,其中10-20cm土层土壤容重的变异强度比较大。土壤含水量的最大值与最小值相差不大,变异系数强度较弱,这表明农田比较平整,降雨时无明显径流产生。
     3.土壤容重、紧实度和含水量的半方差函数揭示了它们的分布具有较强的空间自相关性(20-30cm土层土壤容重具有中等空间相关性)。土壤紧实度的相关距(变程)最小在35.4~37.8 m;土壤水分含量平均值的变程为99m,相对最大,而土壤容重的变程居中,为87.1~88.1m.。
     4.土壤紧实度和容重具有以村庄为中心,呈现出在村庄外逐渐增大的水平空间变异特征,而土壤水分的空间分布状况与之相反。反映了长期采用有机培肥就近原则对土壤质量的作用与影响。
     5.农田土壤紧实度和容重不仅在水平方向上存在着中等空间变异强度,同时在垂直方向上也存在巨大变异性。关中农田土壤存在着明显的亚表层紧实化的严重问题,较为疏松的耕层变薄,反映了长期进行旋耕对于土体特性的严重影响,必须给予足够重视。
     6.九个级别的土壤团聚体的变异系数都小于40%,表明研究区域土壤团聚体组成具有中等偏弱的变异性。上下两土层土壤团聚体变异系数随着粒径的减小而逐渐增大,表明研究区域土壤团聚体组成随着粒径减小变异性逐渐增大。有机质含量的多少与团聚体的含量并无密切关系,两者的分布规律并不相同。
     综上所述,农田土壤受人为因素影响程度最大,在人为因素的影响下农田土壤形成了其特殊的空间变异性,而有些变异特性已经成为农业生产的制约因素。对主要农田土壤性质空间变异性的研究,有助于更加丰富和进一步完善评价人为长期生产活动对土壤质量作用与影响的基本理论;为揭示土壤质量的空间变异特征提供重要的科学依据,为合理耕作、科学管理和利用农田土壤提供科学依据,从而更好地为农业生产服务。
The spatial variability of soil properties of farmland had been the development frontier of soil science , It have extreme importance scientific value to establish soil quality database、realization digital soil and promote development of precision agriculture.The report about soil quality spatial variability of farmland was more, and all reports concentration on the related theories of soil properties spatial variability. But the research of soil quality spatial variability of farmland based on human impact at long-term and the reveal mechanism of soil spatial variability of farmland were less. The experiment research evolvement current of soil quality and some main problem on condition of modern management and cultivation pattern, open out direction of soil evolvement effect and evolvement degree in scale of modern society history and artificial land using and pattern of production manage, find out the obstructive factors of modern agriculture sustainable development, and main conclusions were following.
     1. In the horizontal direction, which was that the higher soil organic matter and calcium carbonate content appeared in the further point away from the village, forming a concentric circle; both the organic matter and calcium contents variation had the same mechanism, the reason might be that farms applied the manures in the near fields more than in the farther ones. The soil organic matter contents in top soil (0-10cm) and substratum soil(20-40cm)were belonging to a low variation level; the soil organic matter content in subsurface(10-20cm)was belonging to a moderate variation level; a low variation level of calcium carbonate appeared in all the soil layers.
     2. The soil bulk density and soil compaction had a moderate variation level and soil bulk density in subsurface (10-20cm) had a larger variation level. The maximum value and minimum value of soil water content without big difference and had a weak variation level, this results show that farm land was more leveling and with out significantly runoff when Rainfall.
     3. The semi-variogram of soil bulk density、soil compaction and soil water content showed that them had a stronger spatial autocorrelation distribution of (the soil bulk density in 10-20cm soil layer was belonging to a moderate variation level. The correlation distance of soil compaction was the lowest of 35.4-37.8m and the soil water was 99m, the highest, while the soil bulk density was in the middle, 87.1~88.1m.
     4. The soil compaction and soil bulk density centered with village, showed that they increased significantly as the distance increased from the village. However, the spatial distribution of soil water content did the opposite. Reflected the nearby principle of using organic fertility betterment by long term to function and influence of soil quality.
