化学改性生物吸附剂合成及其对重金属离子吸附行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的迅速发展,重金属污染日趋严重。如何消除重金属的危害并有效地回收重金属是当今环境保护工作面临的突出问题。生物吸附作为一种新兴的重金属去除回收方法,具有原料来源广泛、吸附效率高、环境友好、不产生二次污染等优点,展现了良好的应用前景。
     本论文分别以常见农林废弃物橘子皮(OP)和杉树皮(Bark)为原料,通过化学改性的手段,分别制备改性橘子皮生物吸附剂和改性杉树皮生物吸附剂,详细研究了它们对水溶液中重金属离子的吸附行为。采用化学耗氧量、Zeta电位、扫描电镜、光电子能谱、红外光谱、化学成分分析等分析手段对生物吸附剂进行了表征;通过静态实验方法考察了溶液平衡pH值、温度、固液比、时间、金属离子浓度对吸附的影响;分析了各个元素的吸附动力学、吸附热力学及吸附等温线;对改性橘子皮生物吸附剂通过动态吸附实验探索了低pH下铅锌或铅镍溶液的分离;考察了生物吸附剂的循环使用性能及对多组分溶液的竞争吸附行为;并对吸附机理进行了探讨。
     橘子皮和杉树皮的主要成分为果胶、纤维素、半纤维素和木质素,含有丰富的官能团,具备一定的吸附重金属离子的能力,但吸附效果不理想,因此通过化学改性的手段,分别制备了硫化改性橘子皮生物吸附剂——巯基乙酸改性橘子皮(MOP)、黄原酸化橘子皮(XOP);氯化盐改性橘子皮生物吸附剂——氯化镁改性橘子皮(MgOP)和氯化钾改性橘子皮(KOP),及三种改性杉树皮生物吸附剂——甲醛缩合改性杉树皮(FB)、稀硫酸改性杉树皮(AB)和浓硫酸缩合改性杉树皮(CB)。
     系统研究了四种改性橘子皮生物吸附剂用于水溶液中Cu2+、Cd2+Pb2+、Zn2+和Ni2+的吸附行为,得到相似的吸附规律:最佳吸附平衡pH值为5.0~5.5;吸附过程为放热过程;吸附速度都很快,在20min内基本达到吸附平衡,吸附动力学均符合准二级动力学方程;计算得到MOP、XOP、MgOP和KOP对Cu2+、Cd2+、Pb2+、Zn2+和Ni2+的最大吸附量均高于原始橘子皮OP的吸附量,说明改性过程成功嫁接了有效官能团或使更多活性位点暴露在吸附剂表面;吸附了金属离子的改性橘子皮生物吸附剂可以用0.1mol/L HCl溶液解吸再生。动态吸附结果表明,MOP和XOP可以实现水溶液中Pb2+与Zn2+的分离;MgOP和KOP可以实现水溶液中Pb2+与Ni2+的分离。根据吸附前后溶液pH的变化和红外光谱中特征吸收峰的移动,说明在改性橘子皮生物吸附剂吸附过程中主要发生了重金属离子与活性官能团(羟基、羧基和含硫基团)的离子交换反应及少量的表面配合反应。
     深入研究了氯化盐改性橘子皮生物吸附剂MgOP和KOP对两组分溶液的竞争吸附效应。常见K+、Na+、Ca2+和Mg2+的存在对MgOP和KOP吸附重金属离子Cu2+、Pb2+和Ni2+的影响较小,但高浓度的Ca2+和Mg2+会抑制目标离子的吸附。对两个二元系Cu/Pb和Ni/Pb的吸附行为表明Pb2+对Cu2+和Ni2+离子的吸附表现为抑制作用,而Cu2+或Ni2+的共存对Pb2+的吸附作用非常复杂,抑制作用和促进作用共同作用,与溶液中金属离子浓度有很大关系。
     详细研究了三种改性杉树皮生物吸附剂对水溶液中Cr(Ⅵ)的吸附行为。低的溶液pH值有利于FB、AB和CB对Cr(Ⅵ)的去除,吸附过程伴随Cr(Ⅵ)还原为Cr(Ⅲ)的反应;初始pH越低,达到吸附平衡的时间越短,三种吸附剂达到吸附平衡的快慢顺序为CB>AB>FB;杉树皮生物吸附剂对Cr(Ⅵ)的吸附还原属于吸热反应;吸附动力学的研究结果表明,三种吸附剂在不同温度下的吸附动力学均更符合准二级动力学方程,颗粒内扩散模型拟合结果表明FB、AB和CB对Cr(Ⅵ)的吸附速率由膜扩散和内扩散共同控制;吸附等温线结果表明,FB、AB和CB在不同初始pH下对Cr(Ⅵ)的吸附均较符合Langmuir单分子层吸附模型,初始pH越低,吸附量越大,当初始pH为1时,CB、AB和FB对Cr(Ⅵ)的最大吸附量分别达到735、483和.444mg/g,远高于文献报道的一些农林废弃物生物吸附剂对Cr(Ⅵ)的最大吸附量。
     三种杉树皮生物吸附剂对Cr(Ⅵ)的吸附机理为“吸附-还原”机理,在吸附过程中,Cr(Ⅵ)首先以阴离子形式吸附到吸附剂表面,随后主要被木质素及其衍生物分子结构上的给电子基团还原为Cr(Ⅲ),还原得到的Cr(Ⅲ)则以配合物的形式与吸附剂表面的羟基、羧基和甲氧基相结合。
     本研究为高效利用废弃物质橘子皮、杉树皮及其用于含重金属废水处理提供了重要基础性数据。
With the fast development of modern industry, heavy metal contaminant becomes more severe. How to elimnate the damage and effectively recover heavy metals is the outstanding problem of current environmental protection work. Biosorption as a novel heavy metal removal technology has many advantages, including abundant resource, low cost, high metal binding capacity, environmental friendly and without second pollution, which make biosorption have a wide application prospect.