     5. The soil compaction and soil bulk density not only had a moderate variation level in the horizontal direction but also had a great variation level. There was obvious serious problem of soil compact in Guanzhong farm land, and loose arable layer was thinning out, reflected the seriously affect of soil properties under long term rotary tillage, Must be given adequate attention.
     6. Variation coefficients of soil aggregates of nine grades were less than percent 40, show that aggregate size distribution had a moderate variation level in study area. The variation coefficients of soil aggregates gradually increased with aggregate size decreased in upper and lower two layers. Found that Soil aggregate composition increases gradually with the particle size decrease. Between soil organic matter contents and aggregates contents had not close relationship, the distribution of both them was not same.
     In conclusion, farmland soil properties were affected by humans to a large extent, thereby forming this kind of special spatial variation. Some of the variations had become the barrier factors in the process of agriculture production. Studies on the variation of main farmland soil properties were helpful to enrich and revise the basic theories of accessing the functions of humans on soil quality during a long period; these also gave pivotal evidences on the special variation of soil quality, available tillage scientific management and how to use farmland. Therefore, we can serve the farmers better.
引文
[1]Hamlett JM,Horton R, Cressie N AC.Resistant and ex-ploratory techniques for use in semivariogram analysis[J].Soil Sci Soe Am J,1986,50:868-875.
    [2]Campbell JB.Spatial variation of sand content and PH within single contiguous delineation of two soil mapping units[J].Soil Sci Soc Am J,1978,42:460-464.
    [3]Vieira S R, Nielsen D R, Biggar J W. Spatial variability of field:measured infiltration rate[J].Soil Sci Soc Am J,1981,45:l040-l048.
    [4]Vauclin M,Vieira S R , Vachaud G, et a1.The use of co-kriging with limiting field soil observations[J].Sol Sci Soc Am J,1983.47:175-l84.
    [5]Tenberge H F, Stroosinjder M L, Burrough A P. Spatial variability of physical soil propertise influencing the tempreture of the soil surface[J].Agic Wtaer Mnaage,1983,6:213-226.
    [6]徐吉炎.土壤调查数据地域统计的最佳估值研究:彰武县表层土全氮量的半方差图和块状Kriging估值[J].土壤学报,1983,20(4):419-430.
    [7]王政权.地质统计学及在生态学中的应用[M].科学出版社.1999.
    [8]Wester R.Quantitative spatial anlaysis of soil in the field[J].Ad-vnace in Soil Science,1985,3:1-70.
    [9]雷志栋,杨诗秀,许志荣,等.土壤特性空间变异性初步研究[J].水利学报,1985,9:10-21.
    [10]陈志雄,VAUCLIN M.封丘地区土壤水分平衡研究:田间土壤湿度的空间变异[J].土壤学报,1989,26(4):309-315.
    [11]吕军,俞劲炎.水稻土物理性质空间变异性研究[J].土壤学报,1990,27(1):8-15.
    [12]王学峰,张衡.土壤有机质的空间变异性[J].土壤,1995,2:8-15.
    [13]周慧珍,龚子同,LAMP J.土壤空间变异性研究[J1.土壤学报,1996,33(3):232-241.
    [14]张有山,林启美,秦耀东,等.大比例尺土壤养分空间变异定量分析[J].华北农学报,1998,l3(1):122-128.
    [15]胡克林,李保国,林启美,等.农田养分的空间变异性特征[J].农业工程学报,1999,l5(3):33-38.
    [16]李毅,门旗,罗英.土壤水分空间变异性对灌溉决策的影响研究[J].干旱地区农业研究,2000,l8(2):80-85.
    [17]SOIL SURVEY SAFE Soil Taxonomy:A Basic System of Soil Clas-Sifiaction ofr Making and Interpreting Soil Surveys[M].Wsahington,DC:US Govenrment Printing Office,1975.
    [18]Chen J,Hopmans J W,FOGG G E.Samplnig design for soil moisture measurements in large field trials[J].Soil Sci,1995,159(3):155-161.
    [19]Pierce F J,Sadler E J.The State of Site Spceific Management for Agriculture[M].Madison,WI:ASA Miscellaneous Publication,1997.