     In this paper, orange peel (OP) and spruce bark were chosen as the raw material to prepare modified orange peel biosorbents and modified spruce bark biosorbents through chemical modification. The adsorption behaviors for heavy metal ions by these biosorbents were investigated. The characterizations of biosorbents were determined by COD, Zeta potential, SEM, XPS, FTIR and so on. The effects of various parameters, including solution pH, temperature, solid/liquid ratio, adsorption time and metal ion concentration on the adsorption process were investigated by using batch adsorption techniques. The adsorption thermodynamic, adsorption kinetics and adsorption isotherms of each metal ion by each adsorbent were analyzed systematically and the values of adsorption heat, maximum adsorption capacity and average adsorption energy were calculated. The separation of lead/zinc and lead/nicole under low pH values was conducted by column adsorption experiments. Furthermore, the technology of desorption and reuse for the modified orange peel and competitive adsorption behavior of binary metal ion system were also tested. The adsorption mechanisms were discussed through instrumental identification.
     The main components of orange peel and spruce bark are pectine, cellulose, hemi-cellulose and lignin, which have ability to bind heavy metal ions, but show lower adsorption capacity. By chemically modification, four kinds of orange peel biosorbents were prepared:MOP, XOP, MgOP and KOP which were modified by mercapto-acetic acid, carbon disulfide, magnesium chloride and potassium chloride, respectively and three kinds of spruce bark biosorbents were prepared: FB, AB and CB, which were modified by formaldehyde, dilute sulfuric acid and concentrated sulfuric acid, respectively.
     The adsorption behaviors of modified orange peel biosorbents for the removal of Cu2+, Cd2+, Pb2+, Zn2+and Ni2+were investigated, and similar results were obtained:best equilibrium adsorption pH range was5.0-5.5; adsorption process was exothermic; fast adsorption rate was noticed that adsorption equilibrium could be reached within20minutes. All the adsorption processes could be well described by the pseudo-second-order equation. The calculated maximum adsorption capacities for Cu2+, Cd2+,Pb2+, Zn2+and Ni2+by MOP, XOP, MgOP and KOP were higher than orinigal orange peel, which confirm the chemical modification processes successfully improve the adsorption ability of OP through adding functional groups or making more active sites exposure on the adsorbent surface. Metal loaded adsorbents could be regenerated using0.1mol/L HC1solution and repeatedly for ten times with little loss of adsorption capacity. The results of column adsorption experiments suggested that effective mutual separation of Pb2+away from Zn2+can be realized by MOP and XOP, and mutual separation of Pb2+away from Ni2+by MgOP and KOP could be satisfactorily achieved. Based on the analysis of the change of solution pH and movement of typical adsorption peaks in FTIR spectrum before and after heavy metal adsorption, the adsorption mechanism of modified orange peel biosorbents was mainly ion exchange and little complexation between heavy metal ions and functional groups (-OH,-COOH and sulfur bearing groups) on the surface of biosorbents.
     The competitive adsorption behavior for binary metal ion solutions by MgOP and KOP were discussed. The effects of the existence of common cations including K+, Na+, Ca2+and Mg2+on the adsorption of Cu2+, Pb2+and Ni2+by MgOP and KOP were negligible, but high concentrations of Ca2+and Mg2+will interfere the adsorption of target metal ions. MgOP and KOP were used to test the competitive adsorption behavior of two binary systems:Pb/Cu and Pb/Ni. And the results showed that the effects of Pb2+ions on the uptake capacities of Cu2+and Ni2+ions were antagonistic, whereas the effect of the coexistence of Cu2+or Ni2+ions in the binary mixture on the adsorption of Pb2+was very complicated and could be considered to be a combination of antagonistic and synergistic depending on the metal ion concentration in the mixtures.
     The adsorption behavior for the removal of Cr(Ⅵ) from aqueous solutions by modified spruce bark biosorbents were investigated. Spruce bark biosorbents has higher relative lignin content and more porous morphology, which plays a very important role in the adsorption of Cr(Ⅵ). The results of thr modified spruce bark biosorbents for the removal of Cr(VI) indicated that:lower pH was benefical for the adsorption of Cr(Ⅵ) by FB, AB and CB; adsorption process was accompanied by reduction reaction from Cr(Ⅵ) to Cr(Ⅲ); the lower the initial solution pH, the shorter the time to reach equilibrium, the speed order of the three spruce biosorbents was CB>AB>FB; the adsorption process was endothermic. Under different temperatures, all the adsorption processes could be well described by the pseudo-second-order equation. Fitting results of intra-particle diffusion model indicated that the adsorption process was controlled by both film and intraparticle diffusion. By analyzing the adsorption isotherms, the adsoprtion of Cr(Ⅵ) on FB, AB and CB fitted Langmuir model better. The lower the initial solution pH, the higher the adsorption capacity. When the initial pH was1, the maximum adsorption capacties of FB, AB and CB for the adsorption Cr(Ⅵ) were735,483and444mg/g, which were much higher than the reported adsorption capacities in literatures. The obtained results give a answer that there is no need to use traditional formaldehyde for modification method.
     The Cr(Ⅵ) adsorption processes by three kinds of spruce bark biosorbents were supposed to be typical adsorption-coupled reduction mechanism. During adsorption, Cr(Ⅵ) was first be adsorbed as anoin ions onto the surface of bark biosorbents, then was reduced to Cr(Ⅲ) by electron donor groups on the lignin and lignin derivatives, after that, the Cr(Ⅲ) was adsorbed onto the biosorbent surface through surface complexation with hydroxy, carboxyl and methoxy.