    [20]Cambardella C A,Moorman T B,Parkin T B,et a1.Field-scale Variability of Soil Properties in Central Iowa Soils[J].Soil Sci Soc Am J,1994,58:l50l-l5l1.
    [21]Smettem K R J.Characterization of water netry into a soil with a contrasting texturalclass:spatial variability of infiltration parameters and influence of macroporosity [J].Soil Sci,1987,144(3):167-174.
    [22]Burrough PA. Soil variability: a late 20th century view. Soil and Fertilizers[J].1993,56(5): 529-562.
    [23]Issaks EH and Srivastava RM. An introduction to applied geostatistics[M]. Oxford Univ. Press, New York, USA,1989.
    [24]Lascano R J,Hatield J L.Spatial variability of evaporation along two transects of a bare soil[J].Soil Sci Soc Am J,1992,56:341-346.
    [25]Richard K,Baccho S S.Hydraulic variability in space and Time in a dark red latosol of the tropics[J].Geoderma,1993.60:159-168.
    [26]Andrew W W,Cunter B,Rodger B G. Geostatistical charac-terisation of soil moisture patterns in Tarrawarra catchment[J].Joumal of Hydrology,1998,205:20-37.
    [27]龚元石,廖超子,李保国.土壤含水量和容重的空间变异及分形特征[J].土壤学报,1998,35(1):10-15.
    [28]王军,傅伯杰,邱扬,等.黄土丘陵小流域土壤水分的时空变异特征:半变异函数[J].地理学报,2000,55(4):4284-38.
    [29]Bonmati M,Ceccanti B,Nanniperi P. Spatial variability of phosphatase, urease, protease,organic carbon and total nitrogen in soil[J].Soil Boil Boichem.1991.23:39l-396.
    [30]Webster R, Nortcliff S. Improved estimation of micronutrients in hectare plots of the sonning series[J]. J Soil Sci,1984,35:667-672.
    [31]Bolland M DA,Allen D G. Spatial variation of soil test phosphorus and potassium,oxalate-extractable iron and aluminum,phos-phorus-retention index, and organic carbon content in soils of western Australia[J].Communi Soil Sci Plant Anal,1998,29(3-4):381-392.
    [32]李菊梅,李生秀.几种营养元素在土壤中的空间变异[J]、干旱地区农业研究,1998,l6(2):58-64.
    [33]Yost R S,Uehara G .Fox R L.Geostatistical analysis of soil chemical properties of large land areas:I.Semivariograms[J].Soil Sci Soc Am J,1982,46:l028-l037.
    [34]Whiet J G, Welch R M,Norvellw A.Soil Zn map of USA using geostatistics and geographic in formation systems[J].Soil Sci Soe Am J.1997,6l:185-194.
    [35]郭旭东,傅伯杰,马克明,陈利顶.基于地统计学的土壤养分空间变异特征研究:以河北遵化市为例[J].应用生态学报,2000, (4):557-563.
    [36]Aiken R M,Jawson M D,Grahammer R K.et a1.Positional,spatially correlated and random components of variability in carbon dioxide flux[J].Environ Qual,1991,20:301-308.
    [37]Rochette P, Desjardins R L,Pattey E. Spatial and temporal variability of soil respiration in agricultural fields[J].Can J Soil Sci,1991,71:189-196.
    [38]白由路,李保国,胡克林黄淮海平原土壤盐分及其组成的空间变异特征研究田土壤肥料,1999,3:22-26.
    [39]李振高,俞慎,潘映华,等水稻根际硝化-反硝化生态因子的水平空间变异[J].土壤学报,1999,36(1):111-117.
    [40]Berndtsson R, Bahri A and Jinno K. Spatial dependence of geochemical elements in a semiarid agricultural field: ll. Geostatistical properties[J]. Soil Sci. Soc. Am.J.1993,57:1323-1329.
    [41]Stolt MH, Baker JC and Simpson TW. Soil-landscape relationships in Virginia: Soil variability and parent material uniformity [J]. Soil Sci. Soc. Am. J. 1993, 57:414-421.
    [42]Itaru Okuda, Masanori Okazaki and Takusei Hashitani. Spatial and temporal variations in the chemical weathering of Basaltic materials[J]. Soil Sci. Soc. Am. J. 1995, 59:887-894.