     This paper provides important foundmental date for the effective reuse of watste orange peel and spruce bark and their applications for heavy meatl ion wastewater treatment.
引文
[1]于萍,任月明,张密林.处理重金属废水技术的研究进展[J].环境科学与管理,2006,31(7):103-105.
    [2]贾广宁.重金属污染的危害与防治[J].有色矿冶,2004,20(1):39-42.
    [3]张建梅.重金属废水处理技术研究进展[J].西安联合大学学报,2003,6(2):55-59.
    [4]王绍文,姜风有.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    [5]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1996.
    [6]徐海生,赵元风,吕景才等.水环境中重金属的生物积累研究及应用[J].四川环境,2006,25(3):101-103.
    [7]陈静生,周家义.中国水环境金属研究[M].北京:中国环境科学出版社,1988:3-5.
    [8]佟玉衡.实用废水处理技术[M].北京:化学工业出版社,1998.
    [9]胡海祥.重金属废水治理技术概况及发展方向[J].中国资源综合利用,2008,26(2):22-25.
    [10]谈明辉.重金属废水治理技术的现状[M].环境科学与技术,1997:35-37.
    [11]刘剑彤,肖邦定,陈珠金.曝气混凝一体法去除碱性废水中砷的研究[J].中国环境科学,1997,17(2):184-187.
    [12]上海环保局编.废水物化处理[M].上海:同济大学出版社,1999.
    [13]杨彤.化学法处理重金属离子废水的改进[J].电镀与精饰,1999,21(5):38-42.
    [14]丁明,曾桓兴.铁氧体工艺处理含重金属污水研究现状及展望[J].环境科学,1992,13(2):77-81.
    [15]刘淼,董德明.光催化法处理电镀含铬废水的研究[J].吉林大学学报(自然科学版),1998,33(4):98-102.
    [16]杨骏,秦涨峰,陈戎英.活性碳吸附水中铅离子的动态研究[J].环境科学,1997,16(5):423-427.
    [17]高效江,戎秋涛.麦饭石对金属的吸附作用研究[J].环境污染与防治,1997,19(4):4-8.
    [18]杨智宽.用蛇纹石处理含钢废水的研究[J].环境科学技术,1997,10(2): 15-17.
    [19]周勤俭,李先柏,杨静等.大洋多金属结核吸附重金属离子的研究[J].湿法冶金,1999,69(1):51-53.
    [20]程树培,崔益斌,杨柳燕.高絮凝性微生物育种生物技术研究与应用进展[J].环境科学进展,1995,12(1):65-69.
    [21]马士军.微生物絮凝剂的开发及应用[J].工业水处理,1997,12(1):7-10.
    [22]彭清涛.植物在环境污染治理中的应用[J].环境保护,1998,(2):24-27.
    [23]Ruchhoft C C. The foundation of successful industrial waste disposal to municipal sewage works [J]. J. Sweage Works,1949,21(5):877-879.
    [24]王岚,杜郢.生物吸附剂及其应用[J].江苏工业学院学报,2006,18(3):61-64.
    [25]白红娟,张肇铭,杨官娥等.球形红细菌转化去除重金属镉及其机理研究[J].环境科学学报,2006,26(11):1809-1814.
    [26]范瑞梅,张保国,张洪勋等.克劳氏芽孢杆菌(Bacillus clausii S-4)吸附Zn2+的研究[J].环境工程学报,2007,1(8):44-47.
    [27]黄富荣,尹华,彭辉等.红螺菌对Cu2+的吸附研究[J].工业微生物,2005,35(1):16-20.
    [28]Zouboulis A I, Loukidou M X, Matis K A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils[J]. Process Biochemistry,2004,39(8):909-916.
    [29]Ansari M I, Malik A. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater[J]. Bioresource Technology,2007,98(16):3149-3153.
    [30]黄民生,施华丽,郑乐平.曲霉对水中重金属的吸附去除[J].上海环境科学,2002,21(2):89-92.
    [31]陈建梅,钮因安,孙林娟等.东京根霉对水中重金属离子铜、镍吸附的研究[J].湖州师范学院学报,2005,27(2):51-54.
    [32]Akar T, Tunali S. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution[J]. Bioresource Technology,2006,97(15):1780-1787.
    [33]Melgar M J, Alonso J, Garcia M A. Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus[J]. Science of the Total Environment,2007,385(1-3):12-19.
    [34]陈灿,王建龙.酿酒酵母吸附重金属离子的研究进展[J].中国生物工程杂 志,2006,26(1):69-76.
    [35]Vasudevan P, Padmavathy V, Dhingra S C. Biosorption of monovalent and divalent ions on baker's yeast[J]. Bioresource Technology,2002,82(3):285-289.
    [36]Jahan K, Mosto P, Mattson C, et al. Metal uptake by algae. In:Popov V, Itoh H, Brebbia C A, Kungolos S, Waste Management and the Environment Ⅱ, WIT press, Southampton, Boston,2004:223-232.
    [37]江用彬,季宏兵.藻类对重金属污染水体的生物修复[J].地理科学进展,2007,26(1):56-67.
    [38]Romera E, Gonzalez F, Ballester A, et al. Comparative study of biosorption of heavy metals using different types of algae[J]. Bioresource Technology,2007, 98(17):3344-3353.
    [39]Herrero R, Lodeiro P, Rojo R, et al. The efficiency of the red alga Mastocarpus stellatus for remediation of cadmium pollution[J]. Bioresource Technology,2008, 99(10):4138-4146.
    [40]Basha S, Murthy Z V P. Kinetic and equilibrium models for biosorption of Cr(VI) on chemically modified seaweed, Cystoseita indica[J]. Process Boichemistry, 2007,42(11):1521-1529.
    [41]刘传富,孙润仓,孙爱萍等.农林废弃物处理工业废水的研究进展[J].现代化工,2006,26(1):84-87.
    [42]黄翔,宗浩,陈文祥,等.花生壳对水溶液中铜离子的吸附特性[J].四川师范大学学报(自然科学版),2007,30(3):380-383.
    [43]廖朝东,廖正福.花生壳的综合利用研究(一)——花生壳改性制备重金属吸附剂初探[J].广西师范学院学报,2004,21(1):68-70.
    [44]史晓燕,肖波,李建芬等.锯末在重金属废水处理中的应用[J].工业水处理,2007,27(4):9-12.
    [45]Larous S, Meniai A, Lehocine M B. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust[J]. Desalination,2005, 185(1-3):483-490.
    [46]Shukla S S, Yu L J, Dorris K L, et al. Removal of nickel from aqueous solutions by sawdust[J]. Journal of Hazardous Materials,2005,121(1-3):243-246.
    [47]Kalavathy M H, Karthikyan T, Rajgopal S. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust[J]. Journal of Colloid and Interface Science,2005,292(2):354-362.
    [48]Shukla S R, Pai R S. Adsorption of Cu(Ⅱ), Ni(Ⅱ) and Zn(Ⅱ) on dye loaded groundnut shells and sawdust[J]. Separation and Purification Technology,2005, 43(1):1-8.
    [49]Chubar N, Carvalho J R, Correia M J N. Heavy metals biosorption on cork biomass:Effect of the pretreatment[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2004,238(1-3):51-58.
    [50]Chubar N, Carvalho J R, Carval H, et.al. Cork biomass as biosorbent for Cu(Ⅱ), Zn(Ⅱ) and Ni(Ⅱ)[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2003, 230(1-3):57-65.
    [51]Jacques R A, Limaa E C, Dias S L P, et al. Yellow passion-fruit shell as biosorbent to remove Cr(Ⅲ) and Pb(Ⅱ) from aqueous solution. Separation Purification Technology,2007,57(1):193-198.
    [52]Dahiya S, Tripathi R M, Hegde A G. Biosorption of lead and copper from aqueous solutions by pre-treated crab and arca shell biomass. Bioresource Technology,2008,99(1):179-187.
    [53]Ahluwalia S S, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater[J]. Bioresource Technology,2007,98(12): 2243-2257.
    [54]Dhakal R P, Ghimire K N, Inoue K. Adsorptive separation of heavy metals from an aquatic environment using orange waste[J]. Hydrometallurgy,2005, 79(3-4):182-190.
    [55]Parajuli D, Inoue K, Ohto Keisuke, et al. Adsorption of heavy metals on crosslinked lignocatechol:a modified lignin gel[J]. Reactive & Functional Polymers,2005,62(2):129-139.
    [56]Panda G C, Das S K, Bandopadhyay T S, et al. Adsorption of nickel on husk of Lathyrus sativus:Behavior and binding mechanism[J]. Colloids and Surfaces B: Biointerfaces,2007,57(2):135-142.
    [57]潘响亮,王建龙,张道勇等.硫酸盐还原菌群胞外聚合物对Cu2+的吸附和机理[J].水处理技术,2005,31(9):35-39.
    [58]Parajuli D, Kawakita H, Inoue K, et al. Persimmon peel gel for the selective recovery of gold[J]. Hydrometallurgy,2007,87(3-4):133-139.
    [59]Parajuli D, Inoue K, Kuriyama M, et al. Reductive adsorption of gold(Ⅲ) by crosslinked lignophenol. Chem. Lett.,2005,34(1):34-38.
    [60]Parajuli D, Adhikari C R, Kuriyama M, et al. Slective recovery of gold by novel lignin-based adsorption gels[J].2006,45(1):8-12.
    [61]Ogata T, Nakano Y. Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin[J]. Water Research,2005,39(18):4281-4286.
    [62]柏云,张静,冯易君.生物吸附法处理含铀废水研究进展[J].四川环境,2003,22(2):9-13.
    [63]Brady D, Stoll D A, Starke L. Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell wall of saccharomyces crevisiae[J]. Biotech Bioeng,1994,44(3):297-302.
    [64]王宪,徐鲁荣,陈丽丹等.海藻生物吸附金属离子技术的特点和功能[J].台湾海峡,2003,22(1):120-124.
    [65]陈敏,甘一如.重金属的生物吸附[J].化学工业和工程,1999,16(1):19-25.
    [66]Hashim M A, Chu K H. Biosorption of cadmium by brown, green and red seaweeds[J]. Chem Eng J,2004,97(2-3):249-255.
    [67]Sampedro M A, Blanco A, Llama M J; et al. Sorption of heavy metals to Phormidium laminosum biomass[J]. Biotechnology and Applied Biochemistry, 1995,22(3):355-366.
    [68]Yan G Y, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii[J]. Water Research,2003,37(18):4486-4496.
    [69]刘刚,李清彪.重金属生物吸附的基础和过程研究[J].水处理技术,2002,28(1):17-21
    [70]Mohanty A K, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites:An overview[J]. Macromolecular Materials and Engineering, 2000,276(3-4):1-24
    [71]Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewable resources:opportunities and challenges in the green materials world[J]. Journal of Polymers and the Environment,2002,10(1-2):19-26
    [72]Namasivayam C, Kadirvelu K. Activated carbons prepared from coir pith by physical and chemical activation methods[J]. Bioresource Technology,1997, 62(3):123-127
    [73]Kadirvelu K, Namasivayam C. Activated carbons from coconut coir-pith as metal adsorbent:adsorption of Cd(Ⅱ) from aqueous solution[J]. Advances in Environmental Research,2003,7(2):471-478
    [74]Garg V K, Gupta R, Kumar R, et al. Adsorption of chromium from aqueous solution on treated sawdust [J]. Bioresource Technol,2004,92(1):79-81.