    [43]Mulla D J.Mapping and managing spatial patterns in soil fertility and crop yield[M]. In: Robert PC, Rust RH and Larson WE, eds. Soil specific crop management. ASA, CSSA, SSSA, Madison ,WI.1993,15-26.
    [44]Ovalles F A and Collins ME. Soil-landscape relationships and soil variability in north central[J]. Soil Sci. Soc. Am. J. 1986,50:401-408.
    [45]Miller P M , Singer MJ and Nielsen DR. Spatial variability of wheat yield and soil properties on complex hills[J]. Soil Sci. Soc. Am. J.1988,52:1133-1141.
    [46]Franzen D W ,Cihacek LJ and Hofman VL.Varibility of soil nitrate and phosphate precision agriculture. Minneapoils, Minnesota, ASA, CSSA, SSSA. 1996,521-529.
    [47]Mallarino A P. Patterns of spatial variability for phosphorus and potassium in no-tilled soils for two sampling scales[J]. Soil Sci. Soc. Am. J.1996,60:1473-1481.
    [48]Kitchen N R, Havlin JL and Westfall DG. Soil sampling under no-till banded phosphorus [J]. Soil Sci. Soc. Am. J.1990,54:1661-1665.
    [49]Mathler R L. Soil sampling fields that have received banded fertilizer applications. Commun[J]. Soil Sci. Plant Anal. 1990,21:1793-1802.
    [50]Tyler DD and Howard DD. Soil sampling patterns for assessing no-tillage fertilization techniques[J].J. Fert. Issues.1991,8:52-56.
    [51]James D W and Hurst R L. Soil sampling technique for band fertilized, no-till fields with Monte Carlo Simulations[J]. Soil Sci. Soc. Am. J.1995,59:1768-1772.
    [52]Wollenbaupt N C, Wolkowski RP and Clayton MK. Mapping soil test phosphorus and potassium for variable-rate fertilizer application[J].J.Prod. Agric.1994,7:441-448.
    [53]Hillel D. Research in soil physics: a review[J].Soil Sci. 1991,151:30-34.
    [54]Campbell J B. Spatial variation of sand content and Ph within single contiguous delineatio n of two soil mapping units[J]. Soil Sci. Am. J. 1987,42:460-464.
    [55]Kollias V J,Kalivas DP and Yassoglou NJ. Mapping the soil resources of a recent alluvial plain in Greece using fuzzy sets in a GIS environment[J].European Journal of Soil Science.1999,50:261-273.
    [56]Ahn C-W, Baumgardner MF and Biehil LL. Ddlineation of soil variability using geostatistics and fuzzy clustering analyses of huperperctral data[J]. Soil Sci.Soc.Am.J.1999,63:142-150.
    [57]Cambardella CA, Moorman TB,Parkin TB, Karlen DL, Turco RF, Konopka AE. Field-scale variability of soil properties in central Iowa soils[J].Soil Sci.Soc.Am.J.1994,58:1501-1511.
    [58]Trangmar BB, Yost RS and Uehara G.Application of geostatistics to spatial studies of soil properties[J]. Advance in Agronomy, Academic Press.1985,38:45-94.
    [59]秦耀东.土壤空间变异研究中的定量分析[J].地球科学进展,1992,7(1):44-49
    [60]Bahri A,Berndtsson R.Nitrogen Source impact on the spatial variability of organic carbon and nitrogen in soil[J].Soil Sci,1996,161(5):288-297.
    [61]肖斌,赵鹏大,侯景儒.地质统计学新进展[J].地球科学进展,2000,l5(3):293-297
    [62]张淑光著.武功土壤[M].陕西科学技术出版社.1987.
    [63]Miller M P, Singer M J, Nielsen D R. Spatial variability of wheat yield and soil properties on complex hills[J]. Soil Sci Soc Am J, 1988,52:1133-1141.
    [64]Dvalls F A, Collins M E. Soil-landscape relationships and soil variability in north central Florida[J]. Soil Soc Am J, 1986,50:401-408.
    [65]Saldana A, Stein A, Zinck J A. Spatial variability of soil properties at different scales within three terraces of the Henare Ricer(Spain)[J]. Catena, 1998,33(3):139-153.