    [75]Daifullah A A M, Girgis B S, Gad M H. Utilization of agro-residues (rice husk) in small waste water treatment plans[J]. Materials Letters,2003,57(11): 1723-1731
    [76]刘慧英,冯霞.以果物核壳为原料制备活性炭及其改性研究[J].宁夏大学学报(自然科学版),1996,17(2):32-35.
    [77]Aspinall G O. Structural chemistry of the hemicelluloses [J]. Adv Carbohydrate Chem,1959,14:429-468.
    [78]Lewis N G, Yamamoto E. Lignin:Occurrence, biogenesis and biodegradation[J] Annu. Rev. Plant Physiol and Plant Mol. Biol.1990,41:455-496.
    [79]洪树楠,刘明华,范娟等.木质素吸附剂研究现状及进展[J].造纸科学与技术,2004,23(2):38-43.
    [80]张宝善,伍晓红,陈锦屏.柿单宁研究进展[J].陕西师范大学学报(自然科学版),2008,36(1):99-105.
    [81]黄占华,方桂珍.植物单宁的应用及研究进展[J].林产化工通讯,2005,39(5):39-43.
    [82]Yoshitaka O, Hitoshi K. Combination of cellulosic materials ions[J]. Journal of Polymer Science Part A—1.Polymer chemistry,1969,7(8):2087-2095
    [83]Meng L Z, Du C Q, Chen Y Y, et al. Preparation, characterization, and behavior of cellulose-titanium(IV)oxide modified with organosilicone[J]. Journal of Applied Polymer Science,2002,84(1):61-66.
    [84]刘明华,李翔,刘卫国等.一种新型球形纤维素吸附剂的研究[J].精细化工,2001,18(7):401-405.
    [85]Lehrfeld J. Conversion of agricultural residues into cation exchange materials[J]. J. Appl. Polym. Sci.,1996,61(12):2099-2105.
    [86]Reddad Z, Gerente C, Andres Y, et al. Adsorption of several metal ions onto a low-cost bisorbent:Kinetic and equilibrium studies[J]. Environmental Science & Technology,2002,36(9):2067-2073
    [87]Reddad Z, Gerente C, Andres Y, et al. Modeling of single and competitive metal adsorption onto a natural polysaccharide[J], Environmental Science & Technology,2002,36(10):2242-2248.
    [88]Karsheva M I, Hristov J Y, Nenkova S D. Adsorption of lead from aqueous solutions onto technical hydrolyzed lignin[J]. Hungarian Journal of Industrial Chemistry,2000,28(2):151-156.
    [89]Parajuli D, Kawakita H, Inoue K, et al. Recovery of Gold(IⅢ), Palladium(Ⅱ), and Platinum(IV) by Aminated Lignin Derivatives. Ind. Eng. Chem. Res.,2006, 45(19):6405-6412.
    [90]秦小玲,刘艳红.植物单宁在水处理中的研究与应用[J].工业水处理,2006,26(3):8-11.
    [91]马志红,陆忠兵,石碧.单宁酸的化学性质及应用[J].天然产物研究与开发,2003,15(1):87-91.
    [92]Nakano Y, Takeshita K, Tsutsumu T. Adsorption mechanism hexavalent chromium by redox within condensed tannin gel[J]. Water research,2001, 35(2):496-500.
    [93]Parajuli D, Adhikari C R, Kawakita H, et al. Reduction and accumulation of Au(III) by grape waste:A kinetic approach. Reactive & Functional Polymers, 2008,68(8):1194-1199.
    [94]李琳,冯易君,谢家理等.橡椀单宁去除水中有毒重金属离子的研究[J].环境工程,1997,15(5):388-391.
    [95]乔海鸥,丁晓雯,张庆祝.柑橘皮的综合利用[J].浙江农业科学,2003,20(2):147-149.
    [96]Perez-Marin A B, Zapata V M, Ortuno J F, et al. Removal of cadmium from aqueous solutions by adsorption onto orange waste[J]. Journal of Hazardous Materials,2007,139(1):122-131.
    [97]Ajmal M, Rao R A K, Ahmad R, et al. Adsorption studies on Citrus reticulata (fruit peel of orange):removal and recovery of Ni(Ⅱ) from electroplating wastewater[J]. Journal of Hazardous Materials,2000,79(1-2):117-131.
    [98]Noeline B F, Manohar D M, Anirudhan T S. Kinetic and equilibrium modelling of lead(Ⅱ) sorption from water and wastewater by polymerized banana stem in a batch reactor[J]. Separation Purification Technology,2005,45(2):131-140.
    [99]Nakajima A, Sakaguchi T. Recovery and removal of uranium by using plant wastes[J]. Biomass,1990,21(1):55-63.
    [100]Dhakal R P, Ghimire K N, Inoue K. Adsorptive separation of heavy metals from an aquatic environment using orange waste[J]. Hydrometallurgy,2005, 79(3-4):182-190.
    [101]Ghimire K N, Inoue K, Yamaguchi H, et al. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste[J]. Water Research,2003,37(20):4945-4953.
    [102]Ghimire K N, Inoue J, Inoue K, et al. Adsorptive separation of metal ions onto phosphorylated orange waste[J]. Separation Science and Technology,2008, 43(2):362-375.
    [103]冯宁川.橘子皮化学改性及其对重金属离子吸附行为的研究[D].博士学位论文,中南大学,2009.
    [104]么哲仙.生物吸附剂桔子皮的制备及对重金属Pb2+、Cu2+的吸附研究[D].硕士学位论文,东北师范大学,2006.
    [105]Li X M, Tang Y R, Cao X, et al. Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2008,317(1-3): 512-521.
    [106]李小敏.桔皮纤维素生物吸附剂的制备及其对重金属的吸附研究[D].硕士学位论文,东北师范大学,2007.
    [107]王格慧,宋湛谦,王连生.树皮的化学改性及其吸附特性研究[J].林产化学与工业,2002,22(2):12-16.
    [108]林春华.杉树皮对重金属离子吸附性能的研究[D].硕士学位论文,福建农林大学,2008.
    [109]Randall J M, Bermann R L, Garrett V, et al. Use of bark to remove heavy metal ions from waste solution[J]. Forest Product Journal,1974,24(9):80-84.
    [110]Randall J M, Hautala E J, Waiss A C, et al. Modified barks as scavengers for heavy metal ions[J]. Forest Product Journal,1976,26(9):46-50.
    [111]王德龙,朱连华,郭玉敏.新型吸附剂的实验研究[J].城市环境与城市生态,1994,74(4):13-16.
    [112]Plama G, Freer J, Baeza J. Removal of metal ions by modified pinus rediata bark and tannins from water solutions[J]. Water research,2003,37(20): 4974-4980.
    [113]刘俊良,杨全利,刘明德.含铬废水处理技术综述[J].河北科技图苑,1997,37(3):13-15.
    [114]邓小红,宋仲容.电镀含铬废水处理技术研究现状与发展趋势[J].重庆文理学院学报(自然科学版),2008,27(5):70-73.
    [115]Palmer C, Puls R. Natural attenuation of hexavalent chromium in ground water and soils. EPA/540/S-94/505. U.S. Environmental Protection Agency Ground Water Issue. October 1994.
    [116]Garg U K, Kaur M P, Garg V K, et al. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass[J]. Journal of Hazardous Materials,2007,140(1-2):60-68.
    [117]Aoyama M. Removal of Cr(VI) from aqueous solution by London plane leaves[J]. J. Chem. Technol. Biotechnol.,2003,78(5):601-604.
    [118]Sujsavte O, Thiravetyan P, Nakbanpote W, et al. Chromium removal from electroplating wastewater by coir pith[J]. Journal of Hazardous Materials,2007, 141(3):637-644.
    [119]Yu L J, Shukla S S, Dorris K L, et al. Adsorption of chromium from aqueous solutions by maple sawdust[J]. Journal of Hazardous Materials,2003, B100(1-3):53-63.
    [120]Gode F, Atalay E D, Pehiyan E. Removal of Cr(VI) from aqueous solutions using modified red pin sawdust[J]. Journal of Hazardous Materials,2008, 152(3):1201-1207.
    [121]Gao L, Liu Y G, Zeng G M, et al. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste—Rice straw[J]. Journal of Hazardous Materials,2008,150(2):446-452.
    [122]Aoyama M, Tsuda M. Removal of Cr(VI) from aqueous solution by larch bark[J]. Wood Science and Technology,2001,35(5):425-434.
    [123]Aoyama M, Kishino M, Jo T S. Biosorption of Cr(VI) on Janpanese Cedar Bark[J]. Separation Science and Technolgy,2005,39(5):1149-1162.
    [124]Sarin V, Pant K K. Removal of chromium from industrial waste by using eucalyptus bark[J]. Bioresource Technology,2006,97(1):15-20.
    [125]Sarin V, Sarvinder singn T, Pant K K. Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark[J]. Bioresource Technology,2006, 97(16):1986-1993.
    [126]Demirbas A. Adsorption of Cr(III) and Cr(VI) ions from aqueous solution onto modified lignin[J]. Energy Source,2005,27(15):1449-1455.
    [127]Argun M E, Dursun S, Ozdemir C, et al. Heavy metal adsorption by modified oak sawdust:thermodynamics and kinetics[J]. Journal of Hazardous Materials, 2007,141(1):77-85.
    [128]Oquz E. Adsorption characterization and the kinetics of the Cr(VI) on the Thuja oriantalis[J]. Collids and surface A:Physicochem. Eng. Aspects,2005, 252(2-3):121-128.
    [129]Pehlivan E, Altun T. Biosorption of Cr(VI) ion from aqueous solutions using walnut, hazelnut and almond shell[J]. Journal of Hazardous Materials,2008, 155(1-2):378-384.
    [130]Li J, Lin Q, Zhang X, et al. Kinetic parameters and mechanisms of the batch biosorption of Cr(Ⅵ) and Cr(Ⅲ) onto Leersia hexandra Swartz biomass[J]. J. Colloid Interface Sci.,2009,333(1):71-77.
    [131]Mohan D, Pittman Jr. C U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water [J]. Journal of Hazardous Materials,2006,137(2):762-811.
    [132]Park A, Yun Y S, Lee H W, et al. Advanced kinetic model of the Cr(Ⅵ) removal by biomaterials at various pHs and temperatures [J]. Bioresource Technology, 2008,99(5):1141-1147.
    [133]Park D, Yun Y-S, Jo J H, et al. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger, Water Res.2005,39(4):533-540.
    [134]Ozer A, Ozer D. Comparative study of the biosorption of Pb(Ⅱ), Ni(Ⅱ) and Cr(VI) ions onto S.cerevisiae:determination of biosorption heats[J]. J. Hazar. Mater.,2003,100(1-3):219-229.
    [135]Yurtsever M, Sengil I A. Biosorption of Pb(Ⅱ) ions by modified quebracho tannin resin[J]. J. Hazar. Mater.,2009,163(1):58-64.
    [136]Tahir S S, Rauf N. Thermodynamic studies of Ni(Ⅱ) adsorption onto bentonite from aqueous solution. The Journal of Chemical Thermodynamics, 2003,35(12):2003-2009.
    [137]Lagergren S. About the theory of so-called adsorption of soluble substances [J]. Kungliga Svenska Vetenskademiens Handlingar,1898,24(4):1-39.
    [138 Ho Y S, Mckay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat[J]. Can. J. Chem. Eng.,1998,76(4):822-827.