    [66]Gaston L A, Locke M A, Zablotowicz R M, et al. Spatial variability of soil properties and weed populations in the Mississippi Delta[J]. Soil Soc Am J, 2001, 65:449-459.
    [67]姚荣江,杨劲松,刘广明,等.黄河三角洲地区典型地块土壤盐分空间变异特征研究[J].农业工程学报,2006,22(6):61-66.
    [68]王铁宇,罗维,吕永龙,等.官厅水库周边土壤重金属空间变异特征及风险分析[J].环境科学,2007,28(2):225-231.
    [69]Shen Z Q, Shi J B, Wang K, et al. Neural network ensemble Kriging application for spatial variability of soil properties[J]. Pedosphere,2004,14(3):289-296.
    [70]姜勇,庄秋丽,梁文举,等.空间变异在土壤性质长期定位观测及取样中的应用[J].土壤通报,2005,36(4):531-535.
    [71]赵永存,史学正,于东升,等.不同方法预测河北省土壤有机碳密度空间分布特征的研究[J].土壤学报,2005,42(13):380-385.
    [72]Zhang S R, Sun B, Zhao Q G, et al. Temporal spatial variability of soil organic carbon stocks in a rehabilitating ecosystem[J]. Pedosphere,2004,14(4):501-508.
    [73]李亮亮,依艳丽,凌国鑫.地统计学在土壤空间变异研究中的应用[J].土壤通报,2005,36(2):265-268.
    [74]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究----以河北省遵化市为例[J].用生态学报,2000,11(4):557-563.
    [75]赵军,张久明,孟凯.地统计学及GIS在黑土区域土壤养分空间异质性分析中的应用[J].水土保持通报2004,24(6):53-57.
    [76]梁中龙,甘海华,戴军,等.广州岑村农用地土壤养分空间变异性研究[J]华南农业大学学报,2004,25(7):22-25.
    [77]苏伟,聂宜民,胡晓洁,等.利用Kriging插值方法研究山东龙口北马镇农田土壤养分的空间变异.安徽农业大学学报,2004,31(1):76-81.
    [78]赵彦锋,史学正,于东升,等.小尺度土壤养分的空间变异及其影响因素探讨--以江苏省无锡市典型城乡交错区为例[J].土壤通报2006,37(2):214-215.
    [79]Frogbrook Z L, Oliver M A. Comparing the spatial predictions of soil matter determined by two laboratory methods[J]. Soil Use and Management, 2001,17(4):235-244.
    [80]冯娜娜,李廷轩,张锡洲,等.不同尺度下低山茶园土壤有机质含量的空间变异[J].生态学报,1998,9(6):651-657.
    [81]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:30-3.
    [82]鲍士旦.北京:土壤农化分析[M].中国农业出版社,2000:202-205.
    [83]姜秋香,付强.空间变异理论在土壤特性分析中的应用研究进展[J].水土保持研究.2007,14(4).
    [84]张淑光著.武功土壤[M].陕西科学技术出版社.1987,38-40.
    [85]Blair G J, Lefroy R D B,Lisle L.Soil carbon fraction sbased on their degree of oxidation and the development of acarbon managemen Index for agricultural systems.Aust.J.Agric.Res.,1995,46:1459-1466.
    [86]Janzen H H, Campbell C A, Brandt S A, et al. Light-fraction organic matter in soils from long-term croprotations. Soil Sci .Soc.Am.J.,1992, 56:1799-1806.
    [87]Gregorich E G, Carter M R, Angers D A, et al. To wards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci .,1994, 74:376-385.
    [88]Haynes R J, Beare M H. Aggregation and organic matter storage in meso-thermal, humidsoils. In: Carter MR, Stewart BA.eds. Advances in soil science. Structure and organic matter storage in agriculture soils. CRC Lewis Publishers, Boca Raton, 1996.213-262.
    [89]Dalal R C, Mayer R J. Long-term trends in fertility of soil sunder continuous cultivation and cereal cropping in Southern Queensland. IV. Loss of organic carbon from different density fractions. Aust.J.SoilRes.,1986, 24:301-309.