    [139]Weber W J, Morris J C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, Ametican Society of Civil Engineers,1963,89(17):31-60.
    [140]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of American Chemistry Society,1918,40(9):1361-1403.
    [141]Freundlich H M F. Uber die adsorption in Losungen[J]. Z. Phys. Chem.,1906, 57:385-470.
    [142]Dubinin M M, Zaverina E D, Radushkevich L V. Sorption and structure of active carbons. I. Adsorption of organic vapors[J]. Zhurnal Fizicheskoi Khimii, 1947,21:1351-1362.
    [143]Baig T H, Garcia A E, Tiemann K J, et al. Adsorption of heavy metal ions by the biomass of Solanum elaeagnifolium (Silverleaf night-shade)[J]. in:L. E. Erickson(Ed.), Proceedings of the 10th Annual EPA Conference on Hazardous Waste Research, US Environmental Protection Agency, Washington DC,1999, 131-139.
    [144]Farinella N V, Matos G D, Arruda M A Z. Grape bagasse as a potential biosorbent of metals in effulent treatments [J]. Bioresource Technology,2007, 98(10):1940-1946.
    [145]Kim H and Lee K. Application of insoluble cellulose xanthate for the removal of heavy metals from aqueous solution[J]. Korean J. Chem. Eng.,1999,16(3): 298-302.
    [146]Bailey S E, Olin T J, Bricka R M, et al. A review of potentially low-cost sorbents for heavy metals[J]. Wat. Res.,1999,33(11):2469-2479.
    [147]Wing R E, Doane W M and Russel C R. Insoluble strach xanthates:use in heavy metal removal[J]. J. Appl. Polym. Sci.,1975,19:847-854.
    [148]Iqbal M, Saeed A, Iqbal Z S. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste[J]. Journal of Hazardous Materials,2009,164(1):161-171.
    [149]Panda G C, Das S K, Guha A K. Biosorption of cadmium and nickel by functionalized husk of Lathyrus sativus[J]. Collids and surfaces,2008,62(2): 173-179.
    [150]Ozer A, Akkaya G, Turabik M. Biosorption of Acid Blue 290 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra rhizopus[J]. J. Hazar. Mater.,2006, 135(1-3):355-364.
    [151]Gaballah I, Goy D, Allain E, et al. Recovery of copper through decontamination of synthetic solutions using modified barks[J]. Metallurgical and Materials Transactions,1997,B28(1):13-23.
    [152]Khormaei M, Nasernejad B, Edrisi M, et al. Copper biosorption from aqueous solutions by sour orange residues[J]. Journal of Hazardous Materials, 2007,149(2):269-274.
    [153]吴唯,薛扬,徐嘉凉等.层析聚酰胺树脂对茶多酚的吸附热力学和吸附动力学研究[J].塑料工业,2008,36(7):42-45.
    [154]Ozacar M, Sengil I A. Adsorption of reactive dyes on calcined alunite from aqueous solutions[J]. Journal of Hazardous Material,2003,98(1-3):211-224.
    [155]Mckay G, Blair H S, Gardner J R. Adsorption of dyes on chitin. Ⅰ. Equilibrium studies[J]. Journal of Applied Polymer Science,1982,27(8):3043-3057.
    [156]Lodeiro P, Barriada J L, Herreo R, et al. The marine macroalga crystoseira baccata as biosorbent for cadmium(Ⅱ) and lead(Ⅱ) removal:kinetic and equilibrium studies[J]. Environmental Pollution,2006,142(2):264-273.
    [157]Gong R, Ding Y, Liu H, et al. Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass[J]. Chemosphere,2005,58(1):125-130
    [158]Jana K, Edita V. Comparison of differences between copper bioaccumulation and biosorption[J]. Environ Intern,2005,31 (2):227-232
    [159]叶振华.化工吸附分离过程[M].北京:中国石油化工出版社,1992.
    [160]王长泰,林诚.固定床透过曲线的预测[J].化工学报,1986,(2):183-192.
    [161]Liu Y, Liu Y J. Biosorption isotherms, kinetics and thermodynamics[J]. Separation and Purification Technology,2008,61(3):229-242.
    [162]Lu D D, Cao Q L, Li X M, et al. Kinetics and equilibrium of Cu(Ⅱ) adsorption onto chemically modified orange peel cellulose biosorbents[J]. Hydrometallurgy,2009,95(1-2):145-152.
    [163]Yoo S H, Fishman M L, Savary B J, et al. Monovalent salt-induced gelation of enzymatically deesterified pectin [J]. J Agric Food Chem,2003,51:7410-7417
    [164]魏秀莉,孙宁云,吴宝剑等.氯化钙对吲哚美辛果胶骨架片体外释放的影响[J].中国药学杂志,2006,41(23):1804-1808.
    [165]Monahar D M, Anoop Krishnan K, Anirudhan T S. Removal of mercury(Ⅱ) from aqueous solutions and chlor-alkal industry wastewater using 2-mercaptobenzimidazole-clay[J].Water Research,2002,36(6):1609-1619.
    [166]邓莉萍.藻体对水环境中N、P及重金属Cu2+、Pb2+、Cd2+、Cr6+的吸附特征研究[D].中国科学院研究生院博士学位论文(中科院海洋研究所),2008.
    [167]薛红喜,何江,樊庆云等.黄河包头段常见离子对重金属在沉积物上吸附影响机制研究[J].地理科学,2008,28(3):407-411.
    [168]Sag Y and Kutsal T. The simultaneous biosorption process of lead(Ⅱ) and nickel(Ⅱ) on Rhizopus arrhizus[J]. Process Biochemistry,1997,32(7): 591-597.