    [90]Whitbread A M, Lefroy R D B, Blair G J. Asurvey of the impac t of cropping on soil physical and chemical properties in northwestern New South Wales. Aust.J.Agric.Res.,1998, 36:669-681.
    [91]Biederbeck B O, Zentner R P. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biology Biochem.,1994, 26(12):1647-1656.
    [92]黄昌勇.土壤学[M].北京:中国农业出版社,2003.
    [93]李祖荫.石灰性土壤中碳酸钙在固磷作用中的地位[J].西北农林科技大学学报(自然科学版),1982,02.
    [94]涂书新,郭智芬,孙锦荷.土壤氯研究的进展[J].土壤.1998,(3):125-130.
    [95]宁运旺,张永春,吴金桂.土壤植物系统中的氯及施用含氯肥料的几个问题[J].土壤通报.2001,32(5):222-224.
    [96]孙慧敏,王益权,刘军,等.氯离子在土壤水分与作物生长关系研究中的指示作用[J].西北植物学报.2006,26(11):2302-2306.
    [97]Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physics -chemical soil properties [J].Biol Fertil Soils, 1998, 27: 315–334.
    [98]张淑娟,何勇,方慧.基于GPS和GIS的田间土壤特性空间变异性的研究[J].农业工程学报.2003,19(3):39-44.
    [99]SoaneB D, van Ouwerkerk C.Soil compaction in cropproduction [J].Elsevier, Amsterdam, 1994, 56(4):198-204.
    [100]Hakansson I, Voorhees W B. Soil compaction. In: Lal ,R.,Blum,W.H., Methods forassessment of soil degradation [J].CRC Press, Boca Raton, FL, 1998, 167-179.
    [101]李汝莘,林成厚,高焕文等.小四轮拖拉机土壤压实的研究[J].农业机械学报,2002,33(1):126-129.
    [102]Berry E C.Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues[J] . Biology and Fertility of Soils,2000, 30(5-6):544-549.
    [103]Carman K.Compaction characteristics of to wed wheels on clay loam in a soil bin [J].Soil and Tillage Research,2002, 65(1):37-43.
    [104]Rao Msrm, Kathavate Y V. Effect of soil compaction on the yields of wheat and maize[J].Indian Journal of Agronomy,1972,17(3):199-205.
    [105]SinghK K, GyatriVerma, VermaG . Effect of soil compaction on physical properties of loamy sand soil and yield of groundnut [J].Research on Crops,2001,2(2):145-147.
    [106]MarsiliA.Changes of some physical properties of a clay soil following passage of rubber and metal tracked tractors [J].Soil and Tillage Research,1998, 49(3):185-199.
    [107]姜秋香,付强.空间变异理论在土壤特性分析中的应用研究进展[J].水土保持研究.2007,14(4).
    [108]Cam bardella C A, Moorman T B, Novak J M. Field scale variability of soil properties in Central Iowa soils [J].Soil Science Soc Am J, 1994, 58: 1501-1511.
    [109]刘晚苟,山仑,邓西平.植物对土壤紧实度的反应[J].植物生理学通讯,2001,37(3):254-260.
    [110]柯夫达.土壤学原理[M].中国科学出版社,1981.
    [111]格雷戈里等.作物根的发育与功能[M].四川大学出版社,1992.
    [112]Mbagwu JSC,et al.1989.Effcet of tillage measure on soi1 agre-gate porperties.Soil Use M an,5(4):180-187.
    [113]Six J,Elliott ET,Paustian K,Doran Jw.1998.Aggregation and Soil organic matter accumulation in cultivated and native grass land soils.Soil Soc Am J,62:1367-137.
    [114]彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展.土壤学报,2004,41(4):618-623。[2]Amezketa E.Soil aggregate stability:a review.Journal of Sustainable agriculture,1999,14(2/3):83-151.
    [115]Haynes PJ.1999.Labile organic matter fractions and aggregate stability under short-term,grass-based 1eys.Soil Biol Biochem,31(13):1821-1830.
    [116]Liang Y.H(梁玉衡).1983.Relationship between soil structure And soil fertility.Chin Soil J Sci(土壤通报),(1):30-32 (in Chinese).