    [169]Sag Y, Akccael B & Kutsal T. Ternary biosorption equilibria of arrhizus[J]. Separation Science and Technology,2002,37(2):279-309.
    [170]ngil I A, Ozacar M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin[J]. J. Hazard. Mater.,2009, 166(2-3):1488-1494.
    [171]Nightingale Jr. E. R. Phenomenological Theory of ion solvation effective radii of hydrated ions[J]. J. Phys. Chem.,1959,63 (9):1381-1387.
    [172]Vazquez G, Gonzalez-Alvarez J, Freire S, et al., Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms[J]. Bioresource Technology,2002,82(3):247-251.
    [173]Mckay G and Porter J F. Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat[J]. J.Chem.Tech.Biotechnol.,1997,69(3): 309-320.
    [174]Lu D D, Cao Q L, Cao X J, Luo F. Removal of Pb(II) using the modified lawny grass:mechanism, kinetics, equilibrium and thermodynamic studies[J]. Journal of Hazardous Materials,2009,166(1):239-47.
    [175]Krishnani K K, Meng X, Christodoulatos C, et al. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk[J], Journal of Hazardous Materials,2008,153(3):1222-1234
    [176]Dang V B H, Doan H D, Dang-Vu T, Lohi A. Equilibrium and kinetics of biosorption of and copper(Ⅱ) ions by wheat straw[J]. Bioresource Technology, 2009,100(1):211-219.
    [177]Saeed A, Iqbal M, Akhtar M W. Removal and recovery of lead(Ⅱ) from single and multimetal(Cd, Cu, Ni, Zn) solutions by crop milling waste(black gram husk)[J]. Journal of Hazardous Materials,2005,117(1):65-73.
    [178]钱国勇,侯明,汪菊玲.绿茶对水溶液中Pb2+和Cd2+吸附性能初步研究[J].分析试验室,2008,27(1):63-66.
    [179]Chand R, Narimura K, Kawakita H, et al. Grape waste as a biosorbent for removing Cr(VI) from aqueous solutions[J]. Journal of Hazardous Materials, 2009,163(1):245-250.
    [180]Parajuli D, Adhikari CR, Kawakita H, et al. Chestnut pellicle for the recovery of gold. Bioresour Technol.,2009,100(2):1000-1002.
    [181]Dinoex. Determination of Cr(VI) in water, wastewater and solid waste extracts, Technical Note 26 LPN 34398-011M7/96, Dionex Corporation,1996.
    [182]Weckhuysen B M, Wachs I E, Schoonheydt R A. Surface chemistry and spectroscopy of chromium in inorganic oxides[J]. Chemistry Review,1996, 96(8):3327-3349.
    [183]Ho Y S, Mckay G. A kinetic study of dye sorption by biosorbent waste product pith[J]. Resource, conservation and recycling,1999,25(3):171-193.
    [184]Weber W J, Morris J C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engieering Division, American Society of Civil Engineers,1963,89(17):31-60.
    [185]Jensen F. Activation energies and the Arrhenius equation [J]. Quality and Reliability Engineering International,1985,1(1):13-17.
    [186]Aksu Z, Karabayu G. Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye[J]. Bioresource Technolgy,2008,99(16):7730-7741.
    [187]Daughney C J, Fein J B, Yee N. A comparison of the thermodynamics of metal adsorption onto two common bacteria[J]. Chemical Geology,1998, 144(3-4):161-176.
    [188]Han R, Zhang L, Song C, et al. Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode[J]. Carbohydrate Polymers,2010,79(4):1140-1149.
    [189]Park D, Yun Y S, Park J M. Use of dead fungal biomass for the detoxification of hexavalent chromium:screening and kinetics[J]. Process Chemistry,2005, 40(7):2559-2565.
    [190]Park D, Yun Y S, Ahn C K, et al. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass[J]. Chemosphere,2007, 66(5):939-946.
    [191]Wartelle L H, Marshall W E. Chromate ion adsorption by agricultural by-products modified with dimethylildihydroethylene urea and choline chloride[J]. Water Research,2005,39(13):2869-2876.
    [192]Singh K K, Rastogi R, Hasan S H. Removal of Cr(VI) from wastewater using rice bran[J]. J. Colloid Interface Sci.,2005,290(1):61-68.
    [193]Singh K K, Hasan S H, Talat M, et al. Removal of Cr(VI) from aqueous solutions using wheat bran[J]. Chemical Engineering Journal,2009,151(1-3): 113-121.
    [194]Wang X S, Li Z Z, Tao S R. Removal of chromium(VI) from aqueous solution using walnut hull[J]. J. Environ. Manage.,2009,90(2):721-729.
    [195]Khezami L, Capart R. Removal of chromium(VI) from aqueous solution by activated carbons:kinetic and equilibrium studies[J]. J.Hazard.Mater.,2005, 123(1-3):223-231.
    [196]Tel H, Alta Y, Taner M S. Adsorption characteristics and separation of Cr(Ⅵ) and Cr(Ⅲ) on hydrous titanium oxide[J]. J.Hazard.Mater.,2004,112(3): 225-231.
    [197]Aksu Z, Aikel U, Kabasakal E, Tezer S. Equilibrium modeling of individual and simultaneous biosorption of chromium(Ⅵ) and nickel(Ⅱ) onto dried activated sludge[J]. Water Research,2002,36(12):3063-3073.
    [198]Suksabye P, Thiravetyan P, Nakbanpote W, et al. Chromium removal from electroplating wastewater by coir pith[J]. Journal of Hazardous Materials,2007, 141(3):637-644.
    [199]Dupont L, Guillon E. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran[J]. Environ.Sci.Technol.,2003,37(18): 4235-4241.
    [200]林郁锜.探讨纤维素、半纤维素、几丁质以及木质素对溶液中六价铬的反应机制[D].硕士学位论文,台湾中兴大学,2010.